

Chemometrics applied to the analytical study of the conformational equilibria of two guanine- and cytosine-rich sequences located near the promoter region of the *N-myc* oncogene

Sanae Benabou¹, Joaquim Jaumot, Raimundo Gargallo (*sbenabbe7@alumnes.ub.edu*)

¹Department of Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain

Introduction

In addition to the double helix, DNA shows other complex configurations such as quadruple structures, which consist on the association of four DNA stretches [1]. The most studied quadruple structures are:

This is formed by cytosine-rich sequences in which two cytosines (one of them being protonated) are linked <u>i-motif</u>: by three hydrogen bonds. This is the only DNA structure showing base pair intercalation.

G-quadruplex: This is formed by guanine-rich sequences. The building block is the G- tetrad, a planar arrangement of four guanines linked by hydrogen bonds.

It has been shown the formation *in vitro* of such structures in DNA sequences corresponding to the end of telomeres and to the promoter regions of several oncogenes, such as *c-kit*, *c-myc* or *bcl-2* [2].

In the present study, we have focused our attention on two cytosine- and guanine-rich (n-myc01 and n-myc02, respectively) sequences located near the promoter region of the *n*-myc gene. The interest in the study of this gene lies in the fact that it is important in defining the prognosis and treatment of

Methodology

Spectrophotometric techniques: circular dichroism (CD) and molecular absorption Analysis of spectroscopic data: Multivariate Analysis

The whole set of spectra recorded throughout the experiment is arranged in a table or data matrix **D**. Using appropriate methods, it is possible to:

1. Determine the number of species of conformations present throughout the experiment (using SVD), 2. Quantify their relative concentration (distribution diagram, matrix \mathbf{C}),

3. Recover their circular dichroism and/or molecular absorption spectra (pure spectra, matrix **S**)

-motif

Results

Influence of pH on the solution equilibria of n-myc01 and n-myc02

The experimental CD and molecular absorption spectra recorded throughout an acid-base titration of n-myc01 were analyzed with EQUISPEC.

In this case, four acid-base species were needed to fit experimental data. The corresponding CD and molecular absorption spectra were calculated, as well as the distribution diagram.

G-quadruplex

Blue line: a neutral structure with a simple helix. **Green line**:"*i-motif"* with some deprotonated bases.

Red line: "*i*-motif" with some protenated bases. **Cyan line**:protonated form of "*i-motif"*.

The *i*-motif structure is formed at pH slightly lower than 7 and it reaches its maximal stability around the pKa of free cytosine.

A similar study was carried out for the complementary guanine-rich sequence (**n-myc02**). In this case, only three acid-base species were needed to fit experimental data: **Blue line**: "G-quadruplex" with A and C bases deprotonated. **Green line**: "G-quadruplex" with protonated C bases and deprotonated A bases. **Red line**: "G-quadruplex" with A and C bases protonated. The G-quadruplex structure is well maintained within the considered pH range. The shape of the pure CD spectra allows the identification of a **parallel** G-quadruplex

µM, 25 ⁰C

Influence of temperature on the stability of <i>i</i> -	ence of temperature on the stability of <i>i</i> -motif formed by n-myc01						
Melting experiment of cytosine-rich sequence	Dependence of T _m with pH	Effect of ionic strength					
The analysis of one of the molecular absorption-monitored melting experiment of <i>i-motif</i> is shown here.	In the pH range 6.8 to 4.0, T_m values were almost a linear function of pH	No significant change was observed with increasing concentration of KCL in the circular dichroism spectra $(25^{\circ}C_{-}nH_{-}6_{-}1)$					

Effect of temperature on the thermodynamic parameters: Results of analysis according to the Van't Hoff equation

The thermodynamic parameters associated to the unfolding of **n-myc01** have been calculated from the spectra recorded throughout melting experiments and using a multivariate hard-modeling approach.

> folded DNA ↔ unfolded DNA K = [unfolded DNA]/[folded DNA]

рН	ΔH° (kcal/mol)	ΔS° (cal/K·mol)	T _m (°C)	∆G ° _{25ºC} (kcal/mol)
3.7	60	179	62	6.6
4.5	78	228	70	10.0
4.9	83	248	63	9.1
5.5	73	225	50	5.9
58	57	179	41	3.6

• The *i*-motif structure has a maximal stability around the pK_a of cytosine.

• At pH values around 6.5 an increase of ΔH° is observed, probably due to the formation of Watson-Crick pairs ($G \cdot C$ and $A \cdot T$).

∆G°_{25°C} ΔS° ΔHັ T_m (°C) рH (kcal/mol) (cal/K·mol) (kcal/mol) 3.9 20.7 114 313 89 236 86 14.4 85 4.5 73 207 80 11.4 5.1 209 11.2 79 6.1 74 209 10.9 77 7.1 73

A similar procedure has been used to analyze melting data of **n-myc02** sequence.

• The G-quadruplex is very stable throughout the studied pH range.

6.1	52	170	33	1,2
6.4	59	197	25	0.3
7.0	Not calc.	Not calc.	< 15	Not calc.

The estimated uncertainties for the thermodynamic parameters are around 10% due to the small spectral changes observed. The uncertainty associated to the T_m values is 1 °C.

Conclusions

- n-myc01 and n-myc02 sequences form intramolecular *i*-motif and G-quadruplex structures. According to CD data, the Gquadruplex shows a parallel conformation.
- The *i-motif* structure is stable within the pH range 2.5 6.5. Its maximal stability is around 4.5, the pK_a of free cytosine. It is not stable at pH 7 and 25°C.
- The structure of the G-quadruplex is stable under physiological conditions within a whole pH range. Its stability is higher at pH 3.1
- Hard-modeling has been shown to be useful for the analysis of spectral data involving complex structures of DNA.

Bibliography

[1] Bloomfield, V.A.C., D. M.; Tinoco, I. JR., Nucleic Acids. Structures, properties and functions, ed. U.S. Books. 2000, Sausalito, California.

[2] Bucek, P.; Jaumot, J.; Aviñó, A.; Eritja, R.; Gargallo, R. pH-modulated Watson-Crick duplex – quadruplex equilibria of guanine-rich and cytosine-rich DNA sequences 140 bp upstream of the c-kit transcription initiation site. Chemistry - A European Journal, Vol. 15, 12663-12671(2009).

[3] G. Perini, D. Diolaiti, A. Porro, and G.D. Valle. In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. PNAS, Vol. 102, 12117 (2004).

Acknowledgements

We acknowledge funding from both the Spanish government (CTQ2009-11572 and CTQ2010-20541-C03-01) and Catalan government (2009 SGR 45 and 2009 SGR 238).