Solution Equilibria of the *i*-motif-forming Region Upstream of the B-Cell Lymphoma-2 P1 Promoter

Nasiruddin Khan¹, Anna Aviñó², Romà Tauler³, Carlos González⁴, Ramon Eritja², Raimundo Gargallo¹

- 1. Department of Analytical Chemistry, University of Barcelona
- 2. Institut of Molecular Biology, IBMB-CSIC
- 3. Department of Environmental Chemistry, IIQAB-CSIC
- 4. Institute of Physical Chemistry "Rocasolano", CSIC

• • Outline

- Introduction
 - The G-quadruplex at the bcl-2 promoter site
 - The cytosine-rich complementary strand
- Dealing with spectroscopic multivariate data
- Results
 - Acid-base properties
 - Melting behavior
 - A possible structure for the i-motif
 - Interaction with a porphyrin: TmPyP4

The *bcl-2* oncogene

Bcl-2 gene has been classified as a proto-oncogene because of its overexpression in a wide range of human cancers

Bcl-2 gene product is a protein involved in the control of programmed cell death (apoptosis)

The oncogenic potential of bcl-2 is achieved by reducing the rate of cell death

Bcl-2 has two promoters:

Dexheimer et al. JACS 2006, 128, 5404

The GC-rich region upstream of the P1 promoter has been shown to be critically involved in the **regulation** of *bcl-2* gene expression

The G-quadruplex in *bcl-2*

Dexheimer *et al*. have shown that the guanine-rich strand of the DNA in this region can form three **intramolecular** G-quadruplex structures

The central G-quadruplex, which is the most stable, forms a mixed parallel/antiparallel structure:

Why the study of the cytosine-rich sequence?

The sequence 5'-<u>GGGCGCGGGAGGAGGAGGGGGCGGG</u>-3' has shown to form a G-quadruplex...

... however, this sequence is not isolated in vivo, and the complementary C-

rich strand is also present.

C-rich strands can form stable structures known as **i-motifs**:

Therefore... duplex? formation of G-quadruplex and i-motifs? mixtures?

Objectives of our work

We want to know the solution equilibria of the sequence:

5'CCC GCC CCC TTC CTC CCG CGC CCG-3'

corresponding to the middle region of the bcl-2 NHE region

"Solution equilibria":

- acid-base properties of this sequence...
 - in which pH range the i-motif is formed?
 - is there more than one i-motif?
- thermal denaturation
- interaction with a G-quadruplex-binding ligand: TmPyP4

Molecular absorption-monitored acid-base titration

pKa of cytosines is around 4.5, depending on ionic strength

Therefore, absorbance traces seem to point out to the formation of i-motif at pH < 7

NMR-monitored acid-base titration

CD-monitored acid-base titration

At least, two protonation steps are observed

It is difficult to ascertain the presence of more than one i-motif!

A possible tool: multivariate data analysis

Multivariate data analysis

The well-known Beer-Lambert law for a single wavelength... $A_{\lambda} = c \epsilon_{\lambda}$

... is now applied to the whole spectrum: $D = CS^T + R$

In a graphical form:

Multivariate analysis: two i-motifs have been detected

Melting experiments (i)

Melting experiments have been carried out from pH 7 to pH 3

In all cases, multivariate data analysis has been applied

Melting at pH 6.1

Melting experiments (ii)

Results of Van't Hoff analysis:

pН	Tm (°C)	Hyperchro micity at 295 nm (%)	ΔG ⁰ at 20 °C (kcal mol ⁻¹)	ΔH ⁰ (kcal mol ⁻¹)	ΔS ⁰ (cal K ⁻¹ mol ⁻¹)
4.0	63	+14	-6.6	-52	-153
4.5	68	-8	-7.0	-50	-148
4.7	64	-19	-8.0	-61	-182
5.6	48	-39	-5.5	-63	-196
6.1	36	-41	-2.5	-49	-157
6.8	28	-46	-1.1	-49	-164

Melting profile agrees with the concentration profile for i-motif II

At pH \sim 4.3, hyperchromicity \sim 0 and T_m reaches a maximum

• • A proposal for the resolved species

Neutral pH	Deprotonated cytosine involved in Watson-Crick base pairs	Hairpin
pH ~ 6	Cytosines involved in C+-C base pairs	i-motif I
pH ~ 4	Free cytosines not involved in the i- motif core are probably protonated	i-motif II

A proposal for the resolved species

A possible structure for the i-motif I formed by the bcl-2c sequence:

5'CCC GCC CCC TTC CTC CCG CGC CCG-3'

A similar sequence only forms just one i-motif

The study of the sequence 5'-CCC GTT CCC TTT TTC CCG TGC CCG -3' (with any free cytosine) seems to show the formation of an i-motif in the pH range 2 - 7

Interaction with a G-quadruplex ligand: TmPyP4. pH 6.9

Wavelength/nm →

At pH 6.9, TmPyP4 interacts with the Watson-Crick hairpin

Wavelength/nm →

A 1:2 (DNA:drug) interaction complex is proposed with log K_{eq} = 11.7 ± 0.1

Small variation in bcl-2c structure

Interaction with a G-quadruplex ligand: TmPyP4. pH 6.1

At pH 6.1, TmPyP4 interacts with the i-motif I:

A 1:2 interaction complex is proposed with log $K_{eq} = 12.4 \pm 0.2$

Interaction with a G-quadruplex ligand: TmPyP4. pH 4.2

At pH 4.2, TmPyP4 interacts with the i-motif II:

The structure is not altered. Intercalation?

• • Conclusions

- The studied sequence forms two i-motif structures in the pH range 2 – 7
- Stability of the i-motif structures is higher at pH
 4.3
- Interaction with TmPyP4 at pH 7 and pH 6 produces a similar product, where TmPyp4 seems to intercalate into DNA
- Interaction with TmPyp4 at pH 4 does not produce any change on i-motif structure.

Acknowledgments

- Funded projects BFU2004-02048/BMC and CTQ2006-15052-C02-01/BQU from the Ministerio de Educación y Ciencia
- Scientific-Technical Services UB

Solution Equilibria of the *i*-motif-forming Region Upstream of the B-Cell Lymphoma-2 P1 Promoter

Nasiruddin Khan¹, Anna Aviñó², Romà Tauler³, Carlos González⁴, Ramon Eritja², Raimundo Gargallo¹

Thank you!!

More info at: www.ub.es/gesq/dna