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Introduction

This thesis is intended to provide the reader with new results about the Lascar group

and the notion of G-compactness. Specifically we deal with the following three issues:

• The definition of the Lascar group without using saturated models. Instead

of using saturated models whose existence depends on extra set theoretical

assumptions, we work with |T |+-resplendent models, which always exist.

• The non preservation of G-compactness under adding parameters to the lan-

guage. It was an open question wether G-compactness was a robust property

in this sense. We answer this question negatively offering examples of a theory

T and a set of parameters A where T is G-compact over ∅ but TA is not.

• The existence of a one-sorted ω-categorical non G-compact structure. Ivanov

constructed in [10] a structure like this, and here we prove a more general

theorem from which we can easily derive the result.

In [13] Lascar introduced the group Autf(N/A) of strong automorphisms of N

over A. The quotient Aut(N/A)/Autf(N/A) is independent of the choice of N (for

a big saturated model N and a small subset A ⊆ N) and it is now called the Lascar

group over A. Lascar showed in [13] that in the case of a very large class of theories,

called by him G-compact, the group carries a compact Hausdorff topology. In the

last decade the Lascar group has received a lot of attention, particularly because

of its importance for simple theories and hyperimaginaries, and also because of the

discovery of non G-compact theories. It is now known that the Lascar group is a

compact (not necessarily Hausdorff) topological group for any first-order theory. In

the case of the theory of an algebraically closed field it corresponds to the absolute

Galois group over the field generated by A. In the first chapter we present some well

known results about the Lascar group and we refer to [14], [4] and [25] for more

details.
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In the second chapter we present the material from [5]. Working with the class of

|T |+-resplendent models we obtain two main results: One indicates that Autf(N/A)

can be characterized (similarly to what Lascar originally did working with saturated

models) as the least very normal subgroup of Aut(N/A), we call it Γ(N/A), which is

its least normal subgroup closed under a more general conjugation that we call weak

conjugation.

(Theorem 2.3.11) For any |T |+-resplendent model N and any A ⊆ N such that

|A| ≤ |T |, Autf(N/A) = Γ(N/A).

The other one shows that we can define the Lascar group using |T |+-resplendent

models.

(Theorem 2.3.14) For any |T |+-resplendent model N and any A ⊆ N such that

|A| ≤ |T |, Aut(N/A)/Autf(N/A) is independent of the choice of N .

The proofs are quite different than the ones by Lascar in [13]. We strongly use the

properties of resplendency and avoid completely the use of ultraproducts. At the

end of the chapter we show that these results also hold in the wider class of all

|T |+-saturated and strongly |T |+-homogeneous models.

In the third chapter we deal with the notion of G-compactness. In section 3.1 we

present the first examples of non G-compact theories obtained in [4], and we make use

of them to build, in section 3.2, three examples of a theory T and a set of parameters A

which illustrate the fact that G-compactness is not preserved under adding constants

to the language. Having in mind that

([14], Remark 4.20) The following are equivalent:

1. T is G-compact (over A).

2.
L≡A=

KP≡A (even for infinite tuples).

3.
L≡A=

KP≡A for finite tuples and Autf(C/A) is closed in Aut(C/A) (with the point-

wise topology),

the set of counterexamples is complete in the sense that the equality
L≡A=

KP≡A for

finite tuples is preserved from T to TA in the first to examples, but not in the third

one. Section 3.3 is dedicated to give a new proof of a result originally proved by

Newelski in [16]:

(Corollary 3.3.7) ([16], Corollary 1.8 ) Type-definable Lascar strong types have

finite diameter.
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In the proof we make use of the notions of c-free and weakly c-free extensions intro-

duced also by Newelski in [17].

In the last chapter we tackle the problem of the existence of a one-sorted ω-

categorical nonG-compact structure. We derive its existence from one of the examples

of non G-compact theories presented in [4] and the following general theorem that we

prove in section 4.2.

(Theorem 4.1.1) Let T ′ be a many-sorted ω-categorical theory with countably many

sorts. Then there is a one-sorted ω-categorical theory T ∗ in which T ′ is stably em-

beddable.

For the proof of this theorem we make use of a theory that we call TE in the language

of infinitely many equivalence relations. This theory is interesting on its own from

the Shelah’s classification point of view. In particular we prove that TE is not simple

(Theorem 4.3.4) and does not have SOP1 (Theorem 4.3.5).

Finally, let us set some conventions on notation and terminology. In general, T

will denote an arbitrary complete first-order theory with infinite models. Usually its

language will be L and C will be its monster model, which we think of as a model

whose universe is a proper class and which realizes any type over any subset. The

existence of the monster model can be guaranteed in any theory and does not require

any additional hypothesis. All models we consider will be elementary submodels of

C. If M is a model and A ⊆M is a set of parameters, L(A) is the expanded language

with names for all elements of A; MA is the standard expansion of M to L(A) where

every element of A has its corresponding name, and TA = Th(MA) is its first-order

theory. An A-automorphism of a model M ⊇ A is an automorphism f of M which is

the identity on A. It is also called an automorphism of M over A. The group of all

A-automorphisms of M is denoted Aut(M/A). When we speak of the type tp(M/A)

of a model M over a set A, we implicitly assume an enumeration of the model M . By

qftp(a/A) we denote the quantifier free type of a over a A, and sometimes we write it

with a subindex qftpM (a/A), or even qftpL(a/A), to make clear (if necessary) what

is the model or the language in which the type is considered.
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1

Background

1.1 The Lascar group and G-compactness.

In this section we recall some well known facts about the Lascar Group, Lascar strong

types and G-compactness. Let T be a complete first order theory in a language L
and let C be its monster model. In [13], Lascar introduced the following groups for a

given set of parameters A ⊆ C:

1. Autf(C/A), the Lascar strong automorphisms (over A), which is the (normal) sub-

group of Aut(C/A) generated by
⋃

A⊆M≺C

Aut(C/M).

2. GalL(TA), the Lascar (Galois) group of T (over A), obtained as the quotient group

Aut(C/A)/Autf(C/A).

As we will see in the next chapter, it is not necessary to work within the mon-

ster model; it is enough to assume that C is |T |+-saturated and strongly |T |+-

homogeneous. Lascar showed in [13] that in the case of a very large class of theories,

called by him G-compact, GalL(TA) carries a compact Hausdorff topology. Later he

found that in general, as Ziegler shows in [25], GalL(TA) is a quasicompact (compact

but not necessarily Hausdorff) topological group for any first-order theory, even in

a non G-compact one. We describe briefly the topology presented there (to simplify

notation, let A = ∅).

Lemma 1.1.1. ([25], Lemma 1) Let M,N enumerate two small (of cardinality |T |)
submodels C and let f ∈ Autf(C). The class of f in GalL(T ) is determined by the

type of f(M) over N .

If we fix two enumerationsM,N of two small submodels of C, we can define a surjective

map µ from Aut(C) to SM (N) = {tp(M ′/N) : M ′ ≡M} sending every f ∈ Aut(C)

to the type tp(f(M)/N). By the previous result, the quotient map from Aut(C) to

GalL(T ) factors through µ:
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The Lascar group and G-compactness.

Aut(C)
µ // SM (N) ν // GalL(T )

Since SM (N) is a closed subspace of S|T |(N), it is a boolean space. GalL(T) is

endowed with the quotient topology with respect to µ, i.e., a subset C ⊆ GalL(T ) is

closed iff ν−1(C) is closed in SM (N). This definition does not depend on the choice

of M and N , and with this topology GalL(T ) becomes a quasicompact group ([25],

Lemma 10). In the case GalL(TA) is Hausdorff we say that that the theory T is

G-compact (over A). Lascar showed in [13] that stable theories are G-compact and

asked if there were any non G-compact theories. Some years later, Kim and Pillay

([11],[12]) showed that simple theories were also G-compact, and the first examples

of non G-compact theories were given in [4].

We say that two tuples (possibly infinite) of the same length a, b ∈ C have the same

Lascar strong type over A, and we denote it by a
L≡A b, if they lie in the same orbit

under Autf(C/A). The relation
L≡A on tuples of a fixed length κ (κ ≤ |T |) is clearly

A-invariant and bounded (boundedly many classes) since, by the previous lemma,∣∣∣Cκ/ L≡A
∣∣∣ ≤ ∣∣S|T |+|A|(N)

∣∣ ≤ 2|T |+|A|. Moreover,
L≡A is precisely the finest bounded

A-invariant equivalence relation on tuples of C of a fixed length ([12], proposition 5.4).

There is also the notion of the finest bounded type-definable (over A) equivalence

relation. Given two tuples (possibly infinite) of the same length a, b ∈ C, we say that

they have the same Kim-Pillay type over A, and we denote it by a
KP≡A b, if a, b are

related under every type-definable (over A) bounded equivalence relation on tuples

of the appropriate length. The next result is known from [11], [12] and [14].

Fact 1.1.2. ([14], Remark 4.20) The following are equivalent:

1. T is G-compact (over A).

2.
L≡A=

KP≡A (even for infinite tuples).

3.
L≡A=

KP≡A for finite tuples and Autf(C/A) is closed in Aut(C/A) (with the point-

wise topology).

There is also another useful characterization of G-compactness. For a given set

of parameters A ⊆ C, define a distance function dA on tuples of C of a fixed length

(possibly infinite) by letting dA(a, b) (a 6= b) be the minimal natural number n (if

it exists) such that for some a0 = a, a1, . . . , an = b tuples of C of the same length,

ai, ai+1 can be extended to an infinite A-indiscernible sequence for every i < n. If no

such n exists, then set dA(a, b) =∞, and if a = b, set d(a, b) = 0.

Lemma 1.1.3. ([25], Lemma 6 and 7) Let A ⊆ C, and a, b ∈ C tuples of the same

length.
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Thick formulas

1. If a, b can be extended to an infinite A-indiscernible sequence, then there is a

model M (A ⊆M) such that a ≡M b.

2. If a ≡M b for some model A ⊆M , then there is c ∈ C (of the same length) such

that a, c and b, c can both be extended to infinite A-indiscernible sequences.

From this result we know that if the tuples a, b have the same type over a model

containing A, then dA(a, b) ≤ 2. Moreover, we can easily see that for tuples a, b of C,

a
L≡A b⇔ dA(a, b) <∞.

Assume that a is a tuple of C and consider X =
{
a′ ∈ C : a′

L≡A a
}

, the Lascar strong

type of a over A. Let diamA(X), the A-diameter of X, be the supremmum of dA(a, b),

for b ∈ X. In [16], Newelski proves the following criterion for G-compactness.

Theorem 1.1.4. ([16], Corollary 1.9) T is G-compact over A iff there is a finite

bound for the A-diameters of Lascar strong types (of any length) over A.

Regarding unstable theories, from the following fact we know that o-minimal theories

are also G-compact.

Fact 1.1.5. ([25], Lemma 24) Every automorphism of a big saturated o-minimal

structure is Lascar strong.

The Lascar group has received a lot of attention in the last decade, particularly

because of its importance for simple theories and hyperimaginaries and because of

the discovery of non G-compact theories presented for the first time in [4].

1.2 Thick formulas

Let x, y be finite tuples of variables of the same length. We say that a formula

ϕ(x, y) is thick if it is symmetric and there is a finite k for which there is no sequence

(ai : i < k) such that ¬ϕ(ai, aj) for all i < j < k. For any set A and sequences of

variables (possibly infinite) of the same length, the set of all thick formulas over A in

(finite subtuples of) the variables x, y, is denoted by ncA(x, y), and for any natural

number n > 1, ncA
n(x, y) denotes the type

∃y1, . . . yn−1(ncA(x, y1) ∧ ncA(y1, y2) ∧ · · · ∧ ncA(yn−1, y))

If ϕ(x, y) and θ(x, y) are thick formulas, then ϕ(x, y) ∨ θ(x, y) is thick and using

Ramsey’s theorem one can see that ϕ(x, y) ∧ θ(x, y) is also thick.

It’s worth noting that any type-definable bounded equivalence relation E (on

tuples of possibly infinite length) can be defined by

E(x, y)⇔
∧
i∈I

Ei(x, y)
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Imaginaries, hyperimaginaries, and Galois correspondence

for some index set I, where each Ei(x, y) is again a type-definable bounded equivalence

relation which can be defined by

Ei(x, y)⇔
∧
n<ω

θin(x, y),

where each θin(x, y) is a thick formula. By compactness we may assume, moreover,

that for all n < ω,

θin+1(x, z) ∧ θin+1(z, y) ` θin(x, y).

Lemma 1.2.1. ([25], Lemma 6) For any a, b ∈ C, |= ncA(a, b) if and only if a, b can

be extended to an infinite A-indiscernible sequence.

By the previous lemma and lemma 1.1.3, we see that
L≡A is just the transitive

closure of the type-definable relation ncA(x, y), and therefore it is defined by the

infinite disjunction
∨
n<ω

ncA
n(x, y). Making use of the Independence Theorem over a

model for simple theories ([12],Theorem 3.5), one can show the following fact.

Fact 1.2.2. ([11], Proposition 13) Let T be simple. Then a
L≡A b if and only if

dA(a, b) ≤ 2.

This shows, in particular, that simple theories are G-compact and
L≡A is type-

definable over A by the type ∃z(ncA(x, z) ∧ ncA(z, y)).

1.3 Imaginaries, hyperimaginaries, and Galois

correspondence

As usual, let T be a complete first order theory and C its monster model. For any set

A ⊂ C, an A-imaginary is the class [a]E of a finite tuple a ∈ Cn under an A-definable

equivalence relation E on Cn for some n ∈ ω. An imaginary is just a ∅-imaginary.

Shelah introduced imaginaries and the imaginary universe Ceq in [19] to prove the

existence of canonical basis for stationary types in stable theories. In [15], Makkai

proposed to construct Ceq as a many-sorted structure and this became the usual way

to represent it. For every ∅-definable equivalence relation E(x1, . . . , xn, y1, . . . , yn)

on Cn, he added a new sort Cn/E and a new function symbol πE to the language

L for the projection C → Cn/E. The elements of Ceq are precisely the imaginary

elements. T eq denotes the complete theory of Ceq in the new language Leq = L ∪
{πE : E is a ∅-definable equivalence relation} and Ceq turns out to be the monster

model of T eq.

Lemma 1.3.1. ([24], Lemma 1.2) For every Leq-formula ϕ(y;xE1
1 , . . . , xEnn ), where

y is a tuple of variables of the real sort and, for each i, the variable xEii belongs to

9



Imaginaries, hyperimaginaries, and Galois correspondence

the sort Cni/Ei, there is an L-formula ψ(y; y1, . . . , yn) such that for arbitrary tuples

a, a1, . . . , an ∈ C of the appropriate length,

Ceq |= ϕ(a;πE1(a1), . . . , πEn(an))⇔ C |= ψ(a; a1, . . . , an)

From this fundamental result we can see that any automorphism f ∈ Aut(C) extends

uniquely to an automorphism f ′ ∈ Aut(Ceq). For any A ⊆ C, dcleq(A) denotes the

imaginary definable closure of A, i.e., the set

{e ∈ Ceq : | {f(e) : f ∈ Aut(Ceq/A)} | = 1}

of elements that are fixed by Aut(Ceq/A), and acleq(A) denotes the imaginary alge-

braic closure of A, i.e., the set

{e ∈ Ceq : | {f(e) : f ∈ Aut(Ceq/A)} | < ω}

of elements that have a finite orbit under Aut(Ceq/A). We say that two tuples (pos-

sibly infinite) of the same length a, b ∈ C have the same strong type over A (a
stp≡A b)

if tp(a/acleq(A)) = tp(b/acleq(A)). Moreover, for finite tuples, a
stp≡A b if and only

if |= E(a, b) for every A-definable finite equivalence relation E with finitely many

classes. The strong type of a over A is just the type tp(a/acleq(A)) and it is denoted

by stp(a/A).

Similarly, for any set A ⊆ C, an A-hyperimaginary is an equivalence class [a]E
(for simplicity in notation just aE) of a sequence (possibly infinite) a of elements of

C under a type-definable over A equivalence relation E. Clearly A-imaginaries are

A-hyperimaginaries and a hyperimaginary is just a ∅-hyperimaginary. Cheq denotes

the class of hyperimaginaries. If a is of the form a = (ai : i < α) for some ordinal α,

we say that α is the length of the hyperimaginary aE . Finitary hyperimaginaries are

hyperimaginaries of finite length. We say that an automorphism f ∈ Aut(C) fixes a

hyperimaginary aE if f(aE) = aE , that is, |= E(a, f(a)).

Let A be a class of hyperimaginaries. The hyperimaginary definable closure of

A, denoted by dclheq(A), is the class of all hyperimaginaries which are fixed by the

automorphisms fixing pointwise A, that is,

dclheq(A) =
{
e ∈ Cheq : | {f(e) : f ∈ Aut(C/A)} | = 1

}
.

The hyperimaginary algebraic closure of A, denoted by aclheq(A), is the class of all

hyperimaginaries having a finite orbit under the group of all automorphisms fixing

pointwise A, that is,

aclheq(A) =
{
e ∈ Cheq : | {f(e) : f ∈ Aut(C/A)} | < ω

}
.
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Imaginaries, hyperimaginaries, and Galois correspondence

And the bounded closure of A, denoted by bdd(A), is the class of all hyperimaginaries

having a bounded orbit under the group of all automorphisms fixing pointwise A,

that is,

bdd(A) =
{
e ∈ Cheq : | {f(e) : f ∈ Aut(C/A)} | < |C|

}
.

If a is a sequence of hyperimaginaries, dclheq(a) = dclheq(A), where A is the set

enumerated by a. We say that two sequences of hyperimaginaries a, b are equivalent

if dclheq(a) = dclheq(b). Using compactness one can easily check the following remark.

Remark 1.3.2. For any class of imaginaries A,

1. Ceq ∩ dclheq(A) = dcleq(A).

2. Ceq ∩ bdd(A) = Ceq ∩ aclheq(A) = acleq(A).

The following result follows immediately from Lemma 1.7. in [14].

Lemma 1.3.3. For any set of hyperimaginaries A, there are hyperimaginaries e, f

such that bdd(A) = dclheq(e) and aclheq(A) = dclheq(f).

Theorem 1.3.4. ([14], Theorem 4.15) Let e ∈ bdd(∅). Then e is equivalent to some

sequence of finitary bounded hyperimaginaries.

Let aE , bF be two hyperimaginaries where E,F are ∅-type-definable equivalence re-

lations on sequences of elements of C, and let

Γ = {ϕ(x, y) ∈ L : ∃a′Ea,∃b′Fb, |= ϕ(a′, b′)} .

Define the type of aE over bF as the set of formulas

tp(aE/bF ) =
⋃

ϕ(x,y)∈Γ

∃x′y′(E(x, x′) ∧ F (b, y′) ∧ ϕ(x′, y′)).

It is a partial type over b, let’s say π(x, b), and the following properties can be easily

checked.

Remark 1.3.5. Let aE , bF be two hyperimaginaries and π(x, b) = tp(aE/bF ).

1. For any b′Fb, π(x, b) ≡ π(x, b′).

2. For any a′Ea, |= π(a′, b).

3. For any a′, |= π(a′, b) iff there is f ∈ Aut(C/bF ) such that f(aE) = a′E.

A complete type over a hyperimaginary e in the real variables x is a type of the

form p(x) = tp(a/e), where a ∈ C is a sequence of the length of x. It is a partial type

but it is complete in the sense of the third point in the previous remark, i.e., for any

a, b |= p(x), there is some f ∈ Aut(C/e) such that f(a) = b.
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Stable embeddability

Fact 1.3.6. ([6], Proposition 15.16) For any set A ⊆ C and tuples (possibly infinite)

a, b ∈ C, a
KP≡A b if and only if tp(a/bdd(A)) = tp(b/bdd(A)).

Fact 1.3.7. ([14], Remark 4.8) GalL(T ) acts on the set of bounded hyperimaginaries.

Now we can state the result which establishes a Galois correspondence between

(definably closed) sets of hyperimaginaries and closed subgroups of GalL(T ).

Theorem 1.3.8. ([14], Corollary 4.16) There is a Galois correspondence between

closed subgroups H of GalL(T ) and definably closed sets A of finitary bounded hyper-

imaginaries:

• HA = {g ∈ GalL(T ) : g(a) = a for all a ∈ A}.

• AH = the set of all finitary bounded hyperimaginaries a such that g(a) = a for

all g ∈ H.

1.4 Stable embeddability

In the last chapter we present some results that involve the notions of stably embedded

sets and stably embeddable theories. In this section we present the basic material which

will be needed.

Let T be a complete theory with monster model C, let p be a (partial) m-type over

the empty set and P the set of of realizations of p in C, together with the structure

induced from C, i.e., the 0-definable subsets of Pn are the traces on Pn of 0-definable

subsets of Cm·n. We say that P is stably embedded if for every n ∈ ω, if D ⊆ Cm·n is

definable, then D ∩Pn is relatively definable with parameters from P . The following

is another version, with its proof, of a result presented in the appendix of [7], and it

can also be adapted to the case where P is a collection of sorts. We don’t assume

elimination of imaginaries and we allow the language to be arbitrarily large.

Lemma 1.4.1. The following conditions are equivalent:

(1) For every a, tp(a/dcleq(a) ∩ dcleq(P )) ` tp(a/P ).

(2) For every a, there is a set P0 ⊆ P , |P0| ≤ |T |+ |a|, such that tp(a/P0) ` tp(a/P ).

(3) For every a, there is a set P1 ⊆ P , |P1| ≤ |T | + |a|, such that tp(a/acl(P1)) `
tp(a/P ).

(4) For every a, tp(a/P ) is definable over some P0 ⊆ P , |P0| ≤ |T |+ |a|.

(5) P is stably embedded.

(6) Every automorphism of P lifts to an automorphism of C.
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Stable embeddability

Proof. (1) → (2). For each x ∈ dcleq(a) ∩ dcleq(P ) = B, let Bx be a finite subset

of P , such that x ∈ dcleq(Bx). Let P0 =
⋃
x∈B

Bx. Observe that P0 has the desired

cardinality and dcleq(a) ∩ dcleq(P ) ⊆ dcleq(P0), thus, by assumption,

tp(a/P0) ` tp(a/dcleq(P0)) ` tp(a/dcleq(a) ∩ dcleq(P )) ` tp(a/P ).

(3)→ (4). Let ϕ(x, y) be a formula, and let P1 be given by (3). We will first see that

tp(a/P ) � ϕ has a definition over acl(P1). By assumption, we know that

p(y1) ∪ p(y2) ∪ {ψ(y1)↔ ψ(y2) : ψ(y) ∈ L(acl(P1))} ` ϕ(a, y1)↔ ϕ(a, y2)

and, by compactness, there are ψ1(y), . . . , ψk(y) ∈ L(acl(P1)) such that

p(y1) ∪ p(y2) ∪ {ψi(y1)↔ ψi(y2) : 1 ≤ i ≤ k} ` ϕ(a, y1)↔ ϕ(a, y2).

Now, for each finite sequence s ∈ 2k, let θs =
∧

1≤i≤k
ψ
s(i)
i , where ψ1

i = ψi and ψ0 = ¬ψi.

Observe that P ∩ ϕ(a,C) is relatively defined by a disjunction, say ψ(y) =
∨

1≤i≤l
θsi ,

for some s1, . . . , sl ∈ 2k. ψ(y) is the definition we wanted.

Let B = {b ∈ P :|= ψ(b)}. Since B is relatively definable over acl(P1), it has finitely

many conjugates over P1, say B0, . . . Bn. Now consider the following equivalence

relation

E(y1, y2)⇔
∧
i≤n

y1 ∈ Bi ↔ y2 ∈ Bi

and choose a set {b0, . . . bm} ⊆ P of representatives of all the E-classes. Let P2 =

P1 ∪ {b0, . . . bm} and observe that for every f ∈ Aut(C/P2), f(B) = B. Thus B is

relatively definable over P2 by a formula which we call ψ′(y). Notice that

ϕ(x, b) ∈ tp(a/P ) ⇔ |= ϕ(a, b)

⇔ |= ψ(b)

⇔ |= ψ′(b),

thus tp(a/P ) � ϕ has a definition over P2. If we do the same for every formula ϕ(x, y),

we obtain a set, say P ′ ⊂ P of the desired cardinality, over which tp(a/P ) is defined.

(4)→ (5). Let D ⊂ Pn be relatively defined by the formula ϕ(x, b), and let dϕ(y) be

a definition for tp(a/P ) � ϕ over P . Then dϕ(y) relatively defines the set D ⊆ Pn.

(5)→ (4). Let a be a tuple of C and ϕ(x, y) a formula. We want to find a definition

over P for tp(a/P ) � ϕ. By assumption, we know that

{b ∈ P :|= ϕ(a, b)} = {b ∈ P : ψ(b)}

for some ψ(y) ∈ L(P ). ψ(y) is the definition we wanted.

13



Stable embeddability

(2) → (6). Let A,B be subsets of C and let τ : P ∪ A −→ P ∪ B be an elementary

map such that τ(P ) = P . For each a ∈ C, we want to find b ∈ C such that τ ∪ (a, b)

is still elementary, i.e., we want to find b ∈ C satisfying tpτ (a/PA). By a back-

and-forth argument we would finish. By assumption, there is a set P0 such that

tp(aA/P0) ` tp(aA/P ), thus tp(a/AP0) ` tp(a/AP ). Since τ is elementary, we

have tpτ (a/AP0) ` tpτ (a/AP ). Now it is enough to choose b ∈ C a realization of

tpτ (a/AP0) by saturation of C.

(6) → (5). Assume P is not stably embedded. Let S ⊆ Pn be relatively definable

over C but not over P . Then, for every subset P0 ⊆ P , there is f ∈ Aut(C/P0) such

that f(S) 6= S.

First observe that S has infinitely many conjugates over ∅. Assume not, and let

{S0, . . . , Sn} be its orbit under Aut(C). Consider the equivalence relation defined by

F (y1, y2)⇔
∧
i≤n

y1 ∈ Si ↔ y2 ∈ Si.

Let D = {d1, . . . , dn} be a set of representatives for all the F -classes contained in

S, and observe that for every f ∈ Aut(C/D), f(di/F ) = di/F and therefore f(S) =

S. Since S is relatively definable and D-invariant, it is relatively definable with

parameters from P .

Now let (Sα : α ∈ Ord) be an enumeration of the orbit of S under Aut(C) and fix

an enumeration of P . We will construct an automorphism τ of P which cannot be

extended to an automorphism of C, namely such that τ(S) 6= Sα for all α < κ. We

do it inductively on α.

For the successor case, assume τα : Pα → P ′α is an elementary bijection between

subsets Pα, P ′α ⊆ P such that τα(S ∩ Pα) 6⊆ Sβ for all β < α.

We extend τα to τα+1 in two steps. In the first step we add, if necessary, a tuple

(a, a′) to the graph of of τα to guarantee that τα+1(S ∩ (Pα ∪ {a})) 6⊆ Sα, i.e., to

ensure that in the end τ(S) 6= Sα. In the second step we simply add a tuple (b, b′) to

the graph of τα to guarantee that in the end dom(τ) = P . We describe the steps:

Step 1. If there is no g ∈ Aut(C) extending τα such that g(S) = Sα, we don’t need

this step, so let a = a′ = ∅ and go to step 2. So assume there is such g. By hypothesis

there is f ∈ Aut(C/Pα) such that f(S) 6⊆ S, so there is a ∈ S such that the partial

type

tp(a/Pα) ∪ {x /∈ S}

is consistent. Since g extends τα and g(S) = Sα, we know also that the partial type

tpτα(a/Pα) ∪ {x /∈ Sα}

is consistent, so let a′ ∈ P be any realization of it.

Step 2. Let b the first element in the enumeration of P which is not in dom(τα) and

14



Stable embeddability

let b′ ∈ P such that (a′, b′) |= tpτα(ab/Pα).

Now let Pα+1 = Pα ∪ {a, b}, P ′α+1 = P ′α ∪ {a′, b′} and

τα+1 = τα ∪ {(a, a′), (b, b′)} ,

and observe that τα+1(S ∩ Pα+1) 6⊆ Sα.

For the limit case it is easy to see that the union works.

(5) → (1). We will first see that tp(a/P ) is definable over dcleq(a) ∩ dcleq(P ). Let

ϕ(x, y) be a formula. By stable embeddability,

{b ∈ Pn :|= ϕ(a, b)} = {b ∈ Pn :|= ψ(y, c)}

for some formula ψ(y, z) ∈ L and some c ∈ P l. ψ(y, c) is clearly a definition for

tp(a/P ) � ϕ. By compactness, there is a 0-definable set D ⊇ Pn such that

{b ∈ D :|= ϕ(a, b)} = {b ∈ D :|= ψ(y, c)} .

Consider the equivalence relation given by

E(z1, z2)⇔ ∀y ∈ D(ψ(y, z1)↔ ψ(y, z2)),

and observe that for any f ∈ Aut(C/a),

D ∩ ψ(C, c) = D ∩ ϕ(a,C) = D ∩ ϕf (a,C) = D ∩ ψf (C, c) = D ∩ ψ(C, f(c)),

i.e., f(c/E) = c/E. This shows that c/E ∈ dcleq(a), and since c ∈ P l, we also know

that c/E ∈ dcleq(P ). Thus the formula

∀y ∈ D(ϕ(x, y)↔ ∃z(ψ(y, z) ∧ E(z, c)))

belongs to tp(a/dcleq(a) ∩ dcleq(P )). Since Pn ⊆ D, we have that

tp(a/dcleq(a) ∩ dcleq(P )) ` tp(a/P ).
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2

Resplendent Models and the Lascar group

2.1 Introduction

The presentation of the Lascar group in [13] is done in the framework of an uncount-

able saturated model N of an arbitrary countable complete first-order theory and a

finite subset A ⊆ N . It is straightforward to generalize it to any complete first-order

theory T and any saturated model N of T with |N | > |T |. Thus it always can be

constructed working in the monster model C of T . Although the details have not been

written, it is generally acknowledged that instead of saturated models one can use

special models of the right cardinality. For instance, Ziegler observes in [25] that a

special model N such that cf(|N |) > 2|T | is sufficient. The inconvenience of working

with saturated models is that for some theories its existence can not be proven with-

out extra set theoretical hypotheses. On the other hand special models do always

exist.

We have noticed that there is a more general class of models where the Lascar

group naturally arises: the class of |T |+-resplendent models. Moreover, the properties

of the group of strong automorphisms can be understood more easily working with

these models.

The notion of resplendency has been introduced by Barwise and Schlipf in [2].

Poizat in [18] defined and studied the more general notion of κ-resplendency. In

Section 2.2 we summarize the main facts. |T |+-resplendent models generalize (in the

right cardinality) saturated and special models, and in the case of stable theories they

coincide with saturated models. In unstable theories there are many |T |+-resplendent

models which are not saturated nor special.

We focuss on the pure abstract group since there is nothing new concerning the

topology. The topology of the Lascar group can be explained as in [25] using only

the |T |+-saturation of the model and the presence of the pure group. In Section 2.3

we state and prove the main results. Theorem 2.3.14 shows that any |T |+-resplendent

model N gives rise to the Lascar group and Theorem 2.3.11 indicates that the group of

strong automorphisms over A can be characterized (similarly to what Lascar originally

16



|T |+-resplendency

did working with saturated models) as the least very normal subgroup of Aut(N/A),

that is, its least normal subgroup closed under a more general conjugation that we

call weak conjugation. It should be noticed that the methods used in the proofs are

quite different. In particular we never use ultraproducts. Finally in section 2.4 we

show that these results also hold in the wider class of all |T |+-saturated and strongly

|T |+-homogeneous models.

2.2 |T |+-resplendency

Definition 2.2.1. Let κ be an infinite cardinal number and let M be an L-structure.

We say that M is κ-expandable if for every language L′ ⊇ L with |L′ r L| < κ,

if Σ is a set of sentences of language L′ consistent with Th(M), then there is an

L′-expansion of M satisfying Σ. We say that M is κ-resplendent if and only if for

every A ⊆M with |A| < κ, MA is κ-expandable.

Here our interest in κ-resplendency resides in the case κ = |T |+. Hence we will

restrict our attention to this particular case in the next results, some of which can be

easily generalized to other cardinal numbers κ.

Proposition 2.2.2. 1. For every M there is some |T |+-resplendent model N �M
such that |N | ≤ |M |+ 2|T |.

2. Every saturated model M such that |M | > |T | and every special model M such

that cf(|M |) > |T | is |T |+-resplendent.

3. |T |+-resplendent models are strongly |T |+-homogeneous and |T |+-saturated.

4. If T is stable, every |T |+-resplendent model is saturated.

5. If T is unstable, then for every M there is some |T |+-resplendent model N �M
of cardinality |N | ≤ |M |+ 2|T | which is not |T |++-saturated.

Proof. 1 See the proof of Théorème 9.15 in [18]. 2. Shelah proves in Conclusion

I.1.13 of [19] that every saturated model of cardinality > |T | is |T |+-expandable.

From this it follows immediately that it is also |T |+-resplendent. The same fact is also

proven by Poizat in Théorème 9.17 of [18]. The case of a special model is considered

by the first author in [3], where in Proposition 1.2 it is established that every special

model of cardinality > |T | is |T |+-expandable. Now, if M is special and A ⊆M is of

cardinality < cf(|M |), then MA is still special and hence |TA|+-expandable. Therefore

M is |T |+-expandable if cf(|M |) > |T |. 3. It is obvious that a |T |+-resplendent model

M is |T |+-saturated. To check that it is strongly |T |+-homogeneous, we consider a

partial elementary mapping f , |f | ≤ |T |, with domain and range contained in M ,
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The Lascar group

and we show that f can be extended to an automorphism of M . Let A = dom(f),

add a new unary functional symbol F , put L′ = L ∪ {F} and note that the set Σ of

sentences of L′(A ∪ f(A))

1. F is an automorphism.

2. F (a) = f(a) for all a ∈ A.

is consistent with TA = Th(MA). By |T |+-resplendency there is an expansion

(M,FM ) of M such that (MA∪f(A), F
M ) |= Σ. Clearly, FM is an automorphism

of M extending f . Finally, 4 and 5 are due to Poizat. They follow from Théorème

16.11 and Théorème 14.10 of [18] respectively. The bound on the cardinality of N

in 5 can be obtained from the proof given there.

Corollary 2.2.3. If T is unstable, for every M , for every cardinal κ ≥ |M | + 2|T |

such that cf(κ) > |T |+, there is some nonspecial model N �M of cardinality κ which

is |T |+-resplendent.

Proof. By point 5 of Proposition 2.2.2, there is some |T |+-resplendent N � M of

cardinality κ which is not |T |++-saturated. Since cf(κ) > |T |+, every special model

of cardinality κ is |T |++-saturated. Hence N is not special.

2.3 The Lascar group

Definition 2.3.1. Let A ⊆ M and f, g ∈ Aut(M/A). We say that f, g are A-

conjugate and we write f ∼A g if they are conjugate elements of the group Aut(M/A),

that is, if g = ε ◦ f ◦ ε−1 for some ε ∈ Aut(M/A). We say that they are weakly A-

conjugate and we write f ≈A g if for some N � M there are extensions f ⊆ f ′ ∈
Aut(N/A) and g ⊆ g′ ∈ Aut(N/A) such that f ′ ∼A g′. We say that a subgroup G of

Aut(M/A) is very normal if it is closed under weakly conjugation, that is if for any

f ∈ G and any g ∈ Aut(M/A) such that f ≈A g we have g ∈ G. We use [f ]≈A to

denote the ≈A-class of f ∈ Aut(M/A), i.e., [f ]≈A = {g ∈ Aut(M/A) : f ≈A g}. This

notation should not suggest that weak conjugation is an equivalence relation.

Remark 2.3.2. Let f, g ∈ Aut(M/A). Then f ≈A g if and only if there are exten-

sions f ⊆ f̄ ∈ Aut(C/A) and g ⊆ ḡ ∈ Aut(C/A) such that f̄ ∼A ḡ.

Remark 2.3.3. 1. Very normal subgroups are normal.

2. In general {idM} is not a very normal subgroup of Aut(M/A), as shown in

Proposition 2.3.6.
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3. The intersection of any family of very normal subgroups of Aut(M/A) is again

a very normal subgroup.

Definition 2.3.4. We denote by Γ(M/A) the intersection of all very normal sub-

groups of Aut(M/A), which is again very normal. Note that Γ(M/A) is a union of

≈A-classes and contains [idM ]≈A .

Proposition 2.3.5. For A ⊆M ′ �M , Aut(M/M ′) ⊆ [idM ]≈A

Proof. Let f ∈ Aut(M/M ′) and expand the language L(M) by adding three new

unary function symbols E,F,G. Let Σ be the set of sentences in the expanded

language expressing that

1. F,G,E are A-automorphisms.

2. G = E−1 ◦ F ◦ E

3. G(m) = m for all m ∈M .

4. f(m) = F (m) for all m ∈M .

If Σ is consistent, we have finished since there is an expansion C′ of CM which

satisfies Σ and then f ⊆ FC′ ∼A GC′ ⊇ idM , which shows that f ≈A idM . To show

the consistency of Σ (with TM ) let a ∈M be a finite tuple and let us prove that there

are f̄ , ḡ, ε ∈ Aut(C/A) such that ḡ = ε−1 ◦ f̄ ◦ ε, ḡ(a) = a and f̄(a) = f(a). To do

this we first check that if p(x) = tp(a/A), then

(∗) p(x) ∪ “xa ≡A xf(a)” is consistent.

Let ϕ(x) ∈ p(x). Since A ⊆ M ′, there is b ∈ M ′ such that |= ϕ(b). Since f is the

identity in M ′, f(b) = b and hence ba ≡A bf(a). This ensures the consistency. By (∗),
there is a tuple a′ such that a′ ≡A a and a′a ≡A a′f(a). Now choose automorphisms

f̄ , ε ∈ Aut(C/A) with ε(a) = a′ and f̄(a′a) = a′f(a). If ḡ = ε−1 ◦ f̄ ◦ ε, it follows that

ḡ(a) = a.

Proposition 2.3.6. If N is |T |+-resplendent and A ⊆ N is of cardinality at most

|T |, then |[idN ]≈A | ≥ |N |. In particular {idN} is not a very normal subgroup of

Aut(N/A).

Proof. Choose an elementary submodel M � N containing A of cardinality ≤ |T |
and choose a nonalgebraic type p(x) ∈ S(M). In the monster model we may find a

proper class P of realizations of p(x). Let F be a new binary functional symbol, let

L′ = L ∪ {F}, and look at the following set Σ of sentences of L′(M):

1. For all x, the mapping y 7→ F (x, y) is an automorphism.
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2. ∀xF (x, a) = a for all a ∈M .

3. ∀xy(x 6= y → ∃z F (x, z) 6= F (y, z)).

The consistency of this set of sentences with Th(NM ) follows from the fact that in

the monster model we may find for each two different a, b ∈ P an automorphism

f ∈ Aut(C/M) with f(a) = b. Now, by |T |+-resplendency of N there is an expansion

(N,FN ) of N such that (NM , FN ) |= Σ. For each a ∈ N we get a different automor-

phism fa ∈ Aut(N/M) defined by fa(b) = FN (a, b). By Proposition 2.3.5 fa ≈A idN
for all a ∈ N .

Definition 2.3.7. Let A ⊆ M . The group of all strong automorphisms over A

is the subgroup Autf(M/A) of Aut(M/A) generated by the union of all subgroups

Aut(M/M ′) for all possible M ′ such that A ⊆M ′ �M .

Remark 2.3.8. It is easy to check that Autf(M/A) is a normal subgroup of

Aut(M/A). From Proposition 2.3.5 it follows that it is also a subgroup of Γ(M/A).

Proposition 2.3.9. Assume N is |T |+-resplendent, A ⊆ N , |A| ≤ |T |, f ∈
Aut(N/A), and f ⊆ f̄ ∈ Aut(C/A). Then f ∈ Autf(N/A) if and only if f̄ ∈
Autf(C/A).

Proof. Let f = f1 ◦ . . . ◦ fn where for each i, fi ∈ Aut(N/A) is the identity in a

submodel Mi � N containing A. If we take extensions fi ⊆ f̄i ∈ Aut(C/A) and

consider g = f̄1 ◦ . . . ◦ f̄n, we see that f̄ ◦ g−1 ∈ Aut(C/N), f̄i ∈ Aut(C/Mi), and

f̄ = (f̄ ◦ g−1) ◦ f̄1 ◦ . . . ◦ f̄n, which shows that f̄ ∈ Autf(C/A).

Now assume f̄ ∈ Autf(C/A) and choose f̄1, . . . , f̄n ∈ Aut(C/A) such that f̄ =

f̄1 ◦ . . . ◦ f̄n and f̄i ∈ Aut(C/Mi) for some Mi ⊇ A. Choose a model M � N with

A ⊆M and |M | ≤ |T | closed under f and f−1. Enlarge the language L(M) by adding

unary function symbols F1, . . . , Fn, G and unary predicates U1, . . . , Un and let Σ be

the set of sentences expressing

1. F1, . . . , Fn, G are A-automorphisms.

2. U1, . . . , Un are elementary submodels containing A.

3. Fi � Ui = idUi for all i = 1, . . . , n.

4. G = F1 ◦ . . . ◦ Fn

5. G(m) = f(m) for all m ∈M .

Σ is consistent. By |T |+-resplendency there is an expansion of NM which satisfies

Σ. This gives us some g ∈ Autf(N/A) such that f � M = g � M . Hence f ◦ g−1 ∈
Aut(N/M) ⊆ Autf(N/A) and therefore f ∈ Autf(N/A).
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Remark 2.3.10. Note that the above proposition also holds if instead of the monster

model C we choose an elementary extension N ′ � N which is |N |+-resplendent.

Theorem 2.3.11. For any |T |+-resplendent model N and any A ⊆ N such that

|A| ≤ |T |, Autf(N/A) = Γ(N/A).

Proof. By Proposition 2.3.5 we know that Autf(N/A) ⊆ 〈[idN ]≈A〉 ⊆ Γ(N/A). To

show that Γ(N/A) ⊆ Autf(N/A) it is enough to check that Autf(N/A) is a very

normal subset of Aut(N/A). Let f ∈ Autf(N/A) and let g ∈ Aut(N/A) be such that

f ≈A g. For some f̄ , ḡ ∈ Aut(C/A) extending f, g respectively we have that f̄ ∼A ḡ.

By Proposition 2.3.9, f̄ ∈ Autf(C/A). Since Autf(C/A) is a normal subgroup of

Aut(C/A), ḡ ∈ Autf(C/A). Again by Proposition 2.3.9, g ∈ Autf(N/A).

Corollary 2.3.12. For any |T |+-resplendent model N and any A ⊆ N such that

|A| ≤ |T |, 〈[idN ]≈A〉 = Γ(N/A).

Proof. By Proposition 2.3.5 and Theorem 2.3.11.

Remark 2.3.13. 1. It is easy to check (see Proposition 34 in [13]) that an au-

tomorphism f ∈ Aut(N/A) is in [idN ]≈A if and only if N ≡M f(N) for some

model M ⊇ A. In other words, for some model M ⊇ A, f has an extension in

Aut(C/M).

2. Lascar in [13] pointed out that for stable T , [idN ]≈A itself is a group. In a

stable theory, Autf(N/A) = Aut(N/acleq(A)) and it suffices to take for the

model M in point 1 a realization of the nonforking extension of tp(N/acleq(A))

over N . Hence Autf(N/A) = [idN ]≈A for any |T |+-resplendent model N of a

stable theory T .

3. If T is o-minimal, then for every model N ⊇ A, Aut(N/A) = [idN ]≈A . This

follows from the proof of Lemma 24 in [25] where it is shown that for every

f ∈ Aut(N/A) there is some extension f̄ ∈ Aut(C/A) of f which is the identity

on some model M ⊇ A.

Theorem 2.3.14. For any |T |+-resplendent model N and any A ⊆ N such that

|A| ≤ |T |, Aut(N/A)/Autf(N/A) is independent of the choice of N .

Proof. We prove that Aut(N/A)/Autf(N/A) ∼= Aut(C/A)/Autf(C/A) For this, we

define a mapping δ : Aut(N/A) → Aut(C/A)/Autf(C/A) choosing for any f ∈
Aut(N/A) an arbitrary extension f ⊆ f̄ ∈ Aut(C/A) and putting δ(f) = f̄Autf(C/A).

It is clearly well defined an it is a group homomorphism. From Proposition 2.3.9 it

follows that its kernel is Autf(N/A). We finish the proof by showing that δ is onto.

Let g ∈ Aut(C/A). We seek some f ∈ Aut(N/A) such that δ(f) = gAutf(C/A).
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Choose a submodel M � N such that A ⊆ M and |M | ≤ |T |. By |T |+-saturation of

N we may find in N a realization M ′ of tp(g(M)/M). Then g(M) ≡M M ′ and there

is some h ∈ Aut(C/M) such that h(g(M)) = M ′. M ′ is an elementary submodel of N

containing A and (h ◦ g) � M is an A-isomorphism between M and M ′. We enlarge

the language L(M ∪M ′) by adding an unary function symbol F . Let Σ be the set of

sentences expressing

1. F is an A-automorphism.

2. F (a) = h(g(a)) for all a ∈M .

It is consistent and by |T |+-resplendency there is some f ∈ Aut(N/A) such that

f � M = h ◦ g � M . Let f̄ ∈ Aut(C/A) be an arbitrary extension of f . Then

h ◦ g ◦ f̄−1 ∈ Aut(C/M ′) ⊆ Autf(C/A) and h ∈ Autf(C/A). Therefore g ◦ f̄−1 ∈
Autf(C/A), that is, δ(f) = f̄Autf(C/A) = gAutf(C/A).

2.4 |T |+-saturated strongly |T |+-homogeneous models

Theorems 2.3.11 and 2.3.14 hold for a class of models strictly wider than the class of

all |T |+-resplendent models. The arguments given so far can be refined to show that

they are also true for |T |+-saturated strongly |T |+-homogeneous models. As pointed

out in point 3 of Proposition 2.2.2, all |T |+-resplendents models are |T |+-saturated

and strongly |T |+-homogeneous. However it is easy to find nonsaturated models of

stable theories (even of Morley rank 2) which are |T |+-saturated and strongly |T |+-

homogeneous. After point 4 of Proposition 2.2.2 it is clear that these models are not

|T |+-resplendent.

We will now indicate shortly how the proofs given in the previous sections can be

modified to obtain this more general result. One key point is that theorems 2.3.11

and 2.3.14 depend basically on what we call the extension property.

Definition 2.4.1. Let A ⊆ M . We say that M has the extension property over A

if every f ∈ Aut(M/A) which has an extension f̄ ⊇ f in Autf(C/A) is already in

Autf(M/A).

Remark 2.4.2. It is always true that every f̄ ∈ Aut(C/A) extending some f ∈
Autf(M/A) is strong.

Proposition 2.3.9 shows that all |T |+-resplendent models have the extension prop-

erty over small subsets. We show that this is also the case for |T |+-saturated strongly

|T |+-homogeneous models. Our proof uses the same idea as the one presented by

Ziegler in the proof of Corollary 3 in [25].
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Proposition 2.4.3. Assume N is |T |+-saturated and strongly |T |+-homogeneous.

Then for each A ⊆ N such that |A| ≤ |T |, N has the extension property over A.

Proof. Let f ⊆ f̄ ∈ Autf(C/A) and choose f̄1, . . . , f̄n such that f̄ = f̄1 ◦ . . . ◦ f̄n and

f̄i ∈ Aut(C/Ni) for some Ni ⊇ A. We may assume that |Ni| ≤ |T | for each i. Choose

a model M � N with A ⊆M and |M | ≤ |T |. Let M0 = M and Mi+1 = f̄i+1(Mi) for

i = 0, . . . , n− 1. Observe that

M = M0 ≡N1 M1 ≡N2 M2 . . . ≡Nn−1 Mn−1 ≡Nn Mn = f̄(M) = f(M)

By using |T |+-saturation of N , choose now models N ′i � N and M ′i � N such that

M0, . . . ,Mn, N1 . . . , Nn ≡Mf(M) M
′
0, . . . ,M

′
n, N

′
1 . . . , N

′
n

Then A ⊆ N ′i and

M = M ′0 ≡N ′1 M
′
1 ≡N ′2 M

′
2 . . . ≡N ′n−1

M ′n−1 ≡N ′n M
′
n = f(M).

By |T |+-strong homogeneity of N we may now find gi+1 ∈ Aut(N/N ′i) such that

gi+1(M ′i) = M ′i+1 for i = 0, . . . , n − 1. Let g = g1 ◦ . . . ◦ gn. Then g ∈ Autf(N/A)

and g � M = f � M . Hence g ◦ f−1 ∈ Aut(N/M) ⊆ Autf(N/A) and hence f ∈
Autf(N/A).

Theorem 2.4.4. For any |T |+-saturated and strongly |T |+-homogeneous model N

and any A ⊆ N such that |A| ≤ |T |, Autf(N/A) = Γ(N/A) = 〈[idN ]≈A〉 and

Aut(N/A)/Autf(N/A) is independent of the choice of N .

Proof. For the first assertion, observe that the proof given in Theorem 2.3.9 shows

in fact that the extension property over A ⊆ N is enough to get Autf(N/A) =

Γ(N/A) = 〈[idN ]≈A〉, and then use Proposition 2.4.3. The proof of the existence of

an isomorphism between Aut(N/A)/Autf(N/A) and Aut(C/A)/Autf(C/A) is a slight

modification of the proof given for Theorem 2.3.14. To check that δ is onto, instead

of enlarging the language by adding F , use |T |+-strong homogeneity of N to obtain

some f ∈ Aut(N/A) such that f � M = h ◦ g � M . Let f̄ ∈ Aut(C/A) be an arbitrary

extension of f . Then h ◦ g ◦ f̄−1 ∈ Aut(C/M ′) ⊆ Autf(C/A) and h ∈ Autf(C/A).

Therefore g ◦ f̄−1 ∈ Autf(C/A), that is, δ(f) = f̄Autf(C/A) = gAutf(C/A).
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3

G-compactness

As mentioned in section 1.1, the notion of G-compactness was introduced by Lascar

in [13], and different characterizations where given later in [11], [14], [25] and [16].

In this chapter we are interested in two main problems around this notion. First we

tackle the question of wether G-compactness is preserved after adding parameters to

a G-compact theory. We answer this question negatively in section 3.2 , providing

several examples of a G-compact (over ∅) theory T and a set of parameters A such

that T is not G-compact over A. In section 3.3 we present a new proof of Newelski’s

Corollary 1.8 in [16], which states that a type-definable Lascar strong type has finite

diameter. For this purpose we use some techniques introduced also by Newelski in

[17]. In the next section we present the first examples of non G-compact theories

that appeared in [4]. Throughout this chapter, d and dA will denote the distance

introduced in section 1.1.

3.1 Non-G-compact theories

The following examples were first exhibited in [4], but we work with a relational

language. Let C be a circle with perimeter 1. Fix a natural number n > 1. Let Cn be

the Ln-structure with universe C in the language Ln = {Bn, Ln, Rmn , Smn : 1 ≤ m ≤ n}
where:

(a) Bn(a, b, c) holds if a, b, c are different points of Cn and if, starting from a and

going around the circle clockwise, b appears sooner than c.

(b) Ln(a, b) holds if the distance between a and b is shorter going clockwise from a

to b than the other way around.

(c) For each 1 ≤ m ≤ n, Rmn (a, b) holds if the length of the shortest arch joining a

and b is less or equal than m/2n.
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(d) For each 1 ≤ m ≤ n, Smn (a, b) holds if the length of the shortest arch joining a

and b is strictly less than m/2n.

We fix some n > 1 and omit the subindexes for convenience in notation. It is easy

to see that for each m ∈ {1, . . . , n}, Rm is definable in terms of R1 (from now on just

R) and the same for Sm in terms of S. We can also see that R(x, y) can be defined

in terms of B and S by the formula

∀z((B(x, z, y))→ S(x, z)) ∨ ∀z((B(y, z, x))→ S(y, z)),

and also that L(x, y) can be defined by the formula

Sn(x, y) ∧ ∀z(B(x, z, y)→ Sn(x, z)).

Now, the clockwise rotation by π/n radians inside Cn, gn : Cn → Cn (or just g),

is a bijection definable in the language Ln by the formula

g(x) = y ↔ L(x, y) ∧R(x, y) ∧ ¬S(x, y).

Observe also that S (and therefore L, Sm and Rm for 1 ≤ m ≤ n) is definable with

the symbols B and g by the formula

B(x, y, g(x)) ∨B(y, x, g(y)).

From this we know that the following remark is true.

Remark 3.1.1. Fix n > 1. Let Lgn = {Bn, gn} and consider Cn as an Lgn-structure

where Bn is interpreted as before and the function symbol gn is interpreted as the

clockwise rotation by π/n radians. Then for any two finite tuples ā, b̄ ∈ Cn,

tpLn(ā) = tpLn(b̄)⇔ tpLgn(ā) = tpLgn(b̄)

We give axioms for Th(Cn) in the language Lgn for n > 1:

A1. For all x, {(y, z) : B(x, y, z)} is a dense strict linear order without endpoints.

A2. ∀xyz(B(x, y, z)↔ B(y, z, x)).

A3. ∀x(g2n(x) = x).

A4. ∀xB(x, gi(x), gj(x)) for any 0 < i < j < 2n.

A5. ∀xyz(B(x, y, z)↔ B(g(x), g(y), g(z))).

Proposition 3.1.2. The theory given by the previous axioms is complete, ω-

categorical and has elimination of quantifiers in the language Lgn.
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Proof. 1. We do back-and-forth with the partial isomorphisms between finitely gen-

erated (g-closed) sets. Let f be one of such isomorphisms and let a be such that

a /∈ dom(f). If f is the empty function, choose any b and let f ′(a) = b and for

each 1 ≤ i ≤ 2n − 1, f ′(gi(a)) = gi(b). By axiom A4, f ′ is an isomorphism between

finitely generated g-closed sets extending f . Now assume f is not the empty function.

Making use of he axioms, let

a0
1, a

0
2, . . . , a

0
m, a

1
1, a

1
2 . . . , a

1
m, . . . , a

2n−1
1 , a2n−1

2 , . . . , a2n−1
m

be an enumeration of dom(f) such that:

1. It’s ordered with respect to the order induced by a.

2. aij = g(ai−1
j ) for all i ∈ {1, . . . , 2n− 1} and j ∈ {1, . . . ,m}.

From these assumptions and axiom A2, we know that B(a2n−1
m , a, a0

1). And using

axiom A5 we also know that B(ai−1
m , gi(a), ai1) for each i ∈ {1, . . . , 2n− 1}.

Now, by axiom A1, choose an element b such that B(b2n−1
m , b, b01), where bij = f(aij),

and extend f to f ′ as follows. Let f ′(a) = b and for each 1 ≤ i ≤ 2n − 1, let

f ′(gi(a)) = gin(b). It’s then clear that f ′ is an isomorphism with respect to B between

a, a0
1, . . . , a

0
m, g(a), a1

1, . . . , a
1
m, . . . , a

2n−2
m , g2n−1(a), a2n−1

1 , . . . , a2n−1
m

and

b, b01, . . . , b
0
m, g(b), b11, . . . , b

1
m, . . . , b

2n−2
m , g2n−1(b), b2n−1

1 , . . . , b2n−1
m .

To see that f ′ is also an isomorphism with respect to g, it’s enough to observe that

gi(a) = gj(a) if and only if gi(b) = gj(b) for every i, j ∈ {1, . . . , 2n} and that

dom(f) ∩
{
gi(a) : i < 2n

}
= rng(f) ∩

{
gi(b) : i < 2n

}
= ∅

Proposition 3.1.3. X ⊆ Cn is an elementary substructure of Cn (as an Lgn-

structure) if and only if it is closed under gn and X is dense.

Proof. From left to right it’s clear. For the other direction, observe that the back and

forth in the previous proposition can be done between X and Cn.

Lemma 3.1.4. For any n > 1 and a, b, c ∈ Cn, qftpLn(a, b, c) detrmines

qftpLn(a, b, g(c)).

Proof. Let a, b, c be different elements of Cn and assume B(a, b, c). Observe that

1. g(c) = a⇔ L(c, a) ∧R(c, a) ∧ ¬S(c, a).
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Non-G-compact theories

2. B(a, b, g(c))⇔ g(c) 6= a ∧ g(c) 6= b ∧ ((S(a, c) ∧ L(c, a))→ (L(a, b) ∧ S(c, b))).

3. B(a, g(c), b)⇔ g(c) 6= a ∧ g(c) 6= b ∧ ¬B(a, b, g(c)).

4. L(a, g(c))⇔ (L(a, c) ∧ Sn−1(a, c)) ∨ (L(c, a) ∧ S(a, c)).

5. L(g(c), a)⇔ (L(c, a) ∧ ¬R(c, a)) ∨ (¬L(c, a) ∧Rn−1(c, a)).

6. R(a, g(c))⇔ (L(c, a) ∧R2(a, c)) ∨ a = c

7. Rm(a, g(c)) ⇔ (L(a, c) ∧ Rm−1(a, c)) ∨ (L(c, a) ∧ Rm+1(a, c)) ∨ a = c, for m ∈
{2, . . . n− 1}.

And in a similar way for Sm and b instead of a. For the case where two of the three

elements are equal, just consider points 1.,4.,5.,6. and 7. in the previous list.

Lemma 3.1.5. For any n > 0 and two finite tuples ā, b̄ of Cn,

qftpLn(ā) = qftpLn(b̄)⇔ qftpLgn(ā) = qftpLgn(b̄)

Proof. From right to left it’s clear by remark 3.1.1 and the elimination of quantifiers

in the language Lgn (proposition 3.1.2 (1.)). For the other direction, let ā = a1, . . . am

and b̄ = b1, . . . , bm be two finite tuples of Cn with the same quantifier-free type in the

language Ln. It suffices to check the following statements. Let i, j, k ∈ {1, . . . , 2n}
and r, s, t ∈ {1, . . .m}.

1. gi(ar) = gj(as) if and only if gi(br) = gj(bs).

2. B(gi(ar), gj(as), gk(at)) if and only if B(gi(br), gj(bs), gk(bt)).

Both of them follow applying lemma 3.1.4 a finite number of times.

Corollary 3.1.6. The following are true.

1. Th(Cn) is ω-categorical and has elimination of quantifiers in the language Ln.

2. X ⊆ Cn is an elementary substructure of Cn (as an Ln-structure) if and only

if it is closed under clockwise rotation by π/n radians and X is dense.

Proof. By lemma 3.1.5, proposition 3.1.2 and remark 3.1.1, we know that for any two

finite tuples ā, b̄ ∈ Cn,

qftpLn(ā) = qftpLn(b̄) ⇔ qftpLgn(ā) = qftpLgn(b̄)

⇔ tpLgn(ā) = tpLgn(b̄)

⇔ tpLn(ā) = tpLn(b̄).

2. follows from proposition 3.1.3 and remark 3.1.1.
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Proposition 3.1.7. If a, b ∈ Cn, then S(a, b) holds iff a, b have the same type over

an elementary substructure of Cn.

Proof. Suppose S(a, b). Without loss of generality assume L(a, b). Let Ia,b = {a, b}∪
{x : Bn(a, x, b)} and let X be the substructure obtained by removing Ia,b and its

rotations by kπ/n radians (k = 1, . . . 2n − 1) from Cn. By proposition 3.1.6 (2.), X

is an elementary substructure of Cn and a ≡X b.

Now suppose that ¬Sn(a, b). Let N be an elementary substructure of Cn and let

c ∈ N . Recall that N is closed under g, the clockwise rotation by π/n radians. In

case a or b are in the orbit of c under g, it’s clear that a 6≡N b. Otherwise, there are

m1,m2 < 2n such that B(a, gm1(c), b) and B(b, gm2(c), a). Then B(gm1(c), b, gm2(c)),

but ¬B(gm1(c), a, gm2(c)), showing that a 6≡N b.

Corollary 3.1.8. Any two elements of Cn have the same Lascar strong type but

diam(Cn) ≥ n.

Two structures

Consider the following two structures built from the circles Cn’s above (we assume

that they’re saturated).

1.
⊔
n>1

Cn: The coproduct, or disjoint sum. It’s just the family of structures (Cn :

n > 1) considered as a many-sorted structure. The n-th sort corresponds to Cn
equipped with all its Ln-structure. No additional relation or function symbols.

2. C =
∏
n>1

Cn: The product. An element of its universe is a mapping c defined on

ωr {0, 1} and such that c(n) ∈ Cn for every n > 1. Its language is L =
⋃
n>1
L′n,

where L′n = Ln ∪ {En}. For any c, c′ ∈ C, n > 1,m ≤ n, we say that Rmn (c, c′)

holds if and only if Rmn (c(n), c′(n)) holds in Cn, and so for Bn, Ln and Smn . En
is a binary relation symbol interpreted as follows:

En(c, c′)⇔ c(n) = c′(n)

En is an equivalence relation and we can recover the circle Cn with all its Ln-

structure taking the quotient C/En.

Let E =
⋂
n>1

En and observe that for every c ∈ C, C/E = {c}. Adjoining

a suitable large number of new elements to each E-class one gets a saturated

elementary extension C∗ of C. Note that in passing to C∗ no new elements

were added to any of the Cn’s.
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Using back-and-forth arguments we can easily see that both Th
( ⊔
n>0

Cn

)
and Th(C∗)

have elimination of quantifiers in their respective languages.

Remark 3.1.9. 1. Aut
( ⊔
n>1

Cn

)
=
∏
n>1

Aut(Cn).

2. The canonical map from Aut(C∗) to Aut
( ⊔
n>1

Cn

)
is surjective.

Proposition 3.1.10.
KP≡ is trivial for elements in C∗.

Proof. By definition, a
KP≡ b if and only if a and b are equivalent under any type-

definable bounded equivalence relation, and we know that any such relation can be

defined by a conjunction
∧
n<ω

θn(x, y) of thick formulas such that θ2
n+1 ⊆ θn for every

n < ω, i.e., θn+1(x, y) ∧ θn+1(y, z) ` θn(x, z).

Assume, searching for a contradiction, that ¬θ0(a, b) for a formula θ0(x, y) of some

such family and elements a, b ∈ C∗. Since θ0 is reflexive, a 6= b. Let L′2 ∪ . . .L′N be

the language of θ0 and choose n such that N < 2n. Observe that

θ2n

n ⊆ θ2n−1

n−1 · · · ⊆ θ4
2 ⊆ θ2

1 ⊆ θ0.

By quantifier elimination, the formula θn(x, y) is of the form

θn(x, y) =
l∨
i=1

σi

for some l < ω, where each σi is a conjunction of some of the relations

{=, Lk, Rmk , Smk , Ek : 1 < k ≤ N, 1 ≤ m ≤ k} and their negations.

Claim 1. At least one of the σi’s is not negative in any of the relations Rmk (1 < k ≤
N, 1 ≤ m ≤ k). (This means that at least in one conjunction there is no lower bound

for the distance between any two comparable coordinates of x and y).

Proof. Otherwise, in each σi there is a term ¬Rmiki . But the relation
l∧
i=1

Rmiki is thick,

since it is impossible to find an infinite antichain for it, i.e. infinitely many elements

such that their ki-th projections are at at distance > mi/ki. Since

θn(x, y) =
l∨
i=1

σi `
l∨
i=1

¬Rmiki ,

then
l∧
i=1

Rmiki ` ¬θn(x, y). This implies that ¬θn(x, y) is thick and θn(x, y) is not,

which is a contradiction. �

Now let I = {i ≤ N : Ei(a, b)} and J = {i ≤ N : ¬Ei(a, b)}. We write θn(x, y) =

ρn(x, y)∨νn(x, y), where ρn(x, y) is the disjunction of the conjunctions which are not
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negative in any of the relations Rmk , and νn(x, y) is the disjunction of the remaining

ones.

Claim 2. ρn(x, y) 0
∨
i∈I
¬Ei(x, y) ∨

∨
j∈J

Ej(x, y) ∨ x = y.

Proof. Otherwise, choose in each conjunction of νn(x, y) a relation Rmiki appearing

negatively (say for i = 1, . . . l′) and observe that

∧
i∈I

Ei(x, y) ∧
∧
j∈J
¬Ej(x, y) ∧ x 6= y ∧

l′∧
i=1

Rmiki ` ¬ρn(x, y) ∧ ¬νn(x, y) ` ¬θn(x, y).

This implies that we can find an infinite sequence (ai : i < ω) of different elements

in C∗ such that ¬θn(ai, aj), whenever i < j. Therefore, θn(x, y) is not thick, and we

have again a contradiction. �

Since ρn(x, y) ∧
∧
i∈I

Ei(x, y) ∧
∧
j∈J
¬Ej(x, y) ∧ x 6= y is consistent, we can find

elements a∗, b∗ ∈ C∗ such that ρn(a∗, b∗) and such that Ei(a∗, b∗) if and only if

Ei(a, b) for i = 1, . . . , N . We can also find distinct elements a′, b′ such that

• Ei(a′a) and Ei(b′, b) for i = 2, . . . N .

• Ei(a′, a∗) and Ei(b‘, b∗) for i > N .

Claim 3. θ2n

n (a′, b′).

If the claim is true, then θ0(a′, b′). By the choice of the Ei-classes and elimination

of quantifiers, the pair a′, b′ satisfies the same formulas of L1 ∪ · · · ∪LN . This implies

that θ0(a, b), which gives us the desired contradiction.

Proof Claim 3. It is enough to find a1, . . . , a2n+1 such that ai = a′, a2n+1 = b′ and

θn(aj , aj+1) for j = 1, . . . 2n. To find them, we will choose, for each i > 1, their

respective Ei-classes ei1, . . . e
i
2n+1.

Fix a conjunction σ(x, y) in ρn(x, y) satisfied by a∗, b∗ (we may assume σ(x, y) ` x 6=
y).

Let 1 < i ≤ N . If the term Ei(x, y) appears in σn(x, y), let ei1 = · · · = ei2n+1 =

[a′]Ei = [b′]Ei . If not, since I ≤ 2n, choose different classes ei1 = [a′]Ei , e
i
2, . . . , e

i
2n+1 =

[b′]Ei such that Ri(x, y) holds if the classes of x, y are eij , e
i
j+1 for any 1 ≤ j < 2n + 1.

This is because inside any of the circles C2, . . . , CN , given two points p, q, we can

always find points p1 = p, p2, . . . , p2n+1 = q such that d(pj , pj+1) < 1/2N for j =

1, . . . , 2n, and 1/2N ≤ 1/2i.

Let i > N . Choose j minimal such that T (x, y) ` Rji (x, y) appears in T (x, y) (Notice

here that the language of θn(x, y) can be bigger than the language of θ0(x, y)). Again,

if the term Ei(x, y) appears in σ(x, y), let ei1 = · · · = ei2n+1 = [a′]Ei = [b′]Ei . If not,

30



Non-G-compact theories

since Rji (a
′, b′), choose different classes ei1 = [a′]Ei , e

i
2, . . . , e

i
2n+1 = [b′]Ei such that

Rji (x, y) holds if the classes of x, y are eij , e
i
j+1 for any 1 ≤ j < 2n + 1.

This completes the choice of the classes. Now let a′ = a1, a2 . . . , a2n+1 = b′ be

elements of C∗ such that [aj ]Ei = eij for all i > 1 and 1 ≤ j ≤ 2n. By the choice of

the classes, it is easy to see that T (aj , aj+1) holds for all 1 ≤ j ≤ 2n. This implies that

Pn(aj , aj+1) and therefore Sn(aj , aj+1) holds for all 1 ≤ j ≤ 2n + 1, as we wanted. �

Lemma 3.1.11. Let ai, bi ∈ Ci for all i > 1. Then (ai)i>1
L≡ (bi)i>1 in C∗ if and

only if (ai)i>1
L≡ (bi)i>1 in

⊔
i>1

Ci.

Proof. ⇒) Suppose (ai)i>1
L≡ (bi)i>1 in C∗. Without loss of generality, we may

assume there is C ′ ≺ C∗ and f ∈ Aut(C∗/C ′) such that f((ai)i>1) = (bi)i>1. Let πi
be the projection map from C∗ to Ci (remember that no new elements where added

to the Ci’s when going from C to C∗). For all i > 1, πi(C ′) ⊆ Ci. Moreover, by

elimination of quantifiers, πi(C ′) ≺ Ci for all i > 1.

Now let fi : Ci → Ci be defined as follows: for ci ∈ Ci, let fi(ci) = πi(f(c)) for any

c ∈ π−1
i (ci) 1. Let f ′ be the union of the fi’s. Clearly

f ′ ∈ Aut

(⊔
i>1

Ci/
⊔
i>1

πi(C ′)

)
,

⊔
i>1

πi(C ′) ≺
⊔
i>1

Ci, and f ′(ai) = bi for all i > 1, thus (ai)i>1
L≡ (bi)i>1 in

⊔
i>1

Ci.

⇐) Without loss of generality, we may assume there are C ′i ≺ Ci and fi ∈ Aut(Ci/C ′i)

such that fi(ai) = bi for all i > 1. Let f ∈ Aut
( ⊔
n>1

Cn

)
be the union of the fi’s. By

remark 3.1.9 (2.), there is f∗ ∈ Aut(C∗) whose canonical projection to Aut
( ⊔
n>1

Cn

)
is f . Observe that

∏
n>1

C ′n ≺ C∗, f∗ fixes pointwise
∏
n>1

C ′n, and f∗((ai)i>1) = (bi)i>1,

showing that (ai)i>1 and (bi)i>1 have the same Lascar strong type in C∗.

Proposition 3.1.12. Let ai, bi ∈ Ci for all i > 1. Then (ai)i>1
L≡ (bi)i>1 in C∗ if

and only if there is n < ω such that d(ai, bi) ≤ n for all i > 1.

Proof. ⇒) Observe that there is n < ω such that d(ai, bi) ≤ n for all i > 1 if and only

if there is a Lascar strong automorphism of
⊔
i>1

Ci sending the (infinite) tuple (ai)i>1

to (bi)i>1, i.e., if and only if (ai)i>1
L≡ (bi)i>1 in

⊔
i>1

Ci. By the previous lemma, that

happens if and only if (ai)i>1
L≡ (bi)i>1 in C∗.

1If c, c′ ∈ π−1(ai), then Ei(c, c
′), and since f ∈ Aut(C), it is true also that Ei(f(c), f(c′)), and

therefore πi(f(c)) = πi(f(c′)).
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Corollary 3.1.13. Neither Th(
⊔
n>1 Cn) nor Th(C∗) are G-compact.

Proof. Consider, for each n > 1, two diametrically opposed points an, a′n ∈ Cn, and

a Lascar strong automorphism fn ∈ Aut(Cn) such that fn(an) = a′n.

Let f ∈ Aut(
⊔
n>1 Cn) be the union of the fn’s. Note that f is a limit point of

Autf(
⊔
n>1 Cn) (since f agrees with the product of finitely many fn’s, which is strong)

but it’s not Lascar strong, since there is no finite bound for the distance between the

(infinite) tuples (an : n < ω) and (f(an) : n < ω). By fact 1.1.2 (3.), Th(
⊔
n>1 Cn) is

not G-compact.

For the second case, let c, c′ ∈ C∗ be such that c(n) = an and c′(n) = a′n for each

n > 1. By proposition 3.1.10, c
KP≡ c′, but we know, by proposition 3.1.12, that c 6 L≡ c′,

showing that
L≡ is not type-definable for finite tuples. By fact 1.1.2 (2.), Th(C∗) is

not G-compact.
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3.2 G-compactness of T does not imply G-compactness of TA

The next examples came up as a result of several discussions with Prof. Ludomir

Newelski during my visit at the Mathematical Institute of the Wroclaw University

in March 2006 and previous conversations with Prof. Enrique Casanovas at the

University of Barcelona.

Type-definability of
L≡A for finite tuples is preserved

Example 1. For each n > 1, let Mn be a saturated model of the theory Tn in the

language Ln = {Pn, Qn, Zn, Bn, Ln, Rmn , Smn : 1 ≤ m ≤ n}, where:

1. Pn and Qn are infinite disjoint unary predicates.

2. Zn is a binary relation symbol on Pn ×Qn.

3. For any two different elements x, y ∈ Pn, {z : Zn(x, z)} ∩ {z : Zn(y, z)} = ∅.

4. For each x ∈ Pn, the set {z : Zn(x, z)} is non-empty and is equipped

with the same structure as the circle Cn described before in the language

{Bn, Ln, Rmn , Smn : 1 ≤ m ≤ n}.

5. For each y ∈ Qn there is x ∈ Pn such that Zn(x, y).

The following figure illustrates what Mn looks like.
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Proposition 3.2.1. 1. For each n > 1 and tuples x, y (possibly infinite) of Mn

(of the same length) such that x ≡ y, d∅(x, y) ≤ 2.

2. Fix 1 < n < ω and let a ∈ Pn(Mn). There are elements x, y of Mn such that

x
L≡a y but da(x, y) ≥ n.

Proof. 1. Due to the existence of infinitely many circles in Mn, we can easily find an

automorphism of Mn sending x to y and fixing an elementary submodel of Mn. Just

observe that any subset of Mn with infinitely many circles and their respective points

in Pn is an elementary substructure of Mn. By lemma 1.1.3, d∅(x, y) ≤ 2.

2. Introducing an element a ∈ Pn(Mn) to the language leads us to the case of just

one circle where the diameter is ≥ n, since any elementary substructure of (Mn, a)

should include a and an elementary substructure of the circle {y : Zn(a, y)}. Take two

diametrically opposed elements b0, b1 such that Zn(a, b0) and Zn(a, b1) and observe

that b0
L≡a b1 and da(b0, b1) = n.

Let M =
⊔
n>1

Mn be the coproduct, or disjoint sum, of the Mn’s. It’s just the family

of structures (Mn : n > 1) considered as a many-sorted structure. The n-th sort

corresponds to Mn equipped with all its Ln-structure. No additional relation or

function symbols.

Corollary 3.2.2. Let A = {an : n > 1} ⊆ M such that for every n > 1, an ∈
Pn(Mn). Then Th(M) is G-compact over ∅ but it is not G-compact over A (TA is

not G-compact over ∅).

Proof. By the previous proposition we know that the ∅-diameter of the Lascar strong

types over ∅ in M is 2, but there is not a bound for the A-diameter of the Lascar

strong types over A. By theorem 1.1.4, we have what we want. We also can show as

in corollary 3.1.13 that Autf(M/A) is not closed in Aut(M/A).

In the former example we used an infinite set of parameters in order to lose

G-compactness (over ∅) going from T to TA. Using the same ideas we now show

that G-compactness (over ∅) can be displaced just by adding one parameter to the

language.

Example 2. Let M be a saturated model of the theory T in the language L =

{P,Q} ∪ {Zn, Bn, Ln, Rmn , Smn : 1 ≤ m ≤ n, n > 1} given by the following axioms.

1. P and Q are infinite disjoint unary predicates.

2. For every n > 1, Zn is a binary relation symbol on P ×Q.
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3. {z : Zi(x, z)} ∩ {z : Zj(y, z)} = ∅ whenever (x, i), (y, j) are different tuples of

P × ω∗.

4. For each x ∈ P and each n > 1, the set {z : Zn(x, z)} is non-empty and is

equipped with the same structure as the circle Cn described before in the lan-

guage {Bn, Ln, Rmn , Smn : 1 ≤ m ≤ n}.

5. For each y ∈ Q there is x ∈ P and n > 1 such that Zn(x, y).

The following figure illustrates what M looks like, except for an infinite set of

points which would appear in Q and would not belong to any of the circles.

Proposition 3.2.3. 1. For each n > 1 and tuples x, y (possibly infinite) of M (of

the same length) such that x ≡ y, d∅(x, y) ≤ 2. Hence T is G-compact over ∅.

2. Let a ∈ P (M). For each n > 1, there are elements x, y of M such that x
L≡a y

but da(x, y) ≥ n. Hence T is not G-compact over {a}.

Proof. 1. As in proposition 3.2.1. If x ≡ y, there is M ′ ≺ M such that x ≡M ′ y,

hence d∅(x, y) ≤ 2. This is, again, due to the existence of infinitely many points

in P and circles in Q. By fact 1.1.4, T is G-compact.

2. Fix n > 1. Take two diametrically opposed elements b0, b1 such that Zn(a, b0)

and Zn(a, b1) and observe that da(b0, b1) = n. This shows that there is no
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bound on the a-diameters of Lascar strong types over {a}. By fact 1.1.4, T is

not G-compact over {a}.

Type-definability of
L≡A for finite tuples is displaced

In the previous examples type-definability of
L≡ for finite tuples was preserved from

T to TA; in both cases
L≡A=

KP≡A for finite tuples. In the next example we will see the

case where type-definability of
L≡ is displaced because of finite tuples. Namely, we

will give a G-compact (over ∅) theory T and find elements a, b, b′ such that b
KP≡a b′

but da(b, b′) =∞, i.e. b 6 L≡a b′.

Example 3. For each n > 1, let Ln = {Pn, Qn, Zn, Bn, Ln, Rmn , Smn : 1 ≤ m ≤ n}
and Mn be as in Example 1 above. Now, let M =

∏
n>1

Mn be the product of the

Mn’s. Analogous to the construction of
∏
n>1

Cn described in section 3.1, an element

of M is a mapping f defined on ωr {0, 1} and such that f(n) ∈Mn for every n > 1.

Its language is L =
⋃
n>1
L′n, where L′n = Ln ∪ {En}, and we interpret it as follows.

For any f, f ′ ∈M , n > 1,m ≤ n,

• Pn(f) holds if and only if Pn(f(n)) holds in Mn (the same for Qn).

• Zn(f, f ′) holds if and only if Pn(f), Qn(f) and Zn(f(n), f ′(n)) holds in Mn.

• Rmn (f, f ′) holds if and only if Qn(f), Qn(f ′), there is g ∈ M such that Pn(g)

and Zn(g, f) ∧ Zn(g, f ′) (i.e., their n-th projections lie in the same circle) and

Rmn (f(n), f ′(n)) holds in Mn. Similarly for Bn, Ln and Smn .

• En is a binary relation symbol interpreted as follows:

En(f, f ′)⇔ f(n) = f ′(n).

En is an equivalence relation and we can recover the structure Mn with all its

Ln-structure taking the quotient M/En.

Again, let E =
⋂
n>1

En and observe that for every f ∈ M , M/E = {f}. Adjoining a

suitable large number of new elements to each E-class one gets a saturated elementary

extension M∗ of M . Note that in passing to M∗ no new elements were added to any

of the Mn’s. With a back-and-forth argument it is easy to see that Th(M∗) admits

elimination of quantifiers in the language L.

Proposition 3.2.4. Th(M∗) is G-compact.
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Proof. As in propositions 3.2.1 and 3.2.3, if x, y are two tuples (possibly infinite)

of M∗ with the same quantifier-free type, then we can find an automorphism of M∗

sending x to y and fixing an elementary substructure. By lemma 1.1.3, 2 is a bound for

the diameter of Lascar strong types, and by theorem 1.1.4 Th(M) is G-compact.

Now fix a ∈M such that Pn(a) holds for all n > 1 and elements b, b′ ∈M such that

for all n > 1, Qn(b), Qn(b′), Zn(a, b), Zn(a, b′) and b(n) and b′(n) are diametrically

opposed.

Proposition 3.2.5. b
KP≡a b′ in M∗.

Proof. We follow the proof of proposition 3.1.10. By definition, b
KP≡a b′ if and only

if b and b′ are equivalent under any {a}-type-definable bounded equivalence relation,

and we know that any such relation can be written as the intersection of a family

{θn(x, y) : n < ω} of thick formulas of La such that θ2
n+1 ⊆ θn for every n < ω, i.e.,

θn+1(x, y) ∧ θn+1(y, z) ` θn(x, z).

Assume, searching for a contradiction, that ¬θ0(b, b′) for a formula θ0(x, y) of some

such family of thick formulas {θn(x, y) : n < ω} consistent with tp(bb′/a). Let L′2 ∪
. . .L′N ∪ {a} be the language of θ0 and choose n such that N < 2n. Observe that

θ2n

n ⊆ θ2n−1

n−1 · · · ⊆ θ4
2 ⊆ θ2

1 ⊆ θ0.

By quantifier elimination, the formula θn(x, y) is of the form

θn(x, y) =
l∨
i=1

σi(x, y)

for some l < ω, where each σi is a conjunction of some of the relations

{=, Pk, Qk, Zk, Lk, Rmk , Smk , Ek : 1 < k ≤ N, 1 ≤ m ≤ k}

and their negations. We can also assume that for each j = 1, . . . l,

σj `
N∧
i=2

(Zi(a, x) ∧ Zi(a, y)),

meaning that for any i = 2, . . . , N and j = 1, . . . , l, the i-th coordinates of a pair

satisfying σj(x, y) lie in circle attached to a(i). This is because the families of thick

formulas we’re interested in are consistent with tp(bb′/a).

Claim 1. At least one of the σi’s is not negative in any of the relations Rmk (1 < k ≤
N, 1 ≤ m ≤ k). (This means that at least in one conjunction there is no lower bound

for the distance between any two comparable coordinates of x and y).
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Proof. Otherwise, in each σi there is a term ¬Rmiki . But the relation

l∧
i=1

Rmiki ∨
N∨
i=2

¬(Zi(a, x) ∧ Zi(a, y))

is thick, since it is impossible to find an infinite antichain for it, i.e., infinitely many

elements such that their ki-th projections are in the circle attached to a and at

distance > mi/ki. Since

θn(x, y) =
l∨
i=1

σi `
l∨
i=1

¬Rmiki ∧
N∧
i=2

(Zi(a, x) ∧ Zi(a, y)),

then
l∧
i=1

Rmiki ∨
N∨
i=2

¬(Zi(a, x) ∧ Zi(a, y)) ` ¬θn(x, y).

This implies that ¬θn(x, y) is thick and θn(x, y) is not, which is a contradiction. �

We write θn(x, y) = ρn(x, y) ∨ νn(x, y), where ρn(x, y) is the disjunction of the

conjunctions which are not negative in any of the relations Rmk , and νn(x, y) is the

disjunction of the remaining ones.

Claim 2. ρn(x, y) 0
N∨
i=2

Ei(x, y) ∨ x = y.

Proof. Otherwise, choose in each conjunction of νn(x, y) a relation Rmiki appearing

negatively (say for i = 1, . . . l′) and observe that

N∧
i=2

¬Ei(x, y) ∧ x 6= y ∧
l′∧
i=1

Rmiki ` ¬ρn(x, y) ∧ ¬νn(x, y) ` ¬θn(x, y).

This implies that we can find an infinite sequence (ai : i < ω) of different elements

in M∗ such that ¬θn(ai, aj), whenever i < j. Therefore, θn(x, y) is not thick, and we

have again a contradiction. �

Since ρn(x, y)∧
N∧
i=2

¬Ei(x, y)∧x 6= y is consistent, we can find elements c, c′ ∈M∗

such that ρn(c, c′) and such that Ei(c, c′) if and only if Ei(b, b′) for i = 2, . . . , N . We

can also find distinct elements d, d′ such that

• Ei(d, b) and Ei(d′, b′) for i = 2, . . . N .

• Ei(d, c) and Ei(d′, c′) for i > N .

Claim 3. θ2n

n (d, d′).

If the claim is true, then θ0(d, d′). By the choice of the Ei-classes and elimination

of quantifiers, the pair d, d′ satisfies the same formulas of L1 ∪ · · · ∪ Ln than the pair

b, b′. This implies that θ0(b, b′), which gives us the desired contradiction.
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Proof Claim 3. It is enough to find d1, . . . , d2n+1 such that d1 = d, d2n+1 = d′ and

θn(dj , dj+1) for j = 1, . . . 2n. To find them, we will choose, for each i > 1, their

respective Ei-classes ei1, . . . e
i
2n+1.

Fix a conjunction σ(x, y) in ρn(x, y) satisfied by c, c′ (we may assume σ(x, y) ` x 6= y).

Let 1 < i ≤ N . Since I ≤ 2n, choose different classes ei1 = [d]Ei , e
i
2, . . . , e

i
2n+1 = [d′]Ei

such that Ri(x, y) holds if the classes of x, y are eij , e
i
j+1 for any 1 ≤ j < 2n + 1. This

is because inside any of the circles C2, . . . , CN , given two points p, q, we can always

find points p1 = p, p2, . . . , p2n+1 = q such that d(pj , pj+1) < 1/2N for j = 1, . . . , 2n,

and 1/2N ≤ 1/2i.

Let i > N . Choose j minimal such that σ(x, y) ` Rji (x, y) appears in σ(x, y) (Notice

here that the language of θn(x, y) can be bigger than the language of θ0(x, y)). Since

Rji (d, d
′) (because for i > N , Ei(c, c) and Ei(c′, d′)), choose different classes ei1 =

[d]Ei , e
i
2, . . . , e

i
2n+1 = [d′]Ei such that Rji (x, y) holds if the classes of x, y are eij , e

i
j+1

for any 1 ≤ j < 2n + 1.

This completes the choice of the classes. Now let d = d1, d2 . . . , d2n+1 = d′ be

elements of M∗ such that [dj ]Ei = eij for all i > 1 and 1 ≤ j ≤ 2n. By the choice of

the classes, it is easy to see that σ(dj , dj+1) holds for all 1 ≤ j ≤ 2n. This implies that

ρn(dj , dj+1) and therefore θn(dj , dj+1) holds for all 1 ≤ j ≤ 2n + 1, as we wanted. �

Proposition 3.2.6. Let b, b′ ∈ M be elements of M∗ such that for all n > 1,

Qn(b), Qn(b′), Zn(a, b), Zn(a, b′) and b(n) and b′(n) are diametrically opposed. Then

da(b, b′) =∞.

Proof. Suppose da(b, b′) = n for some n < ω. Then b
L≡a b′ and we can find elementary

substructures N1, . . . Nn ≺ M∗ containing a, and elements b1, b2, . . . , bn+1 ∈ M such

that b1 = b, bn+1 = b′ and bi ≡Ni bi+1 for i = 1, . . . , n. Observe that for all j > 1

and i ∈ {1, . . . , n}, bi(j) ≡πj(Ni) bi+1(j), where πj is the projection map from M∗ to

Mj (remember that no new elements where added to the Mi’s when going from M

to M∗). As in the proof of proposition 3.1.11, πj(Ni) ≺Mj and a(j) ∈ πj(Ni) for all

j > 1 and i ∈ {1, . . . , n}.
Now fix k > n. Since bi(k) ≡πk(Ni) bi+1(k) for all i ∈ {1, . . . , n}, in particular we

know that bi(k) ≡Σki
bi+1(k) where Σki = {x ∈ πk(Ni) : Zk(a(k), x)}. Since Σki is

isomorphic to an elementary substructure of the circle Ck, by proposition 3.1.7, we

can conclude that Sk(bi(k), bi+1(k)) holds for all i ∈ {1, . . . , n}. Since b1(k) and

bn+1(k) are diametrically opposed, this is impossible.

Corollary 3.2.7. Th(M∗) is not G-compact over {a}
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Proof. By the previous two propositions,
L≡a 6=

KP≡a for finite tuples. By fact 1.1.2,

Th(M∗) is not G-compact over {a}.
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3.3 A new proof for the finite diameter of type-definable

Lascar strong types

The notions of c-free and weakly c-free extensions over a complete type were intro-

duced in [17]. Using these tools, Newelski proves strong results on countable coverings

of groups and types. In this section, we slightly generalize these definitions to c-free

and weakly c-free extensions over a partial type with special properties, in order to

give a more direct proof of the fact that type-definable Lascar strong types have a

finite diameter (Corollary 1.8, [16]). This was proved before in [16] by way of contra-

diction using the so called open analysis, and during my visit at the Mathematical

Institute of the Wroclaw University, Prof. Newelski suggested that this could be also

proved using these new techniques.

Throughout this section we will assume that π(x) is a partial type over A such

that for every a, b |= π(x), there is an automorphism f ∈ Aut(C) such that f(a) = b

and π(x) ≡ πf (x) 2.

Definition 3.3.1. A set U ⊆ C is c-free over π if there are n < ω and automorphisms

f0, . . . , fn−1 ∈ Aut(C) such that

i) π(C) ⊆
⋃
i<n

fi(U)

ii) π ≡ πfi for every i < n

A formula ϕ is c-free over π if ϕ(C) is c-free over π. A type q(x) is c-free over π if

every formula ϕ(x) such that q(x) ` ϕ(x) is c-free over π.

Definition 3.3.2. A set U ⊆ C is weakly c-free over π if for some V ⊆ C which is

not c-free over π, U ∪ V is c-free over π. A formula ϕ(x) is weakly c-free over π if

the set ϕ(C) is. A type q(x) is weakly c-free over π if every formula ϕ(x) such that

q(x) ` ϕ(x) is weakly c-free over π.

The following are general properties of weakly c-free sets, types and formulas.

Lemma 3.3.3. Assume U is a definable subset of C. Then the following conditions

are equivalent.

1. U is weakly c-free over π.

2.
⋂
i<n

fi(U)c is not c-free over π, for some f0, . . . fn−1 ∈ Aut(C) such that πfi ≡ π

for all i < n.

2Note that when π(x) is a complete type over A we get a particular case of our more general
context. We can actually find f ∈ Aut(C/A). Note also that all the the elements of π(x) have the
same type over ∅.
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3. For some definable set V ⊆ C that is not c-free over π, U ∪ V is c-free over π.

Proof. 1.→ 2. If U is weakly c-free over π, then there is V ⊆ C that is not c-free over

π such that U ∪ V is c-free over π. Thus, there are f0, . . . , fn−1 ∈ Aut(C) such that

πfi ≡ π for all i < n and

π(C) ⊆
⋃
i<n

fi(U ∪ V )

⇒ π(C) ⊆
⋃
i<n

fi(U) ∪
⋃
i<n

fi(V )

⇒

(⋂
i<n

fi(U)c
)
∩ π(C) ⊆

⋃
i<n

fi(V ).

Since V is not c-free over π, neither is
⋃
i<n

fi(V ). Then
( ⋂
i<n

fi(U)c
)
∩ π(C) is also

not c-free over π, which implies that
⋂
i<n

fi(U)c is not c-free over π.

2. → 3. Let V =
⋂
i<n

fi(U)c. V is definable and non-c-free over π. Let fn = id, and

observe that ⋃
i≤n

fi(U ∪ V ) =
⋃
i<n

fi(U ∪ V ) ∪ (U ∪ V )

=
⋃
i<n

fi(U ∪ V ) ∪

(
U ∪

(⋂
i<n

fi(U)c
))

⊇

(⋂
i<n

fi(U)c
)c
∪

(⋂
i<n

fi(U)c
)

⊇ π(C),

showing that U ∪ V is c-free over π.

3.→ 1. is clear.

Lemma 3.3.4. 1. If U1, U2 are not weakly c-free over π, then U1∪U2 is not weakly

c-free over π.

2. If q(x) is a (partial) type over B ⊇ A that is weakly c-free over π, then some

q′(x) ∈ S(B) extending q(x) is weakly c-free over π. Necessarily, π(x) ⊆ q′(x).

Proof. 1. Let V ⊆ C be non-c-free over π. Since U2 is not weakly c-free over π, U2∪V
is not c-free over π. And since U1 is not weakly c-free over π, then U1 ∪U2 ∪V is also

not c-free over π. Thus, U1 ∪ U2 is not weakly c-free over π.

2. By the previous point, if q(x) is weakly c-free over π, then for every ϕ ∈ L(B), either

q(x) ∪ {ϕ(x)} or q(x) ∪ {¬ϕ(x)} are weakly c-free over π. Clearly π(x) ⊆ q′(x).

Consider the following sets of types:

42



A new proof for the finite diameter of type-definable Lascar strong types

1. P = {q(x, y) ∈ Sxy(∅) : q(x, y) ∪ π(x) ∪ π(y) is consistent}.

2. Pwcf = {q(x, y) ∈ P : q(a, y) is weakly c-free over π for some (all) a |= π}.

Remark 3.3.5. P and Pwcf are closed and nonempty.

Proof. For P is clear. Let a |= π. Since π(y) is weakly c-free over π,

it can be extended to a complete type q(a, y) which is weakly c-free over

π. Now let Σ = {ϕ(y) ∈ L(a) : ϕ is not weakly c-free over π}, and let Γ =

{ϕ(x, y) ∈ L : ϕ(a, y) ∈ Σ}. Then

Pwcf = {q(x, y) ∈ P : q(x, y) ⊇ {¬ϕ(x, y) : ϕ(x, y) ∈ Γ}}

Proposition 3.3.6. Assume S ⊆ Pwcf is non-empty and relatively open. Then there

are finitely many ci |= π, 1 ≤ i ≤ k, such that for every b |= π there is d |= π such

that

1. tp(b, d) ∈ S.

2. tp(ci, d) ∈ S for some 1 ≤ i ≤ k.

Proof. Since S is non-empty and relatively open, let ϕ(x, y) ∈ L be a formula such

that S ⊇ Pwcf ∩ [ϕ(x, y)] 6= ∅. Since the goal is to find some types inside S, we can

assume that S = Pwcf ∩ [ϕ(x, y)] 6= ∅.

Fix c |= π, and observe that ϕ(c, y) is weakly c-free over π.

Let ψ(e, y) be a formula which is not c-free over π such that ϕ(c, y)∨ψ(e, y) is c-free

over π. Let f1, . . . fk ∈ Aut(C) such that πfi ≡ π for 1 ≤ i ≤ k and

π(y) `
k∨
i=1

ϕ(ci, y) ∨ ψ(ei, y) (?),

where (ci, ei) = (fi(c), fi(e)) (1 ≤ i ≤ k).

Since S ⊆ Sxy(∅) is closed, we can assume S = {q(x, y) ∈ Sxy(∅) : q(x, y) ⊃ ρ(x, y)},
for some partial type ρ(x, y) over ∅.

Claim 1. (ϕ(c,C) ∪ ψ(e,C)) \ ρ(c,C) is not c-free over π.

Proof. Assume it is. Then there are g1, . . . , gn ∈ Aut(C) fixing π(C) such that

π(C) ⊆
n⋃
i=1

gi((ϕ(c,C) ∪ ψ(e,C)) \ ρ(c,C)),
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i.e., the set of formulas

π(y) ∧
n∧
i=1

((¬ϕ(c′i, y) ∧ ¬ψ(e′i, y)) ∨ ρ(c′i, y))

where (c′i, e
′
i) = (gi(c), gi(e)), is not satisfiable. By compactness, there are formulas

αi(x, y) (1 ≤ i ≤ n) such that ρ(c,C) ⊆ αi(c,C) ⊆ ϕ(c,C) and such that

π(y) ∧
n∧
i=1

((¬ϕ(c′i, y) ∧ ¬ψ(e′i, y)) ∨ αi(c′i, y))

is not satisfiable. Setting α(x, y) =
∧n
i=1 αi(x, y), we have that ρ(c,C) ⊆ α(c,C) ⊆

ϕ(c,C) and

π(y) ∧
n∧
i=1

((¬ϕ(c′i, y) ∧ ¬ψ(e′i, y)) ∨ α(c′i, y))

is not satisfiable. Thus,

π(C) ⊆
n⋃
i=1

gi((ϕ(c,C) ∪ ψ(e,C)) \ α(c,C)),

i.e., (ϕ(c,C) ∪ ψ(e,C)) \ α(c,C) is c-free over π. Since ψ(e,C) ∪ (ϕ(c,C) \ α(c,C)) is

larger, it is also c-free over π, which implies that (ϕ(c,C) \ α(c,C)) is weakly c-free

over π (since ψ(e,C) was not c-free over π). Thus, (ϕ(c, y) ∧ ¬α(c, y)) is a partial

weakly c-free type over π.

Since ρ(c,C) ⊆ α(c,C), we know that [¬α(c, y)] ∩ [ρ(c, y)] = ∅. Using the fact that

[ρ(c, y)] = {q(c, y) : q(x, y) ∈ Pwcf} ∩ [ϕ(c, y)], we would conclude that

[ϕ(c, y) ∧ ¬α(c, y)] ∩ {q(c, y) : q(x, y) ∈ Pwcf}

⊆ [ϕ(c, y)] ∩ [¬α(c, y)] ∩ {q(c, y) : q(x, y) ∈ Pwcf}

= [ρ(c, y)] ∩ [¬α(c, y)] = ∅.

And this is impossible since, by lemma 3.3.4, (ϕ(c, y) ∧ ¬α(c, y)) can be extended to

a complete weakly c-free type over π. The claim is proved.

With the following claim we finish the proof of the proposition.

Claim 2. For each b |= π there is d ∈ ρ(b,C) such that d ∈
⋃k
i=1 ρ(ci,C).

Proof. Suppose this is not true. Then we could find b |= π such that for every

d ∈ ρ(b,C), d /∈
⋃k
i=1 ρ(ci,C). By (?), for any such d, d ∈

⋃k
i=1(ϕ(ci,C) ∪ ψ(ei,C)),

thus we have that

ρ(b,C) ⊆
k⋃
i=1

((ϕ(ci,C) ∪ ψ(ei,C)) \ ρ(ci,C)). (??)
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Let ck+1 = b and ek+1 = f∗(e), where f∗ ∈ Aut(C) such that πf
∗ ≡ π and f∗(c) = b.

In this way we ensure that ϕ(ck+1,C) ∪ ψ(ek+1,C) is also c-free over π. Thus,

ϕ(ck+1,C) ∪ ψ(ek+1,C) ⊆
k+1⋃
i=1

((ϕ(ci,C) ∪ ψ(ei,C)) \ ρ(ci,C)),

because ϕ(ck+1,C) ∪ ψ(ek+1,C) = ((ϕ(ck+1,C) ∪ ψ(ek+1,C)) \ ρ(b,C)) ∪ ρ(b,C), and,

by (??), ρ(b,C) ⊆
⋃k
i=1((ϕ(ci,C) ∪ ψ(ei,C)) \ ρ(ci,C)). Since ϕ(ck+1,C) ∪ ψ(ek+1,C)

is c-free over π, so is the set on the right hand side. Thus, (ϕ(c,C)∪ψ(e,C)) \ ρ(c,C)

is also c-free over π, contradicting Claim 1.

The second claim is proved and so is the proposition.

Corollary 3.3.7. (Corollary 1.8, [16]) Type-definable Lascar strong types have finite

diameter.

Proof. Let π(x) be a partial type defining the Lascar strong type of a over ∅. Clearly

π satisfies the conditions required at the beginning. Let Xn(x, y) = P ∩ [ncn(x, y)].

Notice that

P = {q(x, y) ∈ Sxy(∅) : q(x, y) ∪ π(x) ∪ π(y) is consistent} =
⋃
n∈ω

Xn.

By the Baire Category Theorem, there is N ∈ ω such that XN has non-empty interior

in Pwcf . By the previous proposition, there are finitely many ci |= π, i < k such that

for every a, b |= π, there are c, d |= π such that

1. tp(a, c), tp(b, d) ∈ XN .

2. tp(ci∗, c), tp(cj∗ , d) ∈ XN for some i∗, j∗ < k.

Let M = min {n ∈ ω : {tp(ci, cj) : i, j < k} ⊆ Xn}. Then clearly

d(a, b) ≤ d(a, c) + d(c, ci∗) + d(ci∗ , cj∗) + d(cj∗ , d) + d(d, b)

≤ N +N +M +N +N = 4N +M
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4

ω-categoricity

4.1 Introduction

A many-sorted ω-categorical theory with countably many sorts which was not G-

compact was presented in [4], where the first examples of such theories where exhibited

since Lascar had introduced the notion of G-compactness in [13]. A few years later

Ivanov constructed in [10] a one-sorted ω-categorical theory which was notG-compact.

Motivated by his construction, we prove the following theorem from which we can

derive the existence of such an example more directly.

Theorem 4.1.1. Let T ′ be a many-sorted ω-categorical theory with countably many

sorts. Then there is a one-sorted ω-categorical theory T ∗ in which T ′ is stably em-

beddable.

Theorem 4.1.1 actually enables us, given the existence of a many sorted ω-

categorical theory with countably many sorts having a property P which is preserved

under stable embeddability, to show the existence of a one-sorted ω-categorical the-

ory having the property P. We will show that non-G-compactness is one of such

properties.

Given two complete theories T1 and T2 with monster models C1 and C2 respec-

tively, we say that T2 is stably embeddable in T1 if C2 is isomorphic to the full induced

structure of Ceq1 on a collection of sorts, say Σ, such that Ceq1 � Σ is stably embedded

in (C1,C
eq
1 � Σ). We refer to [7] for stable embeddability.

In the next section we present an ω-categorical theory TE admitting quantifier

elimination, the scaffolding for our construction. We consider the induced structure

of T eqE on a certain countable collection of sorts which are stably embedded; we

interpret the initial ω-categorical theory T ′ over these sorts; and finally we make an

expansion of TE in which T ′ is stably embeddable. Thanks to Prof. M. Ziegler for

valuable suggestions in the presentation of this material.

The theory TE is interesting on its own from the Shelah’s classification point of

view. TE is not simple and does not have the strict order property. Moreover, TE does
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not have the so called SOP1, putting it in the same place as T ∗feq, the first example

of a theory with such properties, presented by Shelah in [21] and named like that in

[23]. We deal with the classification of TE in section 4.3.

4.2 Proof of Theorem 4.1.1

Consider the language LE = {En : n < ω} where, for each n < ω, En is a 2n-ary

relation symbol, and let T0 be the theory saying that, for each n > 0, En is an

equivalence relation on the set of n-tuples which does not depend on the order of

the tuples and such that all n-tuples with at least one repeated coordinate lie in one

isolated En-class. Let K be the class of finite models of T0.

Remark 4.2.1. K has the Hereditary property (HP), the Joint Embedding property

(JEP), the Amalgamation property (AP) and for each n it has only finitely many

isomorphism types of size n.

Let M be the Fräıssé limit of K and let TE = Th(M). TE is ω-categorical and

admits elimination of quantifiers. Moreover, TE is the model-completion of T0 and

we can see that it is given by the following additional axioms, which are satisfied in

M .

For any n ∈ ω and partitions Pi of [{1, . . . , n+ 1}]i (1 ≤ i ≤ n), let ϕn,P1,...,Pn be:

∀x1, . . . , xn

((
n∧
i=1

Ei ≈�[{x1,...,xn}]i Pi

)
→ ∃xn+1

(
n∧
i=1

Ei ≈�[{x1,...,xn+1}]i Pi

))
,

where Ei ≈�[{x1,...,xn}]i Pi means that for every 1 ≤ j1 < j2 < · · · < ji ≤ n and every

1 ≤ j′1 < j′2 < · · · < j′i ≤ n, Ei(x̄j̄ , x̄j̄′) holds if and only if there is S ∈ Pi such that

{j1, . . . , ji} , {j′1, . . . , j′i} ∈ S.

These axioms enable us to extend any partial isomorphism between finite struc-

tures of T0 of size n in any possible way given by the position of the new element

with respect to the original domain (of size n) according to E1, . . . En.

We call Σ the collection of the imaginary sorts (Mn/En)n∈ω. Let e be an imagi-

nary element of M eq � Σ, say from the sort Mn/En, and a finite set A ⊆ M , say of

size m, such that e /∈ An/En. We say that a tuple ā = (a1, . . . , an) of M is generic

for e over A if:

1. A ∩ {a1, . . . , an} = ∅.

2. πEn(ā) = e.
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3. For each i ≤ m, if b̄ ∈ (A ∪ {a1, . . . , an})i rAi, then b̄/Ei /∈ Ai/Ei.

Remark 4.2.2. For every finite set A ⊆M and every imaginary element e ∈Mn/En

which is not in An/En, there is a generic tuple for e over A.

Proof. Apply the axioms n times and make sure each time the partitions isolate

completely the new element, i.e., the classes corresponding to the new possible tuples

have just one element.

Proposition 4.2.3. Th(M,M eq � Σ) has quantifier elimination in the language LE∪
{πE1 , πE2 , . . . }.

Proof. We do back-and-forth with the partial isomorphisms between finitely generated

(πEi-closed for every i > 0) sets. Observe that these sets are infinite (there are

infinitely many imaginary sorts), but all their sorts are finite. Let f be one of such

isomorphisms. First we do the following. For each imaginary element e ∈ dom(f),

say of the n-th imaginary sort, for which there is no real tuple ā ∈ dom(f) such that

πEn(ā) = e,

1. Find a real n-tuple ā = (a1, . . . , an) which is generic for e over the real part of

dom(f) using the previous remark, and let b̄ = (b1, . . . , bn) be a realization of

tpf (ā/dom(f)).

2. Add {(ai, bi) : 1 ≤ i ≤ n} to the graph of f .

3. For each new real tuple d̄, say of length m > 0, of (the new) dom(f), add

(πEm(d̄), πEm(f(d̄))) to the graph of f .

Now let a /∈ dom(f). In case a is imaginary, say of the n-th imaginary sort, just find

a new imaginary b /∈ rng(f) of the n-th imaginary sort, and add (a, b) to the graph

of f . In case a is real,

1. Let c̄, c̄′ be enumerations of the real part of dom(f) and rng(f) respectively such

that c̄ ≡LE c̄′, and use the axioms to find an element b such that c̄a ≡LE c̄′b.

2. Add (a, b) to the graph of f .

3. For each new real tuple d̄, say of length m > 0, of (the new) dom(f), add

(πEm(d̄), πEm(f(d̄))) to the graph of f .

It is clear that after extending f in this way, it is again an isomorphism between

finitely generated sets.

We say that a many-sorted structure M = (Mi)i∈I is trivial if Aut(M) =∏
i∈I

Sym(Mi), where Sym(Mi) is the group of all permutations of the set Mi.
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Proposition 4.2.4. M eq � Σ, the full induced structure of (M,M eq � Σ, (πEi)i>0)

over M eq � Σ is trivial.

Proof. We want to see that any permutation of M eq � Σ is elementary in (M,M eq �

Σ). By the previous proposition, it’s enough to observe that any such permutation

respects the formulas of the form x = y and x 6= y, where x, y are variables of the

same imaginary sort.

Proposition 4.2.5. M eq � Σ is stably embedded in (M,M eq � Σ).

Proof. We check point number (2) in lemma 1.4.1. Let a be a tuple of elements of

the home sort. For each n < ω, let

An = {πEn(a′) : a′ is a finite subset of a of length n}

Let A =
⋃
n<ω

An. It is clear that |A| ≤ |T̂ |+ |a| and tp(a/A) ` tp(a/Σ).

We assume now that T ′ is a many-sorted ω-categorical theory in a relational

language 1 L′ = {Ri : i ∈ I} with countably many sorts (Sn)n∈ω. Let (M eq � Σ)′ be

an expansion of M eq � Σ to a model of T ′, where the n-th sort of T ′ corresponds to

Mn/En.

Proposition 4.2.6. Th((M, (M eq � Σ)′)) is ω-categorical.

Proof. Let (A, (Aeq � Σ)′), (B, (Beq � Σ)′) be two countable models of the theory. By

ω-categoricity of TE and T ′ we can find isomorphisms f : A→ B and g : (Aeq � Σ)′ →
(Beq � Σ)′. Then f−1g is an automorphism of Aeq � Σ. Since Σ is stably embedded,

there is an automorphism h of (A,Aeq � Σ) extending f−1g. Observe that fh is an

isomorphism between (A, (Aeq � Σ)′) and (B, (Beq � Σ)′).

Now we make an expansion M∗ of M . For each relation symbol Ri ∈ L′ on the sorts

Sn1×Sn2×· · ·×Snl , we add a new relation symbol R∗ on Mn1·n2...nl and we interpret

it in the following way:

M∗ |= R∗i (ā1; ā2; . . . ; āl) ⇐⇒ (M, (M eq � Σ)′) |= Ri(πEn1
(ā1), πEn2

(ā2), . . . , πEnl (āl))

. M∗ is ω-categorical since it is isomorphic to the reduct of a definitional expansion

of (M, (M eq � Σ)′) to its home sort. With the following proposition we prove theorem

4.1.1.

Proposition 4.2.7. T ′ is stably embeddable in Th(M∗).

1Replacing, if necessary, functions by their graphs and constants by predicates.
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Proof. We prove thatM∗eq � Σ is stably embedded in (M∗,M∗eq � Σ). By proposition

4.2.5, any automorphism of M∗eq � Σ (which is in fact an automorphism of (M eq �

Σ)′ and therefore an automorphism of M eq � Σ) extends to an automorphism of

(M, (M eq � Σ)′). Since M∗ is isomorphic to the reduct of a definitional expansion

of (M, (M eq � Σ)′) to its home sort, the automorphism extends to an automorphism

of (M∗,M∗eq � Σ). Finally, observe that M ′ is isomorphic to M∗eq � Σ. Note

that everything definable in M∗eq � Σ from (M∗,M∗eq � Σ) is already ∅-definable in

M∗eq � Σ since it is ω-categorical, where invariance implies ∅-definability.

With the last theorem we can now show the existence of a one-sorted ω-categorical

non G-compact theory. We first prove that non-G-compactness is preserved under

stable embeddability.

Proposition 4.2.8. Let T and T ′ be two complete theories such that T ′ is stably

embeddable in T . If T is G-compact, then T ′ is G-compact.

Proof. Let C,C′ be the monster models of T and T ′ respectively. By assumption, C′

is isomorphic to Ceq � Σ, the full induced structure of Ceq to a certain collection of

sorts Σ such that Ceq � Σ is stably embedded in (C,Ceq � Σ). By theorem 1.1.4, it is

enough to observe that any indiscernible sequence of Ceq � Σ is also an indiscernible

sequence of C, showing that the finite bound for the diameter of the Lascar strong

types in T works also as a bound for T ′.

Corollary 4.2.9 (Ivanov, [10]). There is a one-sorted ω-categorical theory which is

not G-compact.

Proof. By theorem 4.1.1, proposition 4.2.8 and the existence of a many-sorted ω-

categorical theory with countably many sorts shown in [4].

4.3 Classifying TE

Recall that a theory is unstable iff it has (a formula with) the strict order property

or (a formula with) the independence property.

Recall also that a formula ϕ(x̄; ȳ) has the tree property (with respect to k < ω)

if there is a tree of parameters (b̄ν)ν∈ω<ω such that every branch is consistent, i.e.,

for every η ∈ ωω, the set
{
ϕ(x̄; b̄η�n) : n < ω

}
is consistent and at each node, the

branching is k-inconsistent, i.e., for every ν ∈ ω<ω, the set
{
ϕ(x̄; b̄νai) : i < ω

}
is

k-inconsistent. A theory is not simple iff it has (a formula with) the tree property

with respect to some k < ω.

From [20], we say that a formula ϕ(x̄; ȳ) has the tree property of the first kind

(TP1) if there is a tree of parameters (b̄η)η∈ω<ω such that for each η ∈ ωω, the
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set
{
ϕ(x̄ : b̄η�n) : n < ω

}
is consistent and for any two incomparable finite sequences

ν, ν′ ∈ ω<ω, the set
{
ϕ(x̄ : b̄ν), ϕ(x̄ : b̄ν′)

}
is inconsistent. And we say that the for-

mula ϕ(x̄; ȳ) has the tree property of the second kind (TP2) if there is an array of

tuples (b̄ij)i,j<ω such that every row is 2-inconsistent, i.e., for each i < ω the set{
ϕ(x̄; b̄ij) : j < ω

}
is 2-inconsistent, and any vertical path is consistent, i.e., for each

η ∈ ωω, the set
{
ϕ(x̄; b̄iη(i)) : i < ω

}
is consistent.

Theorem III.7.11 of Shelah’s book ([19]) states the following.

Theorem 4.3.1. A theory has the tree property if and only if it has TP1 or TP2.

The strong order properties SOP1 and SOP2 were defined in [8] in order to find

more division lines inside the class of non-simple theories without the strict order

property, for which Shelah had already introduced the strong order properties SOPn
for n ≥ 3 in [22]. We say that a theory T has SOP1 if there is a formula ϕ(x̄, ȳ) which

exemplifies it, i.e., there is a binary tree of parameters (āη)η∈2<ω such that each

branch is consistent, i.e, for each ρ ∈ 2ω, the set {ϕ(x̄, āρ�n) : n ∈ ω} is consistent,

and whenever νa〈0〉 ⊆ η ∈ 2<ω, then
{
ϕ(x̄, āη), ϕ(x̄, āνa〈1〉)

}
is inconsistent. Simi-

larly we say that a theory T has SOP2 if there is a formula ϕ(x̄, ȳ) which exemplifies

it, i.e., there is a binary tree of parameters (āη)η∈2<ω such that any branch is consis-

tent, but whenever ν, η ∈ 2<ω are incomparable, then the set {ϕ(x̄, āη), ϕ(x̄, āν)} is

inconsistent. It is easy to see that a formula has TP1 if and only if it has SOP2, thus

TP2 implies the independence property. From [22] and [8] we know the following fact.

Fact 4.3.2. For a theory T ,

strict order property =⇒ SOPn+1 =⇒ SOPn (for n ≥ 1)

The following definitions are from [8]. Let α be an ordinal. Given two tuples η̄l =

〈ηl0, ηl1, . . . , ηlnl〉 (l = 0, 1) of elements of 2<α, we say that η̄1 ≈1 η̄2 iff n0 = n1, and

the truth values of

i) ηlk3 ⊆ η
l
k1
∩ ηlk2

ii) ηlk1 ∩ η
l
k2
⊂ ηlk3

iii) (ηlk1 ∩ η
l
k2

)a〈0〉 ⊆ ηlk3

do not depend on l. We say that a sequence 〈āη : η ∈ 2<α〉 is a one-full-binary tree

indiscernible (1-fbti) iff whenever η̄0 ≈1 η̄1, then

āη̄0 := āη0
0
. . . āη0

n0
≡ āη1

0
. . . āη1

n0
:= āη̄1

We will make use of the following fact proved in [8].
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Fact 4.3.3. For any sequence 〈b̄η : η ∈ 2<ω〉 and any ordinal δ ≥ ω, we can find

〈āη : η ∈ 2<δ〉 such that:

1. 〈āη : η ∈ 2<δ〉 is a 1-fbti

2. If η̄ = 〈ηm : m < n〉, where each ηm ∈ 2<ω is given, and ∆ is a finite set of

formulas from T , then we can find νm ∈ 2<ω (m < n) such that if ν̄ = 〈ηm :

m < n〉, we have

a) ν̄ ≈1 η̄

b) āη̄ ≡∆ b̄ν̄

Theorem 4.3.4. TE is not simple.

Proof. Observe that the formula ϕ(x; y, z, w) = E2(x, y; z, w) has TP2. For con-

venience in the argument, let (bi)i∈ω, (ci)i∈ω, (di)i∈ω be three infinite disjoint se-

quences of different elements such that for every i 6= j, ¬E2(ci, di; cj , dj) 2. For

i, j ∈ ω, let āij = bicjdj . By compactness we can see that for any η ∈ ωω, the

set
{
ϕ(x; āiη(i)) : i < ω

}
is consistent, and since the cidi’s are in different E2-classes,

for each i < ω, the set
{
ϕ(x; āij) : j < ω

}
is 2-inconsistent. This shows that that

ϕ(x; y, z, w) has TP2.

Theorem 4.3.5. TE does not have SOP . Moreover, TE does not have SOP1, and

therefore TE does not have TP1.

Proof. Suppose there is a formula ϕ(x̄, ȳ), lg(x) = n, lg(y) = m, and tuples 〈āη : η ∈
2<ω〉 in Cm which exemplify SOP1. By fact 4.3.3, we can assume 〈āη : η ∈ 2<ω〉 is a

1-fbti and by elimination of quantifiers we may also assume that ϕ(x̄, ȳ) is quantifier

free.

Claim. We can assume ϕ(x̄, ȳ) gives the full diagram of x̄aȳ.

proof of the claim. Take a branch, say ρ ∈ 2ω, and a realization b̄ρ ∈ Cn such that

|= ϕ(b̄ρ, āν) for any ν ⊆ ρ, ν ∈ 2<ω. Consider, for each ν ⊆ ρ, ν ∈ 2<ω, the formula

δν(x̄, ȳ) given by the conjunction of the quantifier free type of b̄aρ āν (which is clearly

a finite set of formulas). Since there are just finitely many of such formulas, there is

a finite sequence σ ⊆ ρ such that |= δσ(b̄ρ, āν) for infinitely many ν ⊆ ρ, ν ∈ 2<ω.

We can therefore rename the nodes in the branch in order to have |= δσ(b̄ρ, āν) for

all ν ⊆ ρ in 2<ω. By indiscernibility, we can assume the same for all branches.

By definition of SOP1, there are ē = 〈e1, . . . , en〉 and d̄ = 〈d1, . . . , dn〉 in Cn such that

i) C |= ϕ(ē, ā〈〉) ∧ ϕ(ē, ā〈0〉) ∧ ϕ(ē, ā〈00〉)

2We can do this because there are infinitely many E2-classes
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ii) C |= ϕ(d̄, ā〈〉) ∧ ϕ(d̄, ā〈1〉)

Suppose we can find a model M0 |= T0 with ā〈00〉, ā〈1〉 in Mm
0 and a tuple

b̄ = 〈b1, . . . , bn〉 ∈ Mn
0 such that M0 |= ϕ(b̄, ā〈00〉) ∧ ϕ(b̄, ā〈1〉) ∧ p(ā〈00〉, ā〈1〉), where

p(z̄1; z̄2) = qftpC(ā〈00〉, ā〈1〉). Since ϕ(x̄, ȳ) is quantifier free, we could find a model

M |= T,M0 ⊆M such that M |= ϕ(b̄, ā〈00〉) ∧ ϕ(b̄, ā〈1〉) ∧ p(ā〈00〉, ā〈1〉), and embed it

elementarily inside C. This will give us a contradiction with the definition of SOP1.

We now construct the model M0. Let A =
{
a1
〈00〉, . . . , a

m
〈00〉

}
, B =

{
a1
〈1〉, . . . , a

m
〈1〉

}
,

C =
{
b1, . . . , bn

}
, and let M0 = A∪B∪C be its universe. To interpret E1, . . . , E2m+n

in M0 we do the following. For each 1 ≤ r ≤ 2m+ n, let Γr ⊆Mr
0 ×Mr

0 be given by

Γr = Dr ∪ EABr ∪ EACr ∪ EBCr , where:

i) Dr is the diagonal in Mr
0 ×Mr

0 .

ii) EABr = EC
r � AB ⊆ (AB)r × (AB)r.

iii) EACr ⊆ (AC)r × (AC)r is the set of all tuples of the form

〈ai1〈00〉 . . . a
ik
〈00〉b

ik+1 . . . bir ; aj1〈00〉 . . . a
jl
〈00〉b

il+1 . . . bjr 〉,

whenever

C |= ai1〈00〉 . . . a
ik
〈00〉e

ik+1 . . . eirEra
j1
〈00〉 . . . a

jl
〈00〉e

il+1 . . . ejr

And all their possible permutations.

iv) EBCr ⊆ (BC)r × (BC)r is the set of all tuples of the form

〈ai1〈1〉 . . . a
ik
〈1〉b

ik+1 . . . bir ; aj1〈1〉 . . . a
jl
〈1〉b

il+1 . . . bjr 〉,

whenever

C |= ai1〈1〉 . . . a
ik
〈1〉d

ik+1 . . . dirEra
j1
〈1〉 . . . a

jl
〈1〉d

il+1 . . . djr

An all their possible permutations.

We want to extend Γr to an equivalence relation on Mr
0 , say EM0

r , such that:

• EM0
r � AC = EACr

• EM0
r � BC = EBCr

• EM0
r � AB = EABr

Let EM0
r be the transitive closure of Γr. It is clearly an equivalence relation on Mr

0 .

To check the additional previous conditions it’s enough to prove that:
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a) (EACr ◦ EABr ◦ EBCr ) � AC ⊆ EACr

b) (EACr ◦ EABr ) � BC ⊆ EBCr

c) (EACr ◦ EBCr ) � AB ⊆ EABr

It is easy to see that these are the main possible cases of getting new tuples from

(AB)r, (AC)r, (BC)r by composing Γr with itself finitely many times. The other

cases are either analogous or can be reduced to one of them. We check these cases:

a) Assume

〈bi1 . . . bisais+1

〈00〉 . . . a
ir
〈00〉 ; aj1〈00〉 . . . a

jr
〈00〉〉 ∈ EACr ,

〈aj1〈00〉 . . . a
jr
〈00〉 ; ak1〈1〉 . . . a

kr
〈1〉〉 ∈ EABr ,

〈ak1〈1〉 . . . a
kr
〈1〉 ; bl1 . . . blr 〉 ∈ EBCr .

We want to see that 〈bi1 . . . bisais+1

〈00〉 . . . a
ir
〈00〉 ; bl1 . . . blr 〉 ∈ EACr , and for this it’s

enough to check that C |= ei1 . . . eisa
is+1

〈00〉 . . . a
ir
〈00〉Ere

l1 . . . elr . We know that

ϕ(x̄, ȳ) |= xi1 . . . xisyis+1 . . . yirEry
j1 . . . yjr (4.1)

ϕ(x̄, ȳ) |= yk1 . . . ykrErx
l1 . . . xlr (4.2)

Since C |= ϕ(ē, ā〈〉)∧ϕ(ē, ā〈0〉)∧ϕ(ē, ā〈00〉) and C |= ϕ(d̄, ā〈〉)∧ϕ(d̄, ā〈1〉), we know

that in C,

ei1 . . . eisa
is+1

〈00〉 . . . a
ir
〈00〉Era

j1
〈00〉 . . . a

jr
〈00〉Era

k1
〈1〉 . . . a

kr
〈1〉 Er dl1 . . . dlr

Er ak1〈〉 . . . a
kr
〈〉

Er el1 . . . elr ,

as we wanted.

b) Assume 〈bi1 . . . bir ; aj1〈00〉 . . . a
jr
〈00〉〉 ∈ E

AC
r and 〈aj1〈00〉 . . . a

jr
〈00〉 ; a

k1
〈1〉 . . . a

kr
〈1〉〉 ∈ E

AB
r .

We want to see that 〈bi1 . . . bir ; ak1〈1〉 . . . a
kr
〈1〉〉 ∈ E

BC
r , and for this it’s enough to

check that C |= di1 . . . dirEra
k1
〈1〉 . . . a

kr
〈1〉. Since ϕ(x̄, ȳ) |= xi1 . . . xirEry

j1 . . . yjr , we

know that in C,

di1 . . . dirEra
j1
〈〉 . . . a

jr
〈〉Ere

i1 . . . eirEra
j1
〈00〉 . . . a

jr
〈00〉Era

k1
〈1〉 . . . a

kr
〈1〉,

as we wanted.

c) Assume 〈bi1 . . . bir ; aj1〈00〉 . . . a
jr
〈00〉〉 ∈ EACr and 〈bi1 . . . bir ; ak1〈1〉 . . . a

kr
〈1〉〉 ∈ EBCr .

We want to see that 〈aj1〈00〉 . . . a
jr
〈00〉 ; ak1〈1〉 . . . a

kr
〈1〉〉 ∈ E

AB
r , and for this it’s enough

to check that C |= aj1〈00〉 . . . a
jr
〈00〉Era

k1
〈1〉 . . . a

kr
〈1〉. We know that

ϕ(x̄, ȳ) |= xi1 . . . xirEry
j1 . . . yjr (4.3)

ϕ(x̄, ȳ) |= xi1 . . . xirEry
k1 . . . ykr (4.4)

54



Classifying TE

Since C |= ϕ(ē, ā〈〉)∧ϕ(ē, ā〈0〉)∧ϕ(ē, ā〈00〉) and C |= ϕ(d̄, ā〈〉)∧ϕ(d̄, ā〈1〉), we know

that in C,

aj1〈00〉 . . . a
jr
〈00〉Ere

i1 . . . eirEra
j1
〈〉 . . . a

jr
〈〉Era

k1
〈〉 . . . a

kr
〈〉 Erd

i1 . . . dirEra
k1
〈1〉 . . . a

kr
〈1〉,

as we wanted.

Once the Er’s are interpreted, we get the model M0 we wanted and therefore the

contradiction. Since SOP2 implies SOP1, TE does not have TP1.
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