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1 Introduction

Definition 1 Ej, is the finest bounded invariant equivalence relation and Ex p
is the finest bounded type-definable equivalence relation. A Lascar strong type
is an Er-equivalence class and Lstp(a) = a/FEF.

Definition 2 A formula 6(z,y) is thick if it is reflexive and symmetric and for
some n < w there are no a; (i < n) such that = —6(a;,a;) for all i < j < n.
nc(z,y) is the set of all thick formulas 6(z,y) and nc™(z,y) is its composition:

1. ' (z,9) = ez, )

2. nc"(z,y) = J2(nc"(x, 2) Anc(z,y)).
The distance d(a, b) is defined in a such a way that d(a,a) = 0 and for different
a,b, d(a,b) is the least n < w (if there is some) for which there are ao,...,a,

such that a = ag, b = a,, and for all i < n, a;,a;11 start an infinite indiscernible
sequence. If there is no such n we put d(a,b) = oco.

Facts 1.1 1. nc(x,y) is a type and for all a,b, nc(a,b) if and only if a =b
or there is an infinite indiscernible sequence starting with a,b.

d(a,b) <n if and only if E nc™(a,b).

Er(a,b) if and only if d(a,b) < oo if and only if =/, nc™(a,b).

n<w

E; = Exp if and only if Ep, is type-definable.

SN

For any type p(z) € S(0), Exp is finer than any type-definable bounded
equivalence relation on realizations of p(x).

Definition 3 The diameter of a set X is the supremum of all distances d(a, b)
of elements a,b € X.
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2 Newelski’s derivative

Definition 4 Let K be an arbitrary topological space and let A be a family
of subsets of K covering K. The open analysis of K with respect to A is the
family (Z, : @ € On) of open sets Z, defined as follows:

L. Zo =Upcqint(A)
2. Zop1 = Uyeaint(AU Za)
3. Zg = Ua<ﬁ Z,, for limit (3.

Clearly there is an ordinal 3 such that Zg = Zg ;. The least such 3 is called the
height of the analysis. The core of the analysis is the set C = K \ J,con Za-
We say that K is A-analyzable if the core is empty, i.e., if K = J,co, Za. We
define the rank of an element a € K ~\ C as the least ordinal a = rk(a) such
that a € Z, and the rank of a non-empty X C K\ C as rk(A) = min,e x rk(a).
Clearly rk(a) (and rk(A)) is always zero or a successor ordinal.

Remark 2.1 The Cantor-Bendizson derivative is a particular case of A-analysis,
namely, it is the analysis with respect to the family of all singletons A = {{a} :
ac K}.

Definition 5 Let A and A’ be two families covering the topological space K.
We say that A’ is finer than A if every member of A’ is contained in some
member of A.

Lemma 2.2 If A’ is finer than A then the core of an A-analysis of K is con-
tained in the core of an A’'-analysis of K. In particular, if K is A’'-analyzable,
then K is A-analyzable.

Proof. Let (Z, : @ € On) the A-analysis of K and let (Z), : a € On) be its
A’-analysis. Is easy to see by induction that Z! C Z,.

Remark 2.3 It follows from the previous lemma that the core of the Cantor-
Bendizson analysis contains any other core coming from an analysis. A scattered
space is analyzable with respect to any family.

Lemma 2.4 Let (Z, : a« € On) be the A-analysis of K and let C be its core.
Let X C K a subspace with the induced topology, let Ax = {ANX : A e A},
let (ZX : a € On) be the Ax-analysis of X and let Cx be its core. Then

1. Cx CC
2. If C C X, then Cx =C.
3. If XNC =0 then Cx =0 and X is Ax-analyzable.



Proof. 1. By induction on « we show that X N Z, C ng. Consider the case
a+ 1. Assume a € X N Z,41. Then for some A € A and some open U C K,
a €U C AU Z,. By inductive hypothesis a € UN X C (AN X) U ZX. Hence
a €intx((ANX)UZX). Since AN X € Ax, we conclude that a € Z2, ;. The
case o = 0 is similar and the case « limit is clear.

2. Assume C' C X and assume also C \ Cx # 0. Let a € CNU,con Za be
an element of minimal rank rk(a) = 8 = rk(C) in the Ax-analysis of X. Assume
B = a+1 (the case § = 0 is similar). Then a € ZJ,; NC and C N Z} = 0.
There is an open U C K and some A € A such that a € UNX C AUZX. Then
0 #UNC C A, which implies C N Zo # 0, a contradiction.

3 is clear by 1.

a€On

Lemma 2.5 Let (Z, : a € On) be an A-analysis of K. Let Z = U,con Za-
1. Zy is dense in Z.

2. Zas+1 N\ Zy, is dense in Z \ Zg, for all .

Proof. We prove 1. The proof of 2 is similar. We show that for any open set
0, if ZNO # § then Z N O has rank zero. Assume rk(Z N O) = a + 1. Choose
a € ON Z of minimal rank a+ 1 and choose U C K open and A € A such that
a€eUCAUZ, Then ONU isopenand a € ONU C A. Hence a € Zy and
rk(a) = 0, a contradiction.

Lemma 2.6 Let (Z, : o € On) be an A-analysis of K, let Z =
assume A is closed under finite unions.

Zo and

acOn

1. If for some A€ A, Zg C A, then Zg = Z.
2. IfU is open and for some A € A, UN(Zo11~Za) C A, thenUNZ C Zqy;.

Proof. 1. We show that Zg11 = Z3. Let a € Zg41 \ Zg. For some B € A and
some open set U, a € U C BU Zg. Since Zg C A and AUB € A, a is in the
interior of some element of A and therefore a € Zy C Zg.

2. We first show that UN Z4492 € Z441. Let a € UN Zy4o. For some open
W and some Be A, a € W C BUZy11. Thena e UNW C BUAU Z, and
BUA € A. Therefore a € Z, 1. Now by lemma 2.5 we know that Z,1o\ Zo11
is dense in Z \ Z, 1. Therefore if the open set U N Z has elements in Z \ Z, 41
then it has elements in Z, 42\ Z,+1, which is impossible, since UNZ,42 C Zy 1.

Lemma 2.7 If a compact space K is A-analyzable, its height B is zero or a
successor ordinal and its last level Zg ~ | Zo is covered by finitely many
elements of A.

a<f



Proof. The first point follows from the fact that {Zp} U{Zy41 : @ < 8} is an
open cover of K. For the second, let Zg_; = Ua<,6 Zq. Since K = Zg, for any
a € K there is an open U and some A € A such that a € U C AU Zg_;. By
compactness, for some k < w there are open sets U; and A4; € A (i < k) such

that U; € A;U Zg_1 and K C |, Us. Hence Zg N\ Zg_1 C ;) As-

Proposition 2.8 Let f : K/ — K be a surjective continuous mapping between
the topological spaces K, K'. Let A, A" be families covering K and K', let
(Zo : a € 0n), (Z,: a € On) be its analysis and let C, C" be its cores.

1. If {f~YA] : A€ A} is finer than A’ then f[C'] C C.

2. Assume K, K' are compact Hausdorff spaces and A" = {f~[A] : A € A}.
Then f[C'] = C. In particular, K' is A'-analyzable if and only if K is
A-analyzable.

3. Assume K,K' are compact Hausdorff spaces and A= {f[A]: Ae A'}. If
K’ is A’-analyzable, then K is A-analyzable.

Proof. 1. We show by induction on « that f~1[Z,] C Z! for all a. From
this it follows immediately that f[C'] C C. We consider the case a + 1. The
case « = 0 is similar and the case « limit is clear. Using the inductive hy-
pothesis and all other hypotheses we see that f~![Zot1] = f~ U int(AU
Za)l = Unea fHnt(AU Zo)] € Unea int(f AU Za]) = Ugea int(f 1 [AJU
F1Z]) € Uneamt(f AU Z0) € Uy int(AU Z1) = ZLss.

2. By 1 we know that f[C'] C C. Assume C \ f[C’'] # (). We will reach
a contradiction. First observe that we may assume K = C. This follows from
lemma 2.4 since we may restrict to the subspace C of K and the subspace f~1[C]
of K’. Both are compact Hausdorf!, its cores are C' and C” and the corresponding
restricted covering families Ac and A’._y ¢ still verify that A, o) = {f 4] :
A € Ac}. We will use frequently the fact that in a compact Hausdorff space if U
is open and a € U there is a closed set F' such that a € int(F) C F C U. Since
f[C"] is closed (because f is continuous, K’ is compact and K is Hausdorff) and
it is a proper subset of K, there is a closed set F' C K such that int(F) # @ and
FnfIC]=0. Clearly f~'[F] € K'\ C' = con 2, and from this it follows
that f~1[F] C Z!, for some ordinal . We assume we have chosen « minimal
with the property that there is a closed set F' in K such that

int(F) #0, FN f[C'] =0 and f'[F] C Z,,.

By compactness, & = 0 or is a successor ordinal. Let Z/,_; = U5<a Zj3. Hence
Zl,_y=0ifa=0and Z/, , = Zj if +1 = a. In any case, for every a € f~![F]
there is some A € A’ such that a € int(AUZ!,_;) and therefore there is a closed
set G such that a € int(G) C G C int(AU Z/,_;). The open sets int(G) cover
the closed set f~'[F]. By compactness finitely many of them suffice. Hence
for some k < w there are Ag,...,Ap_1 € A and closed sets Go,...,Gr_1



such that f~[F] C U, int(G;) and for all i < k, G; C int(A4; U Z),_,). Let
G = flUscr Gi ™ Z;,_4]. It is a closed subset of K. We will see now that G is
nowhere dense, i.e., int(G) = @. Since the union of two nowhere dense sets is
again nowhere dense and G = |J,_,, f[G:i \ Z;,_,], if G is not nowhere dense, for
some ¢ < k some f[G; \ Z! _;] has non-empty interior. Since G; C A;UZ),_,, it
follows that f[G;~ Z.,_1] C f[A:]. But f[A;] € A, so we have find an element of
A with non-empty interior, which contradicts our first assumption that C = K.
Hence we have to admit that G is nowhere dense. Clearly there are points
in int(F) N\ G and we can separate any of them from G by disjoint open sets.
Therefore we can find H C F closed such that int(H) # ) and H NG = (.
Now H N f[C'] = 0 (because H C F) and f~[H] C Z!_, (because f~'[H] is
contained in | J, ., G; and H is disjoint to (), and this shows that o > 0 and
contradicts its minimality.

3. Let A= {f[A]: A€ A’}. Observe that A’ refines {f![A] : A € A} and
use lemma 2.2 and point 2.

3 Lascar strong types

Theorem 3.1 Let X be a union of Lascar strong types of infinite diameter.
Assume that all elements of X have the same type over the empty set and that
X is type-definable over some parameters. Let a = (a; : i € I) be a sequence of
representatives of the different Lascar strong types in X. Then

1.IfA={Y":i€I,n < w} where for any i € I and any n < w,
Y" = {tp(b/a) : d(b,a;) < n} then Y = {tp(b/a) : b € X} is not A-
analyzable.

2. Thereis a X' C X type-definable over a such that for every formula ¢(x)
over a, if some element of X' realizes o(x) then there are at least two
realizations of p(x) in X' with different Lascar strong type.

Proof. 1. Since X is a-invariant and it is type-definable over some set of
parameters, it is also type-definable over a. Let Y; = {tp(b/a) : Lstp(b) =
Lstp(a;)}. Hence Y; = U, ., Y;" and Y = {J,c; ¥;". Y and every Y;" are closed
subsets of the Stone space S(a). Fix some ¢ € I and consider the restriction
mapping f : S(a) — S(a;) defined by f(p) = p | a;. It is a continuous surjection.
Let U = f(Y) = {tp(bj/a;) : b € X}, let Uy = f[¥i] = {tp(b/as) : Lstp(b) =
Lstp(a;} and let U = f[Y"] = {tp(b/a;) : d(b,a;) < n}. U is a closed subspace
of S(a;), U is a closed subspace of U and U; is a subspace not necessarily closed
U CU;, CU. If'Y is A-analizable then, by lemma 2.2, it is also analyzable
with respect to {Y;" : n < w}U{lJ., Y;} and by proposition 2.8 U is analyzable
with respect to {U* : n < w} U {7 tp(b/a;) : b € X and Lstp(b) # Lstp(a;)}}.
By lemma 2.4 U; is analyzable with respect to {U* : n < w}. By isomorphism,
for any b € X the space U, = {tp(c/b) : Lstp(c) = Lstp(b)} is analyzable with
respect to {U : n < w} where Ul = {tp(¢/b) : d(c,b) < n}. On the other
hand, by lemma 2.2, if Y™ = | J,.; Y;" then Y is also analyzable with respect to



{Y™:n <w}. Let (Z, : @ € On) be this last analysis of ¥ and let o* + 1 be its
height.

Now we claim that we can find b € X, ordinals o < 8 < o, formulas ¢(x, 7),
¥ (x, z) and natural numbers n, m such that

—_

- tp(b/a) € Zp11 N Zg

2. Y(x,b) F p(x,a)

3. 0# Uy N [(x,b)] C U
4 Y N[p(e,a)] C ZaUY™

We take 8 = o* and choose b € X arbitrary with tp(b/a) € Zsy1 ~\ Zs. Since
this is the last level of the analysis, by lemma 2.7 it is covered by just one Y.
This means that for every ¢ € X with tp(c/a) € Z°T! \ Zg there is i € I such
that d(c,a;) < k. Let (Z% : a € On) be the analysis of U, with respect to
{UP : n < w}. If there is a bound n on d(c,b) for ¢ € X such that tp(c/b) € Z§
then, by lemma 2.6, Z§ C Uy and the analysis stops in one step and U, = 7z
But in this case {¢ € X : Lstp(c) = Lstp(b)} has a diameter bounded by n,
contrarily to the initial assumption. Therefore there is no such bound and we
can find ¢ € X such that tp(c/b) € Z& and d(c,b) > 2k. Choose i € I such that
Lstp(b) = Lstp(a;). Since tp(b/a) € Zg41 \ Zg, by choice of k, d(b,a;) < k.
It follows that d(c,a;) > k and therefore tp(c/a) € Zz. For the same reason,
for any other ¢ | p(z) = tp(c/b) we have tp(d//a) € Zg. Now Y \ Zg is
a closed subset of S(@) and therefore it is the set of types in Y extending a
partial type 7(z,a). We have seen that 7(z,a) U p(x) is inconsistent. Hence
there are ¢(z,b) € tp(c/b) and ¢(z,a) € 7(z,a) such that ¢ (z,b) - ¢(z,a) and
Y N [p(z,a)] € Zs. Since tp(c/b) € Z§, there is some open set W in S(b) and
some m < w such that tp(c/b) € W N U, C U;". We may assume that W is a
clopen set defined by ¢ (x,b). Hence 0 # [¢)(z,b)]NU, C U™. Now Y N [p(x,a)]
is compact and it is contained in Zg. If 3 is limit, clearly it is also contained in
Z for some o < . In the case 8 = a+ 1 we apply the definition of the analysis
and compactness to obtain some n < w such that Y N [p(z,a)] € Z, UY™.
Therefore all conditions I to 4 are satisfied and the claim is proven.

Let 8 be minimal for which there are o < (8, b € X, ¢ and ¢ with the
properties 1-4. We will show that we still can find a smaller 3, which is a
contradiction and will finish the proof. We start choosing 0(z,a) € tp(b/a) such
that ¥(z, 2z) N0(z,a) - p(x,a). For v < B, Y N[f(z,a)] is not contained in Z, 1,
and therefore, by lemma 2.6, [6(z,a)] N (Z,41 \ Z,) can not be covered by just
one Y. This means that there is no bound on d(c,a;) for ¢ and a; such that
= 0(c,a), Lstp(c) = Lstp(a;) and tp(c/a) € Z,41 \ Z,. In case [3 is a successor
ordinal we take as (3’ the predecessor of 3 and in case (3 is a limit ordinal we
choose (' such that o < 3’ < (. Choose now some b’ and i € I such that
tp(b'/a) € Zg 41\ Zg, E 0V, a), Lstp(d') = Lstp(a;) and d(b',a;) > n + m.
Since b = U/, we still have that () # Uy N [¢(z,0')] C U;'. We claim that there
is no ¢’ such that Lstp(c’) = Lstp(b'), E ¢(d, ') and tp(c'/a) € Z,. If there is
such a ¢, we see that = ¢(c¢,a) and hence tp(c'/a) € Y N [p(z,a)] \ Z, and



by point 4 tp(c’/a) € Y™. But this means that d(c¢’,a;) < n which contradicts
the facts that d(¥’,a;) > n+ m and d(¢/,b’) < m. So, there is no such ¢
Take some ¢ such that Lstp(¢’) = Lstp(b') and | (¢, V'), and let p'(z) =
tp(¢/ /). If ' (z,a) is a partial type characterizing the closed set Y \ Z,, then
p'(x) Un'(x,a) is inconsistent. As above, we find ¢/(z,V) € p'(z) and ¢'(z,a)
such that ¢/ (x,b) F ¢'(x,a) and Y N [¢'(z, d)] C Z,. As in the initial situation
from this follows that YN[p(z,a)] C Z, UY™ for some o < « and some n’ < w.
We may assume that ¢’ (x, b") F ¢(z, V') and therefore 0 # Uy N[/ (z, V)] C Uis
still true.

2. We know that Y is not A-analyzable and therefore the core C' is a non-
empty closed subset of S(a@). Hence the set X’ = {b € X : tp(b/a) € C} is type-
definable over a. Assume @(z) is a formula over @ which is realized in X’ but all
whose realizations in X’ have the same Lascar strong type over the empty set,
say the same Lascar strong type as a;. Then () # C N [p(2)] CY; = U, ., Yi"
Now we use the Baire category theorem in C. Since C' N [p(z)] is a non-empty
open set in C, it is not meager, i.e., it is not a countable union of nowhere
dense sets. Hence for some n, C'NY;" has non-empty interior in C, that is,
there is some non-empty open set W in S(a) such that W N C C Y. Then
WY CY"U(Y \C), which means that the analysis continues beyond Y \ C,
a contradiction.

Theorem 3.2 Let X be a union of Lascar strong types of infinite diameter.
Assume that all elements of X have the same type over the empty set and that
X is type-definable over some parameters. Then there are at least 2¥ Lascar
strong types realized in X .

Proof. Let X’ as in point 2 of theorem 3.1. We first observe that whenever we
have a,b € X' with different Lascar strong type, then for every n < w we can
find formulas ¢(z) € tp(a/a) and (x) € tp(b/a) such that d(a’,b") > n for all
a’,t/ € X’ such that = ¢(a') and = (). This follows from the fact that if
p(x) = tp(a/a) and ¢(z) = tp(b/a) then nc™(z,y) U p(x) U q(y) is inconsistent.
Now this allows us to construct a tree of formulas (¢s(z) : s € <“2) such that

1. @s(x) is a formula over a and it is realized in X’.
2. ps(x) F@(x) if t Cs.

3. If s,t € "2 are different then d(a,b) > n for all a,b € X’ such that = ¢,(a)
and = ¢(b).

Let ®(z,a) a type over a defining X’. For all n € ¥2, we have a type p,(z) =
®(z,a) U{pym(z) : n < w} and for different 7,7 if a |= p, and @’ = p;,, then
Lstp(a) # Lstp(a’).

Corollary 3.3 1. If a Lascar strong type is type-definable over some param-
eters, then it has finite diameter.



2. If a Exp-class is not a Lascar strong type, then it splits into at least 2%
Lascar strong types.

8. If for each n < w there is a Lascar strong type of diameter at least n,
then there is a Lascar strong type which is not type-definable, even with
parameters, and therefore Ep, # Eip.

4. If By, is type-definable over some parameters, then for some n it is defined
by nc"(x,y).

Proof. 1 follows directly from theorem 3.2.

2. Consider a Egp-class a/Ekp which is not a Lascar strong type. It is
a union of Lascar strong types and it is type-definable over a. To apply theo-
rem 3.2 we have to show that all its Lascar strong types have infinite diameter.
Assume not. Let p(x) = tp(a) and let X be the set of all realizations of p(x).
Since X includes a/Fkp and all Lascar strong types contained in X are iso-
morphic, all have diameter bounded by n for some fixed n. Therefore in X the
relation Ej, of equality of Lascar strong types is type-definable by nc™(z,y).
Since Ep, restricted to X is a bounded type-definable relation, it is refined by
FExp restricted to X. But this means that on X they coincide and therefore
that a/Exp is a Lascar strong type, which is a contradiction.

3. For each n < w fix a sequence a,, whose Lascar strong type Lstp(a,) =
an/Er has diameter at least n and consider a = (a, : n < w). It is easy to
check that Lstp(a) has infinite diameter. By point 1 it is not type-definable.

4 Assume EJ, is type-definable. By & there is a bound n < w for the diameter
of any Lascar strong type. Therefore nc”(z,y) defines Fr.



