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- The stability of DNA secondary structures depends on factors like pH, temperature, ionic strength... and on the Let us consider the spectroscopically-monitored unfolding of a intramolecular i-motif DNA
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presence of ligands, such as proteins or drugs.

« The knowledge about the stability of these structures is obtained from biophysical experiments such as meltings. In

these, a controlled displacement of a conformational equilibrium occurs by means of a change of temperature.

« Traditionally, melting experiments have been monitored spectrophotometrically measuring the absorbance at 260
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nm, being the result of the measurement a vector of absorbance values as a function of temperature. Appropriate

univariate methods have been developed to analyze such data [1,2].

« The univariate approach has several drawbacks like the difficulty when modelling systems where intermediates are

present. * Unfolding is characterized by: Unfolding is revealed by an increase of the
- Here, a hard-modeling-based procedure is proposed for the determination of thermodynamic data (AH?, AS?, AG? and * AHO: energy need to break the attractive interactions in the folded DNA. absorbance measurgggat 2qgm.
the melting temperature, T,,) from spectroscopically-monitored multivariate melting experiments. * ASP: its value usually increases when unfolding occurs. For G-quadruplex and j-motif structures,
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« T, the value at which half of the initial folded molecules are still in the folded state.

The classical univariate approach

The multivariate approach

« The univariate approach considers the existence of a two-state process. Using appropriate multivariate methods, it may be possible:
« Thermodynamic data are calculated from the absorbance at 295 nm following this procedure: 1. To determine the number of species of conformations present throughout the experiment,
« First, appropriate baselines are drawn (LO; and L1). 2. To quantify their relative concentration (distribution diagram, matrix C),
« Second, the relative amount of ordered and unordered DNA is calculated for each one of measured absorbance 3. To recover their pure spectra (matrix S)
values:
Fraction of folded DNA 7 = (LO; - A;) / (LO; - L1;) 1 > M A Y
T T.
- Third, the appropriate expression for the equilibrium constant is applied [1,2]. In our example, the equilibrium for | |epecumazsC. |
an intramolecular unfolding is straightforward: | Spectruma26°C ___________
Kroing = [fraction of folded DNA] / [fraction of unfolded DNA] = =
« Fourth, fitting the van’t Hoff equation provides quite reliable values for thermodynamic data:
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The hard-modelling-based approach Validation with simulated data

« The program makes use of the initial estimates of pure spectra obtained with SIMPLISMA [5], as well as of initial . Until now, it has been developed and validated for modelling intramolecular and duplex unfolding.

estimates for AH® and AS®. - The influence of noise and the concentration overlap has been studied using simulated data.

- Writen in Matlab®, it is based on the use of /sqcurvefit.m routine [6]. - In general, the method recovers satisfactorily the thermodynamic values used to build up the simulated data.

« Matrix C is calculated using the previously developed equations [1,2].
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measured spectroscopic data

Unfolding of an intramolecular parallel G-quadruplex (nmyc02)
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Intramolecular i-motif > partially unfolded G-quadruplex~> partially unfolded Mixed G-quadruplex > parallel G-
strand G-quadruplex (unstacked loops?) quadruplex
Partially unfolded strand > completely 34 107 50 Partially unfolded G-quadruplex-> 88 251 78 Parallel G-quadruplex> completely 45 134 67
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