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Abstract 
Geometers in medieval Islam found algebra to be a useful tool in solving 
problems, but the Greek restriction of “number” to positive integers, adhered 
to by al-Khayyām (and presumably others), is at odds with the more liberal 
inclusion of fractions and irrational roots in traditional numerical Arabic 
algebra. By regarding the known and unknown numbers of traditional 
algebra as the homogeneous measures of continuous magnitudes (and not as 
magnitudes themselves), al-Khayyām was able to give a rigorous foundation 
for the art. This revision helps us understand al-Khayyām’s main work on 
algebra in the context of geometrical and numerical problem solving, and it 
leads us to a reassessment of his generalized notion of “number” explained 
in his commentary on Euclid. 

 

 
1 University of Indianapolis, oaks@uindy.edu. Note: The Diagram from Abý Kāmil’s Algebra 
was generated using DRaFT (http://www.hs.osakafu-u.ac.jp~ken.saito) from the reproduction 
of the Istanbul MS in [Abý Kāmil 1986]. The diagrams from al-Khayyām’s works are adapted 
from [Rashed & Djebbar 1981], and their lettering is taken from [Rashed & Vahabzadeh 
1999]. Translations from al-Khayyām’s works are sometimes taken from [Rashed & 
Vahabzadeh, 2000], sometimes adapted from that translation, and sometimes they are mine. I 
indicate which in footnotes. Other translations from Arabic are mine. I thank Marco Panza for 
his many comments on an earlier version of this paper. 
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1. Introduction 

Arabic algebra began as a practical method of arithmetical problem solving.2 
At least as far back as the early ninth century merchants, surveyors, 
accountants, and even the judges charged with the division of estates were 
said to make use of the technique. What made algebra versatile is that it 
could be used to solve any linear or quadratic problem, provided that the 
parameters be converted to numbers. For instance, one worked with 
numerical lengths and areas when solving mensuration problems. 

But algebra was not just applied to practical problems. It also turned out to 
be effective for solving problems in theoretical geometry that could not be 
worked out with straight edge and compass. This is accomplished by first 
setting up and simplifying a cubic equation that satisfies the conditions of the 
problem. The terms of the equation are then reinterpreted in the context of a 
new diagram in which two conic sections intersect, and the solution to the 
original problem is a line extending to this intersection. This technique was 
already well established when ‘Umar al-Khayyām (1048-ca.1131) conceived 
a plan to systematize it. There are only twenty-five types of simplified cubic 
and lower degree equations,3 so a book listing all their solutions could serve 
the needs of future geometers. To meet the requirements of theoretical 
geometry he would also need to give algebra a rigorous foundation and 
provide proofs to all his solutions. 

Al-Khayyām first announced his plan in Risāla f÷ taqs÷m rub‘ al-dā‘ira 
(Treatise on the division of a quadrant of a circle, henceforth Quadrant). In 
this book he solves a geometry problem via algebra. The quartic equation he 
sets up simplifies to x 3 + 200x = 20x 2 + 2000 , and this is solved by 
intersecting a semicircle with a hyperbola. In the middle of the solution, 
between the simplified equation and the construction, al-Khayyām gives a 
summary of his views on algebra. Later he wrote his famous Risāla f÷’l-
barāh÷n ‘alā masā’il al-jabr wa’l-muqābala (Treatise on the proofs of 
algebra problems, henceforth Algebra). Here he realizes his project by 
solving all twenty-five simplified equations of degree three and less. 

 
2 By “practical” I mean that the method was taught to people in preparation for careers 
requiring calculation. While merchants may have been unlikely to solve quadratic equations on 
the job, they learned algebra as part of their education. 
3 There are 25 types because coefficients were required to be positive. For example, the 
equations x3 + 2x = 4  and x 3 + 4 = 2x  were considered to be of different kinds. See §2 below. 
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Al-Khayyām’s Algebra has been well known to modern historians since 
the publication of Franz Woepcke’s edition and translation in 1851. Since 
then the classification of equations and the solutions to the 14 irreducible4 
cubic cases have received ample and deserved attention. But the way al-
Khayyām made practical calculation rigorous and his revision of the 
structure of algebraic solutions has been largely overlooked. 

Algebraists who wrote practical textbooks admitted fractions and 
irrational roots as numbers, but al-Khayyām remained faithful to the Greek 
notion that numbers consist only of positive integers (possibly excluding 1). 
With such a restriction his algebraic powers cannot be unknown numbers. 
Instead, al-Khayyām regarded them as the abstraction of “quantity” common 
to continuous magnitudes. 

This distinction between discrete numbers and continuous magnitudes 
necessitates a reworking of the third stage in the solutions of problems, that 
of solving the simplified equation. In traditional arithmetical algebra all 
unknowns are numbers, so the solutions of the six simplified equations of 
degrees 1 and 2 are given solely as numerical recipes. Now al-Khayyām 
finds the need to give two separate solutions, where possible, to each 
equation: one if the original unknown is a number, and another if it is a 
magnitude. 

I begin this article with a review of the structure of practical Arabic 
algebra to put al-Khayyām’s work in perspective. After presenting a 
translation of a problem from Abý Kāmil’s On the Pentagon and Decagon, 
solved in the traditional manner, I give al-Khayyām’s problem from 
Quadrant. This is followed by an analysis of al-Khayyām’s program. By 
observing how he manipulates his terms and from comments he makes in 
both works we can determine the nature of al-Khayyām’s powers of the 
unknown and his modification of the structure of algebraic solutions. A 
corollary of this analysis is a revision of our understanding of al-Khayyām’s 
generalized concept of “number”. 
 
 
 

 

 
4 “Irreducible” equations are those with a constant term, and thus do not reduce to one of lower 
degree. 
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2. Arabic algebra before al-Khayyām 

Modern accounts of Arabic algebra, especially those which describe al-
Khwārizm÷’s early ninth century Kitāb al-jabr wa’l-muqābala5 (“Book of 
Algebra”), tend to focus on the solutions to the six simplified quadratic and 
linear equations and their geometric proofs. Before putting al-Khayyām’s 
Algebra in perspective I must put al-Khwārizm÷’s six equations in the 
perspective of practical algebraic problem solving. 

Mu¬ammad ibn Mýsā al-Khwārizm÷ was asked by the Caliph al-Ma’mýn 
(reigned 813-833 C.E.) to write a book on algebra which “encompasses the 
fine and important parts of its calculations that people constantly require in 
cases of their inheritance, their legacies, their partition, their law-suits, and 
their trade, and in all their dealings with one another, such as the surveying 
of land, the digging of canals, mensuration, and other various aspects and 
kinds are concerned.”6 Practical mathematics does not concern itself with 
philosophical notions that limit numbers to positive integers, so the concept 
of “number” for these people is any positive quantity that arises in 
calculation, including fractions and irrational roots. Measurements of length, 
area, weight, or time are always numerical. This is what al-Khwārizm÷ meant 
when he wrote in the beginning of his Algebra “When I considered what 
people generally want in calculating, I found that it is always a number.”7 

Al-Khwārizm÷’s treatment of algebra, like many which followed, is 
divided into two parts. The first part contains an explanation of the powers of 
the unknown, the classification and solutions of the six simplified equations 
(here with proofs), and rules for operating with roots and polynomials. The 
second part is a collection of thirty-nine worked-out problems. The purpose 
of the rules in the first part is to train the student to solve the problems in the 
second part.8 

 
5 The title given by Rosen (1831) and later historians is Kitāb al-mukhta½ar f÷ ¬isāb al-jabr 
wa’l-muqābala (“Brief Book on Calculation by Algebra”). Now Rashed claims that the 
original title was simply Kitāb al-jabr wa’l-muqābala (“Book of Algebra”) [al-Khwārizm÷ 
2007, 9]. 
6 [al-Khwārizm÷ 2007, 95]. Translation adapted from [Gutas 1998, 113], which in turn was 
adapted from Rosen’s translation [al-Khwārizm÷ 1831, 3]. 
7 [al-Khwārizm÷ 2007, 97.1; al-Khwārizm÷ 1831, 5]. Rosen’s translation. 
8 The Oxford MS has 40 problems, but one of them was probably added later. After the 
worked-out problems al-Khwārizm÷ gives a short section on the rule of three and mensuration, 
followed by a long collection of worked-out inheritance problems. 
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The name given to the first degree unknown in Arabic algebra is shay’ 
(“thing”), and sometimes also jidhr (“root”). Its square is called māl (literally 
“sum of money”, “property”).9 Units were counted in “dirhams” (singular 
dirham, a silver coin), min al-‘adad (“in number”) or as ā¬ād (“units”), and 
frequently the appellation was dropped. Our earliest text with higher powers 
is QusÐā ibn Lýqā’s translation of Diophantus’ Arithmetica, written a few 
decades later. The third power is ka‘b (“cube”), and higher powers were 
written as combinations of māl and ka‘b, such as māl māl for x4  and māl 
ka‘b for x 5. A typical equation, from al-Khwārizm÷’s problem (4), is 
“twenty-one things and two thirds of a thing less two māls and a sixth equals 
a hundred and two māls less twenty things.”10 In modern notation this is 
21

2

3
x − 2 1

6
x
2 =100 + 2x 2 − 20x . An algebraic notation emerged in the 

Maghreb around the 12th c. CE, but the texts of earlier algebraists, including 
those by al-Khwārizm÷, Abý Kāmil, and al-Khayyām, are entirely rhetorical. 

The solution to a problem by medieval Arabic algebra can be broken 
down into three stages: 

Stage 1: An unknown number is named in terms of the algebraic powers 
(usually as a “thing”). The operations or conditions specified in the 
enunciation are then applied to arrive at an equation. 

Stage 2: The equation is simplified to a standard form. The six standard 
equations of the first two degrees are described below. 

Stage 3: The solution to the simplified equation is found using the 
prescribed procedure. 

Like in medieval Europe, negative numbers and zero and were not 
acknowledged in Arabic mathematics. Because the solutions to simplified 
equations take the numbers (coefficients) of the terms as parameters, no term 
can be subtracted. This yields the following six types of equation: (1) 
ax

2 = bx , (2) ax 2 = c , (3) bx = c , (4) ax 2 + bx = c , (5) ax 2 + c = bx , and (6) 
bx + c = ax2. Al-Khwārizm÷ and later algebraists show how to solve each of 

 
9 Because there is no good single-word English translation of māl, and because the word was 
used in algebra in a technical sense unrelated to its quotidian meaning, I leave it untranslated. I 
write its plural with the English suffix: māls. 
10 [al-Khwārizm÷ 2007, 163.9]. 
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the six types with a numerical rule. Al-Khwārizm÷’s solution to the sample 
type 4 equation “a half māl and five roots equal twenty-eight dirhams” 
( 1
2
x
2 +5x =28) is: 

So you want to complete your māl, so that it becomes whole, which is that you 
double it. So double it and double everything you have which is equated with it. 
So it yields: a māl and ten roots equals fifty-six dirhams. So halve the roots,11 so 
it yields five. So multiply it by itself, so it yields twenty-five. So add it to the 
fifty-six, so it yields eighty-one. So take its root, which is nine. So subtract from 
it half the roots, which is five. So there remains four, which is the root of the 
māl that you wanted, and the māl is sixteen and its half is eight.12 

Beginning with al-Khwārizm÷ and his contemporary Ibn Turk, a few of 
the more scientifically minded algebraists include geometric proofs of the 
validity of these procedures.13 There the māl is represented by a square, and 
its side is a “thing”. The geometric magnitudes in these proofs merely 
represent the unknown numbers. They are not identical with them.14 

Below is a sample worked-out problem from Abý Kāmil’s On the 
Pentagon and Decagon, which is included as part of his Book of Algebra 
(late 9th c.). I chose this problem because it is an application of algebra to 
geometry done in the traditional manner. Keep in mind that the vast majority 
of problems solved in Arabic algebra are arithmetic questions. 

 

 
11 Here “the roots” is short for “the number of the roots”, or what we call the coefficient of the 
first degree term. 
12 [al-Khwārizm÷ 2007, 103.10]. 
13 The following authors give geometric proofs: Al-Khwārizm÷ (#41 [M3]), Ibn Turk (#59 
[M1]), Thābit ibn Qurra (#103 [M19]), Abý Kāmil (#124 [M1]) (all four from the 9th c.), al-
Karaj÷ (al-Fakhr÷, early 11th c., #309 [M2]), and al-Samaw’al (12th c., #487 [M1]). Some 
algebraists who either give arithmetical proofs, or no proofs at all, are: ‘Al÷ al-Sulam÷ (10th c., 
#267 [M1]), al-Karaj÷ (al-Kāf÷, early 11th c., #309 [M1]), Ibn al-Yāsam÷n (late 12th c., #521 
[M3]), Ibn Badr (13th c.?, #587 [M1]), al-Fāris÷ (d. ca. 1320, #674 [M2]), Ibn al-Bannā’ (d. 
1321, #696, [M6, M8, M11]), al-Umaw÷ (14th c., #931 [M2]), Ibn al-Hā’im (1387, #783 
[M13]), al-Kāsh÷ (d. 1436, #802 [M1]), SibÐ al-Mārid÷n÷ (late 15th c., #873 [M10]), al-Qala½ād÷ 
(d. 1486, #865 [M3], [M7]), Ibn Ghāz÷ (d. 1513, #913 [M2]), and al-‘¶mil÷ (ca. 1600, #1058 
[M1]). The numbering of authors and works is taken from [Rosenfeld & Ihsano§lu 2003]. 
14 In some of Abý Kāmil’s proofs the māl is represented by a line. Also, beginning about the 
12th c. there was a shift away from geometric proof in favor of arithmetical proofs. 
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 [Enunciation] 
So if [someone] said to you: a triangle with equal sides and angles. Each of its 
sides is ten, and in it is a rectangle of area ten. What is the height of the 
rectangle? 

[Stage 1] 
An example of this is that we make the triangle triangle ABG, and the rectangle 
in it rectangle HRDZ. So if we wanted to know how much line HD is, which is 
the height of the rectangle, we make it a thing [ x ]. So line BD is the root of a 
third of a māl [ 1

3
x
2 ], and likewise line ZG is the root of a third of a māl. So 

this leaves line DZ as ten less the root of a māl and a third [10 − 1
1

3
x
2 ]. So you 

multiply it by line HD, which is a thing, so it yields: ten things less the root of a 
māl māl and a third of a māl māl equals ten dirhams [10x − 1

1

3
x
4 =10]. 

 

[Stage 2] 
So restore the things [by] the root of a māl māl and a third of a māl māl and add 
its same to the dirhams. So you get: ten dirhams and the root of a māl māl and a 
third of a māl māl equals ten things [10 + 1

1

3
x
4 =10x ]. 

[Stage 3] 
So return [the root of a māl māl and a third of a māl māl]15 to the root of a māl 
māl, which is a māl, which is that you multiply it by the root of three fourths. 

 
15 The MS has “everything you have” for my restored text in brackets. 
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And you multiply everything you have by the root of three fourths. So it yields: 
a māl and the root of seventy five dirhams equals the root of seventy five māls 
[ x2 + 75 = 75x

2 ]. 

So halve the root of seventy-five māls, so it yields the root of eighteen and a half 
and a fourth. So multiply it by itself: it yields eighteen and a half and a fourth. 
So cast away from it the root of seventy-five, leaving eighteen and a half and a 
fourth less the root of seventy five. So you take the root. So what results, you 
added to it the root of eighteen and a half and a fourth. So the sum is the height 
of the rectangle, which is line HD.16 

In stage 3 Abý Kāmil uses the procedure for the type 5 equation to find 
that the height of the rectangle is the number 18

3

8
− 75 + 18

3

8
. Many of 

the rules given in the first part of his book are applied in this problem: 
operations on polynomials in stage 1, operations on square roots in stages 1 
and 3, and the solution to the simplified equation in stage 3. Like many 
algebraists, Abý Kāmil does not explain al-jabr (restoration) and al-
muqābala (confrontation), the steps used when necessary in stage 2. 

The rules and proofs for the six equations are just one part of practical 
Arabic algebra. The rules are given so the practitioner or student can 
complete stage 3 in the solution to a problem, and proofs are provided in 
some books as an added measure of rigor. To many modern readers these 
proofs are the highlight of Arabic algebra, and so they have received the bulk 
of attention. This imbalance has been reinforced by al-Khayyām’s Algebra, 
where our author gives only the rules, constructions, and proofs for the 
simplified equations of degree three and less. Because al-Khayyām wrote for 
mathematicians already familiar with practical algebra, he had no need to 
teach the rules for manipulating polynomials and roots, nor to include a 
collection of worked-out problems illustrating the method of algebra. 

3. Al-Khayyām’s worked out problem 

Medieval Arabic mathematicians took up the challenge of geometrical 
calculation that they inherited from the Greeks. While classical Greek 
geometers wrote their “calculations” in purely geometric terms, there was a 
trend beginning in late antiquity to posit the existence of a unit segment and 

 
16 Problem (13) [Abý Kāmil 1986, 147.16]. 
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to express calculations with language borrowed from arithmetic.17 For 
example, Archimedes related the volume of a sphere to that of a cone: 
“Every sphere is four times a cone having a base equal to the greatest circle 
of the <circles> in the sphere, and, <as> height, the radius of the sphere.”18 
The Baný Mýsā (9th c.), by contrast, expressed the volume of a sphere as 
“the product of half of its diameter by a third of its surface area”.19 The 
surface of a sphere is curved, so this product cannot be a geometric object 
given in position. It is instead an abstract “quantity” resulting from the 
multiplication of two other “quantities”. 

This arithmetization facilitated the application of algebra to geometry. Al-
Khayyām himself relates details of the history of these applications in both 
of his treatises.20 In the late ninth century al-Māhān÷ attempted to use algebra 
to solve the problem of cutting a sphere by a plane so that the two parts are 
in a given ratio, from Archimedes’ On the Sphere and Cylinder II.4. He 
reduced the problem to an equation involving “cubes, māls and numbers”,21 
but he could not solve it. In the next century Abý Ja‘far al-Khāzin made a 
breakthrough. He reinterpreted the “cube”, “māl”, and “number” as 
geometric magnitudes, and solved the equation as a line extending to the 
intersection of two conic sections in a new diagram. Later geometers were 
then able to solve assorted solid problems with conic sections via similar 
transformations through algebra. 

Al-Khayyām, too, found algebra to be an expedient tool for solving a 
geometry problem in his Quadrant. He begins by reducing the main 
problem, that of dividing the quadrant of a circle into two parts satisfying a 
certain condition, to a problem of constructing a particular right triangle. 
This he solves with algebra. 

 

 

 
17 [Cuomo 2000, 180; Rashed 1996, 370, 372; Rashed & Vahabzadeh 1999, 8/2000, 8; 
Brentjes 2008, 452]. 
18 [Netz 2004, 148], his translation. That the cone is a third of the cylinder with the same base 
and height was already well known. 
19 [Rashed 1996, 113.8]. They had just proven in the previous proposition that the surface of a 
hemisphere is double the area of its great circle. 
20 [Rashed & Vahabzadeh 1999, 117.11, 227.9, 255.4/2000, 111, 160, 173]. 
21 [Rashed & Vahabzadeh 1999, 117.13/2000, 111]. 
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[Enunciation] 
So suppose [we have] triangle ABC and angle B is right. And we draw from 
point B a perpendicular BD to AC. And we suppose that side AB with the 
perpendicular BD together are equal to AC…22 

 
 

 
 
[Stage 1] 
And we suppose that the line AD is rational in length: let it be ten. And we 
suppose that BD is a thing, and we multiply it by itself: it yields a māl. And we 
multiply ten by itself: it yields a hundred. And we sum them: they yield a 
hundred and a māl, which is the square on AB, as is demonstrated in 47 of I.23 
And since the ratio of AC to AB is as the ratio of AB to AD, because of the 
similarity of the two triangles ABC, ABD, it follows that the product of AC by 
AD is equal to the square on AB. So if we divided the square on AB, which is a 
hundred in number and a māl, by AD, which is ten, [then] the result of the 
division is ten in number and a tenth of a māl, which is AC. And we supposed 
that AC is equal to the sum of AB, BD. So the sum of AB, BD is ten in number 
and a tenth of a māl. We subtracted from it BD, which is the thing, leaving ten in 
number and a tenth of a māl less a thing, which is AB. So we multiply it by 
itself. It results in: a hundred in number and three māls and a tenth of a tenth of a 
māl māl less twenty things, and less a fifth of a cube equals a hundred in number 
and a māl [100+ 3x2 + 1

10

1

10
x
4 −20x − 1

5
x
3 =100+ x2]. 

 
 
 
 

 
22 [Rashed & Vahabzadeh 1999, 247.5/2000, 169] (my translation). 
23 Euclid’s Elements I.47, the Pythagorean theorem. 
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[Stage 2] 
So one restores and confronts and collapses,24 leaving two māls and a tenth of a 
tenth of a māl māl equals twenty things and a fifth of a cube 
[2x2 + 1

10

1

10
x
4 = 20x + 1

5
x
3]. So one divides everything by the thing, so it results 

in the four lesser types [i.e. powers] in this ratio. So the result of the division is: 
a tenth of a tenth of a cube and two things equals a fifth of a māl and twenty in 
number [ 1

10

1

10
x
3 + 2x = 1

5
x
2 + 20]. 

So one completes a tenth of a tenth of a cube by multiplying by a hundred. 
Likewise we multiply all of the types by a hundred. So it results in: a cube and 
two hundred things equals twenty māls and two thousand in number 
[ x3 + 200x = 20x2 + 2000].25 

[After a long digression in which he outlines his algebraic program, al-
Khayyām returns to work out stage 3. Note the switch to geometric language 
at this point.] 

[Stage 3] 
We return to our problem, after reviewing these preliminaries: To find a cube, 
which together with two hundred of its sides, is equal to twenty squares of its 
side with two thousand in number. We suppose line AB is equal to the number 
of squares, which is twenty, and line EG is two hundred, and line EH one. Thus 
surface HG is two hundred. And we make a square equal to surface HG as is 
shown in Proposition 14 of Book II. And let the side of that square be equal to 
AH, where AH is perpendicular to AB, and it [AH] is the root of two hundred. 
And AD is the result of the division if one divides the number by the number of 
roots, which is ten, since the number is two thousand and the number of roots is 
two hundred. And if one divides the two thousand by two hundred it results in 
ten. And DB likewise is ten.…26 

 
24 I explain the phrase “restoration and confrontation” (al-jabr wa’l-muqābala) in [Oaks & 
Alkhateeb 2007]. In al-Khayyām’s equation this entails “restoring” the 100+ 3x2 + 1

10

1

10
x
4  by 

the subtracted 20x + 1

5
x
3, and “confronting” the 3x 2 on the left with the x 2 on the right. I have 

not seen the term “collapse” (qāÅa) used in the context of simplifying an equation in any other 
book. It may refer to “collapsing” the two 100’s on either side. 
25 [Rashed & Vahabzadeh 1999, 247.13/2000, 169] (my translation). This last step, 
multiplying each term by 100, would have traditionally been considered to be part of stage 3. 
But in al-Khayyām’s algebra it fits more naturally in stage 2. 
26 [Rashed & Vahabzadeh 1999, 257.14/2000, 174] (my translation). 
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[From here al-Khayyām sets up the semicircle BKD and the hyperbola KDN, 
and he proves that line AL (= MK) solves the equation.] 

 

 

There is no noticeable difference in the ways Abý Kāmil and al-Khayyām 
carry out stages 1 and 2 in their solutions. Both assign numerical values to at 
least one line, and the length of another line is made a “thing”. The equations 
they set up are simplified to a standard form, with no subtracted terms and 
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only one term for each power.27 Abý Kāmil’s unknowns are numbers which 
can take non-integer values, so the similarities in the solutions suggest that 
al-Khayyām’s unknowns are numerical as well. By observing how al-
Khayyām manipulates his algebraic terms, and from the comments he gives 
in both treatises, we will see that in practice he does indeed work in the same 
numerical system as earlier algebraists, but that he regards these numbers to 
be the dimensionless abstraction of “quantity” shared by continuous 
magnitudes. 

4. Stages 1 & 2: Working with abstract “quantity” 

Al-Khayyām remained faithful to Aristotle regarding philosophy of 
mathematics. He cited Aristotle in his criticism of Euclid’s and Ibn al-
Haytham’s admission of motion to geometry,28 and he adhered to the 
Stagirite’s partition of the genus of “quantity” into discrete and continuous. 
On this Aristotle wrote “Of quantities some are discrete, others continuous… 
Discrete are number and language; continuous are lines, surfaces, bodies, 
and also, besides these, time and place.”29 Al-Khayyām makes the same 
distinction in his Commentary: 

And when they found number to be of the same genus as magnitude, because 
both of them were altogether divided under the genus of quantity, they looked as 
well for this notion in the magnitudes. Then they found in them together with 
these two divisions another division. That is, the magnitudes are not made up of 
indivisible parts, and there is no definite end to their division, as there is with 
number.30 

Al-Khayyām’s identification of “number” with positive integers puts 
restrictions on his numerical solutions to equations in the Algebra. For the 
first compound quadratic equation he writes: 

 
27 Higher powers were common in practical algebra. In other problems Abý Kāmil set up a 
higher degree equation which reduces to one of lower degree. For example, in problem (51) he 
sets up the equation x4 +12 1

4
x
2 − 7x 3 = 2x 3 , which reduces to x 2 +12 1

4
= 9x . [Abý Kāmil 

1986, 96.20] 
28 In his Commentary [Rashed & Vahabzadeh 1999, 311/2000, 219]. 
29 Categories 4b20-24, translated in [Aristotle 1963, 12]. “Number” is discrete because it 
encompasses only positive integers, and “language” consists of individual syllables. 
30 [Rashed & Vahabzadeh 1999, 343.5/2000, 235] (their translation). 
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A māl and ten roots equals thirty-nine in number [ x2 +10x = 39]. So multiply 
half the roots by its same, and add the result to the number, and subtract from 
the root of the outcome half the roots. So the remainder is the root of the māl. 

Numerically, these two conditions are necessary: the first one of them, that the 
number of the roots be an even number, so that it may have a moiety; and the 
second, that the sum of the square of half the number of the roots and the 
number be a square number. For otherwise the problem would then be 
impossible numerically. But geometrically, not a thing at all pertaining to its 
problems will be impossible.31 

With this framework in mind, we can now ask how al-Khayyām’s 
“number”, “thing”, māl, “cube”, māl māl, etc. relate to the genus of 
“quantity”. We already know that they cannot be unknown numbers because 
the powers can represent the measures of continuous magnitudes in the 
solutions to geometry problems. In fact, al-Khayyām implies that they are 
somehow associated with continuous magnitudes in the Algebra. In the 
beginning of the book, just before naming the powers of the unknown, he 
writes: “And magnitudes are a continuous quantity, of which there are four: 
the line, the surface, the solid and time, as it is mentioned in a general way in 
the Categories and in detail in First Philosophy…”32 Specifically what kinds 
of objects al-Khayyām’s powers are emerges from the way he operates on 
them, and from comments he makes about their nature. 

Al-Khayyām begins his algebraic solution in Quadrant by making line 
AD “ten”. Of course “ten” only measures the line, it is not identical with it. 
He calls BD a “thing”, and later line AC turns out to be “ten in number and a 
tenth of a māl”. So “number”, “thing”, and māl can all measure lines. Also in 
stage 1 the square on AB is calculated as “a hundred and a māl”, so 
“number” and māl can also measure surfaces. Later on the square on AB is 
also found to be “a hundred in number and three māls and a tenth of a tenth 
of a māl māl less twenty things, and less a fifth of a cube”, an aggregation of 
the first five powers. The ways these powers are combined shows that they 

 
31 [Rashed & Vahabzadeh 1999, 137.5/2000, 120] (1st paragraph: my translation, 2nd 
paragraph: their translation). Woepcke and Rashed & Djebbar suggest that al-Khayyām 
commits an error here. It is true that an integer solution can exist if the number of roots is odd. 
But al-Khayyām may be speaking of the calculation of the answer, not the existence of the 
answer. [Woepcke 1851, 42; Rashed & Djebbar 1981, 107]. 
32 [Rashed & Vahabzadeh 1999, 121.14/2000, 113] (their translation). After this quote he 
argues against Aristotle’s “place” as a continuous magnitude. 
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are homogeneous, and that no term is tied to a particular dimension. 
Homogeneity is also evident from the fact that the powers are proportional: 
“…the ratio of the number to the roots is as the ratio of the roots to the māls, 
and as the ratio of the māls to the cubes, and as the ratio of the cubes to the 
māls māls, as far as one wishes to go.”33 

We glean further insight from al-Khayyām’s explanation of the fourth 
degree term: “What is here called by the algebraists a māl māl is something 
imagined in the continuous magnitudes, and which cannot exist by any 
means in sensible things.”34 By “sensible things” he means lines, planes, and 
cubes. (Later we will see also that the zero degree term “number” is likewise 
“abstracted by the mind”.) A māl māl (and the other higher powers) is a 
continuous measure, but it does not correspond in a natural way to any 
particular dimension. Couple this with the fact that “number”, “thing” and 
māl can each measure magnitudes of different dimensions, and we see that 
all the powers of the unknown must be “imagined in the continuous 
magnitudes” during the manipulations in stages 1 and 2. They are the 
abstraction of “quantity”, stripped of dimension, which continuous 
magnitudes share in this genus. 

By regarding the algebraic unknowns as abstract “quantity”, al-Khayyām 
gives a rigorous foundation to the number system used by practical 
mathematicians. He writes in his Commentary: 

…those who make calculations, I mean those who make measurements, often 
speak of one half of the unit, of one third thereof, and of other parts, although 
the unit be indivisible. But they do not mean by this a true absolute unit whereof 
true numbers are composed. On the contrary, they mean by this an assumed unit 
which, in their opinion, is divisible. Then they act in whatsoever way they 
please in the management of the magnitudes in accordance with that divisible 
unit and in accordance with the numbers composed thereof; and they often 
speak of the root of five, of the root of the root of ten, and of other things which 
they constantly do in the course of their discussions, and in their constructions 
and their measurements. But they only mean by this a ‘five’ composed of 
divisible units, as we have mentioned.35 

 
33 [Rashed & Vahabzadeh 1999, 123.1/2000, 113] (my translation). 
34 [Rashed & Vahabzadeh 1999, 249.20/2000, 170] (adapted from their translation). “Sensible 
things” is Rashed’s and Vahabzadeh’s translation of wujýh (sing. wajh). This term is translated 
in their French edition as individus. 
35 [Rashed & Vahabzadeh 1999, 379.15/2000, 253] (their translation). 
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Divisible units belong to continuous magnitudes, so al-Khayyām suggests 
in this quotation that earlier algebraists, Abý Kāmil included, had 
unknowingly worked with the same abstract “quantities” which he used in 
his algebraic solution. 

5. Stage 3: dual solutions of quadratic equations 

Al-Khayyām asserted in Quadrant that algebra belongs wholly to geometry: 

And those who think that algebra is a means to extract unknown numbers think 
the unthinkable; therefore you must not pay attention to those who judge 
appearances and are of a different opinion: on the contrary, algebra is something 
geometrical which is demonstrated in Book II of the Elements, in Propositions 5 
and 6 thereof.36 

But later, when he wrote his Algebra, he decided that the art could be used 
as a tool for solving arithmetic problems. The different natures of numbers 
and geometric magnitudes compelled him to give two solutions to each 
simplified equation: a numerical rule if the original problem is in arithmetic, 
and a geometric construction if it is in geometry. Al-Khayyām gives 
arithmetical and geometric solutions to all equations of degrees 1 and 2 and 
for reducible cubic equations. (A cubic equation is “reducible” if it has no 
constant term, and thus can be reduced to one of lower degree.)37 For the 
fourteen irreducible cubic equations he gives only the geometric solutions 
because he could not solve them numerically. For these equations he writes 
“when the subject of the problem is an absolute number, it was not feasible 
either for us or for any one of those concerned with the art—and possibly 
someone else will come to know it after us…”38 

The equations with dual solutions follow a general pattern. The rule for 
the numerical solution is given first, accompanied by a geometric proof that 
the rule is correct. Then comes the geometric solution with its proof. (Some 
of these elements are missing for each equation.) 

 
36 [Rashed & Vahabzadeh 1999, 251.14/2000, 171] (their translation). 
37 Three-dimensional geometric solutions are given for the reducible cubic equations, and for 
their numerical solutions the reader is referred back to the solution to the corresponding 
quadratic equation. Marco Panza also wrote about these dual solutions in [Panza 2007, 127ff]. 
38 [Rashed & Vahabzadeh 1999, 125.5/2000, 114] (their translation). Numerical solutions were 
first found by del Ferro and Tartaglia in the 16th c. 
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The presence of dual solutions raises the question of the degree of 
abstraction of al-Khayyām’s unknowns. In an equation like “a māl and ten 
roots equals thirty-nine in number” the value of the “root” can be found as a 
magnitude or as a number. Could al-Khayyām have regarded it as being a 
magnitude in general, possessing a nature which rises beyond the discrete 
and the continuous to encompass both kinds of quantity? Such a modern 
interpretation is unlikely. Because the arithmetical unit is distinct from the 
continuous unit, al-Khayyām probably viewed the abstract “numbers” 
attached to continuous quantity as capable of representing the discrete 
numbers of arithmetic. In this way the continuous “root” can represent an 
unknown positive integer. 

6. Stage 3: Geometric solutions of irreducible cubic equations 

For each of the fourteen irreducible cubic equations solved in the Algebra 
the geometric construction flows seamlessly into its proof. The construction 
itself utilizes only the “numbers” (coefficients) of the terms of the equation, 
while in the proof the powers are reinterpreted as the measures of geometric 
magnitudes of specific dimensions. Al-Khayyām describes this transition in 
the interlude between stages 2 and 3 in his solution in Quadrant. He first 
explains that only powers up to the cube can be part of such a 
reinterpretation. “And as to things which are used by the algebraists, and 
which exist in sensible things and in continuous magnitudes, they are 
fourfold: number, thing, māl, and cube.” While “number” is a bit tricky, the 
other three powers are associated with their natural geometric counterparts: 

As for number, number is taken as abstracted by the mind from material things; 
and it does not exist in sensible things, since number is a universal intelligible 
thing which cannot exist except when individuated by material things. And as to 
the thing, its rank (manzila) in relation to continuous magnitudes is the rank of 
the straight line. And as to the māl, its rank is that of the rectangular equilateral 
quadrangle whose side is that straight line to which the expression thing is 
applied. And the cube is a solid which is contained by six equal rectangular 
equilateral square surfaces…And as to the māl māl, which according to the 
algebraists results from the product of the māl by itself, it does not have any 
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meaning in the continuous magnitudes, for the square being a surface, how 
could it be multiplied by itself?…39 

Al-Khayyām proves that the line AL satisfies the equation in Quadrant in 
the same way he proves his solutions in his Algebra: by comparing different 
volumes. Each term in the equation “a cube and two hundred things equals 
twenty māls and two thousand in number” ( x3 + 200x = 20x2 + 2000) is 
reinterpreted as the measure of a three dimensional rectangular solid. The 
“cube” in the equation becomes the cube on AL. The “two hundred things” is 
the product of the square on LI by AL, where the area of the square is 200. 
The “twenty māls” is the product of the square on AL by AB, where AB is 
twenty. Last is the “two thousand”, which is the square on LI by AD, or 200 
by 10. Homogeneity is maintained by making the “numbers” (coefficients) 
of the first and second degree terms a plane and a line respectively, and by 
making the 2000 the measure of a solid. 

The reinterpretation of the zero degree term “number” (‘adad) among the 
different equations in the Algebra depends on the degree of the equation. In 
the proofs of the constructions for cubic equations “number” measures a 
solid, while for quadratic equations it measures a plane. Al-Khayyām writes 
in the Algebra “And whenever we say in this treatise a number is equal to a 
surface, we mean by number a rectangular surface one of whose sides is a 
unit while the second is a line equal in measure to the given number…”, and 
“And whenever we say a number is equal to a solid, we will mean by 
number a rectangular parallelepipedal solid whose base is the square of the 
unit and whose height is equal to the supposed number.”40 So while “thing”, 
māl, and “cube” are always manifested as 1, 2, and 3-dimensional objects 
respectively in the proofs, the dimension of “number” changes with the 
degree of the equation. This is why it must be “abstracted by the mind from 
material things”, just like the māl māl. 

Al-Khayyām was understandably uncomfortable about including 
“number” with the other “geometrical” degrees. On the one hand it is 
necessary to reinterpret “number” as a geometric object in the proofs. But on 
the other hand it does not correspond naturally to any particular degree. His 
ambivalence is apparent in both treatises. We saw above in Quadrant that he 

 
39 [Rashed & Vahabzadeh 1999, 249.27/2000, 171] (adapted from their translation). Rashed & 
Vahabzadeh translate manzila as “position” in both French and English. 
40 [Rashed & Vahabzadeh 1999, 131.10, 133.7/2000, 117, 118] (their translation). 
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includes “number” in the list of things “which exist in sensible things”, but 
then he writes that it “does not exist in sensible things”. In his Algebra he 
writes that only three degrees “fall within magnitudes”: “root” (i.e. “thing”), 
māl, and “cube” (identified with side, surface, and body respectively). But 
immediately after he writes “…what is found in the works of the algebraists 
with respect to these equations between the four geometrical degrees, I mean 
absolute numbers, sides, squares, and cubes”.41 

7. Al-Khayyām’s concept of continuous “number” 

Al-Khayyām takes up the issue of the compounding (multiplication) of ratios 
in the third part of his Commentary. It is here that he explains his concept of 
“number” in the context of ratios of magnitudes. He begins his proof that 
A : B  compounded with B :C  is A :C  by writing: 

We assume the unit, and we set its ratio to the magnitude G equal to the ratio of 
A to B. And the magnitude G should not be regarded as being a line, or a 
surface, or a solid, or a time. On the contrary, it should be regarded as being 
abstracted by the mind from these adjunct characters and as being attached to 
number…42 

Al-Khayyām describes G with the same kind of language he used for the 
algebraic terms māl māl and “number” (and by homogeneity all the 
algebraic powers). All belong to the abstract scale of measurement shared by 
continuous magnitudes. This level of generality is necessary in the proof 
because al-Khayyām needs to work in a dimensionless system. At one point 
he multiplies the magnitude D, which is homogeneous with the unit and G, 
by the unit. The result must be the magnitude D itself, and not an object or 
quantity of a higher dimension. 

Some historians have inferred from the context of the proof that al-
Khayyām’s “numbers” are conceived as being the measures of ratios of 
magnitudes.43 But al-Khayyām defines G in the context of ratios only 
because this particular theorem is about ratios. As we saw in the algebraic 
works, his “numbers” derive instead from the abstraction of “quantity” from 

 
41 [Rashed & Vahabzadeh 1999, 123.11,19/2000, 114] (their translation). 
42 [Rashed & Vahabzadeh 1999, 379.11/2000, 253] (adapted from their translation). 
43 Two accounts of al-Khayyām’s “numbers” are [Youschkevitch 1976, 87-88; Vahabzadeh 
2004]. 
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continuous magnitudes. While his numbers can be regarded as the measures 
of ratios, they are not ratios essentially. 

8. Summary of al-Khayyām’s algebra 

Practical algebraists calculated in a number system comprising all quantities 
that might arise in calculation or measurement, including fractions and 
irrational roots. This system was well suited for the kind of geometrical 
problem solving practiced by al-Khayyām and others, but it needed a 
rigorous foundation. For this al-Khayyām turned to Aristotle’s genus of 
“quantity”. The species that make up this genus come in two types. For 
Aristotle “numbers” (positive integers) are an example of a discrete type, 
because the unit in arithmetic is indivisible. “Lines”, “surfaces”, “bodies”, 
and “time” are continuous types, because the units in these species are 
divisible. Because the algebraists worked with a divisible unit, al-Khayyām 
identified their numbers with the measures of continuous magnitudes. 

These “continuous numbers”, as I call them, are not associated with any 
particular species of magnitude. A number like “two and a half” can be the 
length of a line, the area of a rectangle, the volume of a cube, or the length of 
a span of time. They embody the abstract quality of “quantity” shared by 
continuous magnitudes. Because the numbers are not substantiated in 
“material things” (i.e. in any species), they can only be “abstracted by the 
mind”. One advantage of such an abstract system is that the numbers are 
closed under multiplication. Had al-Khayyām worked with geometric 
magnitudes themselves, there would be a problem with dimension. 
Multiplying two lines gives a plane, not another line, and one cannot 
multiply two plans or two solids together at all. But the product of two 
continuous numbers always yields another continuous number. This property 
is necessary for polynomial algebra and for al-Khayyām’s proof in the third 
part of his Commentary. 

Al-Khayyām works with the same unbounded range of powers as in 
practical algebra, and with the same names: shay’ (“thing”) or jidhr (“root”) 
for the first power, māl (“sum of money”) for the second, ka‘b (“cube”) for 
the third, followed by the higher powers māl māl, māl ka‘b, ka‘b ka‘b, as 
high as one wishes to go. Near the end of his Algebra al-Khayyām even 
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works with the reciprocals of the powers.44 Being continuous numbers, the 
powers are homogeneous and proportional, so no power is tied to any 
dimension. In the course of solving a geometry problem, for instance, a māl 
can be the measure of a line, a plane, or a solid. 

In his Quadrant al-Khayyām maintained that algebra can only be used to 
solve geometry problems. The unknowns, after all, are the abstraction of 
continuous measure. But later in his Algebra he wrote that algebra can be 
used to solve arithmetic questions, too.45 The continuous numbers can be 
taken to represent positive integers as well as the measures of geometric 
magnitudes, though there would probably not be much demand for the 
former. 

The structure of the solution to a problem in al-Khayyām’s algebra differs 
from that in practical algebra only in stage 3: 

Stage 1: An unknown number, either discrete (arithmetic) or continuous 
(geometry), is named in terms of the algebraic powers (usually as a 
“thing”). The operations or conditions specified in the enunciation are 
then applied to arrive at an equation. 

Stage 2: The equation is simplified to a standard form. Al-Khayyām lists 
the twenty-five standard polynomial equations of the first three degrees 
in both treatises. 

Stage 3: If the enunciation asks for an unknown number, then one 
follows the prescribed numerical solution given in the Algebra. If the 
original unknown is a line, then one performs the prescribed geometric 
construction to produce a line whose length is the “thing”.46 

Al-Khayyām’s Algebra is mainly a guide for performing stage 3, where 
the nature of the unknowns as abstract, dimensionless “quantity” is 
reinterpreted either as number or geometric magnitude. For equations of 

 
44 [Rashed & Vahabzadeh 1999, 217/2000, 156]. Al-Karaj÷ worked with the reciprocals of the 
powers in his al-Fakhr÷ (early 11th c.). 
45 In addition to the three geometrical degrees, time is a kind of continuous magnitude, and al-
Khayyām notes that algebra could also be used to solve problems in horology [Rashed & 
Vahabzadeh 1999, 121.18/2000, 113]. 
46 Al-Khayyām did not give solutions for equations in which the unknown is the māl or the 
“cube”. 
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degree one and two he gives two solutions. If the original problem is in 
arithmetic, one follows the arithmetical rule. If it is in geometry, one follows 
the geometric construction. Al-Khayyām gives geometric proofs for both 
kinds of solutions. He gives only geometric solutions and proofs for 
irreducible cubic equations because he was not able to solve them 
numerically. 

The answer to an arithmetic problem must be a number, so al-Khayyām’s 
rule produces the answer from the numbers (coefficients) of the terms in the 
simplified equation, just as al-Khwārizm÷ and other algebraists had done. Al-
Khayyām’s geometric proofs for the numerical rules follow the tradition 
established by al-Khwārizm÷ and Ibn Turk, and later improved by Abý 
Kāmil and al-Karaj÷. 

The answer to a geometry problem must be given as a geometric 
magnitude. The geometry problems suitable for algebra are those that ask for 
a magnitude whose measure satisfies a certain condition. Typically this 
measure is named a “thing”, and the resulting simplified equation is solved 
by constructing a line whose length is the value of the “thing”. Al-Khayyām 
proves that the constructed line satisfies the equation by reinterpreting 
“thing”, māl, and “cube” as the line, the square on the line, and the cube on 
the line respectively. 

While al-Khayyām puts no limit on the degree of the equations in stages 1 
and 2, he caps the degree of simplified equations to be solved in stage 3 at 
the third degree. This is due to the identification of the powers of the 
unknown with geometric magnitudes in the proofs of the geometric 
solutions, as shown in section §6. 

9. Terminology 

In reading over al-Khayyām’s mathematical works one finds the word 
“number” used with different meanings in different contexts, and in the 
Algebra the names of the powers are sometimes confused with the names of 
their corresponding geometric magnitudes. It is necessary to distinguish 
between these meanings when reading his works, so I outline the potentially 
confusing terms here. 

Al-Khayyām uses the word ‘adad (“number”) four different ways. The 
context of each use of the term is enough to determine which meaning he has 
in mind: 
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1) As the discrete objects of arithmetic, “numbers” are positive 
integers. 

 
2) In his Commentary he speaks of his notion of “number”, which is 

“abstracted by the mind” as the dimensionless measure of 
continuous magnitudes. These continuous numbers form the 
foundation for al-Khayyām’s algebra. The powers “thing”, māl, 
etc. are regarded as unknown numbers in this sense, so the use of 
the word “number” for the zero degree term in a polynomial 
should be understood as taking the same meaning. 

 
3) In the proof of the geometric solution to an equation “number” is 

reinterpreted as the measure of a solid (for cubic equations) or a 
plane (for quadratic equations). 

 
4) Al-Khayyām follows earlier algebraists in speaking of the 

“number” of a term as how many there are. So the number of 
“things” in the polynomial “a māl and three things” is “three”. In 
modern terms, this number is the coefficient of the term. In 
practical Arabic algebra and in al-Khayyām this number cannot 
be irrational, but it can be a fraction.47 

In his Quadrant al-Khayyām distinguishes between the algebraic powers 
and their geometric counterparts by his choice of terms. During stages 1 and 
2 he works with the traditional algebraic words shay’ (“thing”), māl, ka‘b 
(“cube”), and māl māl. He begins stage 3 by looking for a geometric Åil‘ 
(“side”), murabba‘ (“square”), and muka‘‘b (“cube”), distinguishing even 
between the algebraic and the geometric “cube”. But in the Algebra al-
Khayyām is not so careful with his choice of words. In his initial list of the 
25 equations he uses the proper algebraic terms, but when he restates the 
equations before giving their solutions, he sometimes mixes the words. For 
the equations with numerical solutions (degree 1 and 2) he keeps the proper 
algebraic terms, but for the 14 irreducible cubic equations, which are solved 

 
47 For example, Abý Kāmil multiplies “the root of five” by “a thing” to get “the root of five 
māls”, i.e. 5 ⋅ x→ 5x

2  [Abý Kāmil 1986, 89.12]. The root is placed over the whole term to 
keep the coefficient rational. See [Oaks 2009], particularly §5.2. 
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only by geometry, the geometric terms Åil‘ and muka‘‘b replace shay’ and 
ka‘b.48 

The intermingling of algebraic and geometric terms in the Algebra does 
not hold any significance. In the proofs the algebraic powers are to be 
identified with geometric magnitudes anyway, so al-Khayyām has no real 
motive to distinguish them. Also, he was lax in a few other places in the 
Algebra. For example, in most equations al-Khayyām states the general case, 
but for four types he states and solves specific equations: x2 = 5x , 
x
2 +10x = 39, x3 + 2x = 3x2, and x3 = x2 + 3x . The first two are the 

standard examples from the practical tradition. Also, he sometimes uses the 
phrase “the number of” a term to mean the whole term, and not just the 
coefficient. Last, in the geometric proof of the numerical solution to 
x
2 = ax + b he works with the example x2 = 5x + 7, whose solution is 

irrational. While the geometric solutions and proofs in al-Khayyām’s 
Algebra are well conceived and presented, other aspects of his book are not 
so polished. 

 
 

10. Influences 

The influences of earlier algebraists on al-Khayyām are clear. His numerical 
solutions and proofs for linear and quadratic equations show elements taken 
from al-Khwārizm÷’s book, including one proof of the numerical solution to 
x
2 +10x = 39. The idea of solving irreducible cubic equations with conic 

sections goes back to al-Khāzin, and al-Khayyām mentions that Abý’l-Jýd 
ibn al-Layth (10th-11th c.) had previously attempted to classify and solve all 
cubic equations. 

But what about the concept of continuous number? The theoretical 
geometers in the two centuries before al-Khayyām who sought to 
appropriate algebra for problem solving would not have accepted the 
“numbers” of the practical algebraists. Matvievskaya has noted that al-
Khāzin based his Commentary on Book X of Euclid’s Work on Aristotle’s 

 
48 He also uses the geometric “cube” in stating the reducible cubic equations. 
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classification of continuous magnitudes.49 It is likely that al-Māhān÷, al-
Khāzin, Abý’l-Jýd, and other geometers who worked with cubic equations 
before al-Khayyām also regarded the algebraic powers as being the 
abstraction of “quantity”. This would help to explain why al-Khayyām does 
not explicitly address the nature of his numbers. Later geometers continued 
to ground their notion of continuous number in the same way as al-
Khayyām, including QāÅ÷ Zāda al-Rým÷ in his commentary on al-
Samarqand÷’s Ashkāl al-ta’s÷s (1412).50 

Al-Khayyām’s only successor in algebra whose work survives is Sharaf 
al-D÷n al-Æýs÷ (d. 1213/14). Sharaf al-D÷n wrote his Problems of Algebra 
(Masā’il al-jabr wa’l-muqābala) with the same general aim as al-Khayyām: 
to present solutions to the twenty-five simplified equations of degree three 
and less, with proofs. Sharaf al-D÷n does not discuss the nature of his 
unknowns, so we can presume that he upheld al-Khayyām’s interpretation. 

Sharaf al-D÷n included numerical solutions to all equations. These 
solutions are given in terms of specific equations, solved by what is now 
known as the Ruffini-Horner method. He uses root extraction even for 
quadratic equations, thus bypassing the traditional solutions dating back to 
al-Khwārizm÷. Because numbers are restricted to integers, this process 
always yields the exact answer in a finite number of steps. Al-Khayyām 
mentioned the numerical method of root extraction in his treatment of the 
equations x2 = a and x3 = a, but he did not include it in his Algebra because 
his own proofs were not grounded in geometry: “But these demonstrations 
are only numerical demonstrations based on the arithmetical Books of the 
Elements.”51 Another modification in Sharaf al-D÷n is that in addition to 
lines, his unknowns can be the measures of two- and three-dimensional 
geometric objects. 

Al-Khayyām’s contributions to algebra had no noticeable impact on 
practical Arabic algebra, and by extension, the algebra imported by medieval 
Europeans in Latin and Italian.52 His grounding of “number” in abstract 
continuous “quantity” is a philosophical nicety that merely justifies earlier 

 
49 [Matvievskaya 1987, 261; Brentjes 2008, 448]. We also find Abý’l-Jýd giving numerical 
values to lines and areas, and calling a particular area a “fourth binomial” in his construction 
of the regular heptagon [Hogendijk 1987]. 
50 [Fazlio§lu 2008, 27]. 
51 [Rashed & Vahabzadeh 1999, 131.2/2000, 117] (their translation). 
52 The only whisper of influence is the presence of al-Khayyām’s equation 
x
3 + 2x2 +10x = 20 in Fibonacci’s Flos. [Rashed 1994, 149]. 
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practice, and his geometric solutions to cubic equations would have been no 
use to an architect or accountant seeking a numerical solution. Even those 
practical algebraists who showed a more theoretical interest in algebra and 
who worked with cubic equations, such as Ibn al-Hā’im (1387) and Ibn al-
Majd÷ (d. 1447), do not mention al-Khayyām or Sharaf al-D÷n al-Æýs÷.53 

Even theoretical mathematicians working in geometry and astronomy 
make few references to our algebraist. Ahmed Djebbar summed it up with 
“En effet les informations disponibles actuellement, sur un éventuel 
enseignement de Khayyām et sur la circulation directe ou indirecte de ses 
écrits mathématiques sont rares et souvent vagues et imprécises.”54 

11. Conclusion 

The interplay between practical and pure mathematics in medieval Islam is 
vividly evident in the field of algebra. Al-Karaj÷, for example, is not unusual 
in writing books for practitioners (his al-Kāf÷) and also for theoretical 
mathematicians (the Bad÷‘). His major text on algebra, al-Fakhr÷, combines 
practical instruction with original investigations into the arithmetic of 
polynomials. 

Al-Khayyām’s Algebra gives us a view of another way practice met 
theory. This book is a guide to algebra for use by geometers working in the 
Greek tradition. Where al-Karaj÷ and others brought the rigor of theoretical 
mathematics to practical algebra, al-Khayyām was among those who made 
practical algebra available to theoretical geometers. Because the liberal 
notion of number which formed the basis of practical algebra was at odds 
with the strict distinction made by geometers between discrete numbers and 
continuous magnitudes, al-Khayyām, and surely also those who worked 
before him, regarded the algebraic unknowns not as numbers, but as the 
dimension-free abstraction of continuous “quantity”. 

Algebra for al-Khayyām remained a method of solving problems in 
geometry and arithmetic. From the perspective of the mathematical objects 
involved, the algebraic solution begins by representing the unknown 
magnitude or positive integer by the abstract, dimensionless “thing”. After 
setting up and simplifying the equation to one of the twenty-five standard 
forms, the solution to the original problem is found by reinterpreting the 

 
53 [Ibn al-Hā’im 2003; Djebbar 2000, 26-31]. 
54 [Djebbar 2000, 26]. 
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“thing” as a magnitude or number. (The constructions in al-Khayyām’s 
Algebra belong only to this last step.) 

Looking at it from the perspective of problems and equations, a geometry 
or arithmetic problem is translated into an algebraic equation, which is then 
simplified. This simplified equation is then reinterpreted as a new problem to 
be solved. It is the simplification of the equation, which for al-Khayyām 
takes place in the domain of abstract, dimensionless quantities, which allows 
the algebraist to transform a given problem into a new one whose solution is 
provided in his book. 
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