pH-modulated Watson-Crick duplex - quadruplex equilibria of guanine-rich and cytosine-rich DNA sequences upstream of the *c-kit* transcription initiation site

Pavel Bucek¹, Joaquim Jaumot², Anna Aviñó³, Ramon Eritja³, <u>Raimundo</u> <u>Gargallo²</u>

- 1. Dept. of Chemistry, Faculty of Science, Masaryk University, Kotlárská 2, 61137, Brno, Czech Republic
- 2. Dept. of Analytical Chemistry, University of Barcelona, Martí i Franqués 1 - 11, E-08028 Barcelona, Spain
- *3. Instituto de Biologia Molecular de Barcelona, CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain*

Outline

- o Introduction
 - G-quadruplex structures at the *c-kit* promoter site
 - The cytosine-rich complementary strand
- Dealing with spectroscopic multivariate data
- o Results
 - Solution equilibria of the guanine-rich region
 - Acid-base properties
 - Thermal stability
 - Solution equilibria of the cytosine-rich region
 - Acid-base properties
 - o Thermal stability
 - Competition Watson-Crick duplex secondary structures

G-quadruplex structures at the *c-kit* oncogene

The *c-kit* gene encodes a receptor tyrosine kinase involved in cell proliferation

c-kit activity is elevated in gastrointestinal stromal tumors, and its therapeutic inhibition by small molecules such as imatinib, is clinically validated

Two G-quadruplex-forming regions near the transcription initiation site:

5'-AGG GAG GGC GCT GGG AGG AGG G-3', 87 nucleotides upstream of the transcription start site It has been deeply studied and its structure resolved [Todd, 2007; Phan, 2005; Rankin, 2005]

5'-C<u>GG GCG GG</u>C GCG A<u>GG GAG GG</u>G-3', 140 nucleotides upstream of the transcription activation site Fernando et al. *Biochem*. **2006**, 45, 7854-7860: predominant parallel G-quadruplex structure

The cytosine-rich complementary strand

The sequence 5'-CGG GCG GGC GCG AGG GAG GGG-3' has shown to form a G-quadruplex...

... however, this sequence is not isolated *in vivo*, and the **complementary C-rich strand** is also present:

ckitC1 5'-<u>CCC CTC CC</u>T CGC G<u>CC C</u>G-3'

C-rich strands can form stable structures known as *i*-**motifs**:

Objective

We will study the competition equilibria between these two sequences:

ckitG1	5'-CGG GCG GGC GCG AGG GAG GGG-3'
ckitC1	5'-CCC CTC CCT CGC GCC CGC CCG-3'

duplex? formation of G-quadruplex and i-motif? a mixture?

"Solution equilibria":

- how does pH affect to the structures formed by these sequences?
- how do these structures behave in front of a temperature increase?
- can we quantify each species or conformation in a mixture?

Tools:

- experimental procedures: pH titrations, melting experiments, moleratio studies

- spectroscopic techniques: CD and molecular absorption
- multivariate data analysis methods

MCR-ALS in practice (1)

Selection of ALS constraints					
No-negativity	Conc	Implementation for conc finnls	Implementation for spec salect	*	
🔽 Yes?	C Spectra	Nr. of species with non-neg conc 2	Nr. of species with non-neg spec select.		
	C Conc & Spec	Enter a vector of positive profiles	Enter a vector of positive profiles		
Unimodality	6.500	Implementation of the unimo	dality constraint select		
r Yes?	C Spectra	Nr. of species with unimodal conc select	Nr. of species with unimodal spec. Sele	eot 💌	
	C Conc 2 Spec	Species with unmodal conc?	Species with unimodal spec?		
Closure J⊽ Yes?	 Conc C Spectra 	Nr. of closure constraints to be First Closure constant Equal to 2.2e-6 First variable closure constants	included? 1		
Clos	sure variable?	Closure condition equal than 💌	Closure condition select]	
Equality constraints in conc profiles		🔽 Yes? Select coel matrix	Constraints are select	*	
Equality constra	iints in spectra profile	s F Yes? Select seel matrix	Constraints are select	P	
Optimization pa	rameters	Nr. of iterations 50 Converg	ence criterion 0.1 🔽 Graphi	cal output	
Output	Concentration	C Std. dev. sd	Area opt	Done	
			Optimize	a 1 /	

MCR-ALS in practice (2)

ckitG1: acid-base properties

Titration of a ckitG1 sample with HCl, 1 mM Mg²⁺, 150 mM ionic strength with KCI

ckitG1 5'-C<u>GG GCG GG</u>C GCG A<u>GG G</u>A<u>G GGG</u>-3'

ckitG1-related sequences: acid-base properties

5'-CGG GCG GGC GCG TGG GTG GGG-3'

5'-TGG GTG GGT GTG TGG GTG GGG-3'

5'-TGG GTG GGT GTG AGG GAG GGG-3'

ckitG1: melting properties

Melting of a ckitG1 sample, 1 mM Mg²⁺, pH 6.0, 150 mM ionic strength with KCI

ckitG1 5'-C<u>GG GCG GG</u>C GCG A<u>GG GAG GGG</u>-3'

c-kitC1: acid-base properties

ckitC1 5'-CCC CTC CCT CGC GCC CGC CCG-3'

ckitC1: melting studies

Melting experiments have been carried out from pH 7 to pH 3

Results of Van't Hoff analysis:

At pH ~ 4.3, T_m reaches a maximum

ckitC1 5'-CCC CTC CCT CGC GCC CGC CCG-3'

Competition: mole-ratio study

Competition: acid-base study

Competition: acid-base study

Now, three data sets^{pH} have been simultaneously analyzed:

And the results can be explained in a easiest way:

Legend:

Watson-Crick duplex

ckitC1 i-motif protonated ckitC1

neutral ckitG1 quadr. protonated ckitG1 quad.

Competition: melting studies

▲: ckitG1; **■**: ckitC1; **□**: ckitG1:ckitC1 1:1 mixture

Conclusions and future work

- ckitG1 sequence forms a G-quadruplex structure throughout the pH range 3 – 7
- An increase of stability is observed at low pH which has been associated to the reduction of repulsive interaction of phosphates
- ckitC1 sequence forms just one *i*-motif structure in the pH range
 2-7
- Stability of the *i*-motif structure is higher at $pH \sim 4.3$
- Watson-Crick duplex is the predominant structure at pH higher than 5, being practically the only one at pH 7.0
 - Effect of Mg²⁺ ions?
 - Effect of polyamines?
 - Crowding conditions?

Acknowledgments

- Funded projects BFU2004-02048/BMC and CTQ2006-15052-C02-01/BQU from the Ministerio de Educación y Ciencia
- Scientific-Technical Services UB
- Nicolas Roucou (IUT, Lannion, France)

pH-modulated Watson-Crick duplex - quadruplex equilibria of guanine-rich and cytosine-rich DNA sequences upstream of the *c-kit* transcription initiation site

Pavel Bucek, Joaquim Jaumot, Anna Aviñó, Ramon Eritja, Raimundo Gargallo

Thank you!!

More info at: www.ub.es/gesq/dna