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T is a complete theory with infinite models, L is its language and C is its monster model.

1 Formulas with IP

Definition 1.1 ϕ(x, y) has IP (the independence property) if there are (ai : i < ω), (bI :
I ⊆ ω) such that

|= ϕ(ai, bI)⇔ i ∈ I
If ϕ does not have IP we say it has NIP. It is said that T has IP if some formula has IP in
T , and otherwise it is said that T has NIP.

Remark 1.2 1. If ϕ has IP, then for every set X there are (ai : i ∈ X), (bI : I ⊆ X)
such that |= ϕ(ai, bI)⇔ i ∈ I.

2. If for arbitrarily large n < ω there are (ai : i < n) such that for all I ⊆ n,

{ϕ(ai, y) : i ∈ I} ∪ {¬ϕ(ai, y) : i ∈ nr I}

is consistent, then ϕ(x, y) has IP.

3. If ϕ(x, y, z) ∈ L and ϕ(x, y, a) has IP in T (a), then ϕ(x; y, z) has IP in T .

Lemma 1.3 If ϕ(x, y) has IP, then ϕ−1(y, x) has IP.

Proof: Let n < ω. There are (aX : X ∈ P(n)), (bI : I ⊆ P(n)) such that |= ϕ(aX , bI)⇔
X ∈ I. Let Ui := {X ⊆ n : i ∈ X} for i < n and let ci := bUi . Then |= ϕ−1(ci, aX)⇔ i ∈ X.
2

Definition 1.4 The alternation number of ϕ(x, y), alt(ϕ), is the maximal n such that for
some indiscernible sequence (ai : i < ω), for some b, ω can be decomposed in consecutive
segments I1, . . . , In, and ϕ(ai, b) has constant truth value for i in the same segment and
opposite truth value to ϕ(aj , b) if i, j are in consecutive segments. If the maximal n does
not exists we put alt(ϕ) =∞.

Remark 1.5 1. If alt(ϕ) = ∞, then for every ordinal α there is an indiscernible se-
quence (ai : i < α) such that for some b, for all i < α, |= ϕ(ai, b)↔ ¬ϕ(ai+1, b).
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members of the Seminar for their comments: Santiago Cárdenas, Rafel Farré, Magnus Kollmann, Martin
Koerwien, Daniel Palaćın, Juan Francisco Pons, and Joris Potier. Thanks also to the visiting members of
the Seminar: John Baldwin, Sy Friedman, and Margarita Otero.
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2. If alt(ϕ) <∞, then for all limit ordinals α, for all indiscernible sequences (ai : i < α),
for all b, there is some j < α such |= ϕ(ai, b) for all i > j or |= ¬ϕ(ai, b) for all i > j.

Proposition 1.6 ϕ has IP if and only if alt(ϕ) =∞
Proof: Assume ϕ(x, y) has IP. There is some indiscernible sequence (ai : i < ω) such that
for all I ⊆ ω the set {ϕ(ai, y) : i ∈ I} ∪ {¬ϕ(ai, y) : i ∈ ω r I} is consistent. In particular,
{ϕ(a2·i, y) : i < ω}∪{¬ϕ(a2·i+1, y) : i < ω} is consistent, which clearly implies alt(ϕ) =∞.

For the other direction, assume alt(ϕ) = ∞ and choose an indiscernible sequence (ai :
i < ω) such that {ϕ(a2·i, y) : i < ω} ∪ {¬ϕ(a2·i+1, y) : i < ω} is consistent. We claim that
{ϕ(ai, y) : i ∈ I} ∪ {¬ϕ(ai, y) : i ∈ ω r I} is consistent for all I ⊆ ω. It is enough to
check that for any finite disjoint I, J ⊆ ω, Σ(y) := {ϕ(ai, y) : i ∈ I} ∪ {¬ϕ(ai, y) : i ∈ J}
is consistent. Let m1 < . . . < mn and k1 < . . . < kj be respective enumerations of X and
Y and choose even numbers m′1 < . . . < m′n and odd numbers k′1 < . . . < k′j such that
m1, . . . ,mn, k1, . . . , kj and m′1, . . . ,m

′
n, k
′
1, . . . , k

′
j have the same order type. By assumption

{ϕ(ai, y) : i = m′1, . . . ,m
′
n} ∪ {¬ϕ(ai, y) : i = k′1, . . . , k

′
j} is consistent. By indiscernibility

Σ(y) is consistent. 2

Remark 1.7 Every boolean combination ϕ(x1, . . . , xn; y1, . . . , yn) of formulas ϕi(xi, yi) with
NIP has also NIP. The tuple xi may have elements in common with xj but it is disjoint
with yj.

Proof: We may assume xi = xj and yi = yj for all i, j. It is clear that ¬ϕ(x, y)
has IP if and only if ϕ(x, y) has IP. On the other hand, an easy argument shows that
if ϕ(x; y) := ϕ1(x, y) ∧ ϕ2(x, y) has infinite alternation number then one of the formulas
ϕi(x, y) has also infinite alternation number. 2

Proposition 1.8 Let y be a fixed n-tuple of variables. The following are equivalent:

1. No formula ϕ(x, y) has IP.

2. If α has cofinality ≥ |T |+, (ai : i < α) is an indiscernible sequence, and B is a set of
≤ n elements, then for some j < α, (ai : j < i < α) is B-indiscernible.

Proof: 1 ⇒ 2 It is enough to prove, assuming 1, that for each ϕ(x1, . . . , xm; y) ∈ L,
for each limit ordinal α, for each indiscernible sequence (ai : i < α), for each n-tuple b,
there is some j < α such that for all tuples j < i1 < . . . < im < α, for all j < l1 < . . . <
lm < α, |= ϕ(ai1 , . . . , aim ; b) ↔ ϕ(al1 , . . . , alm ; b). And this is the case, since otherwise
the indiscernible sequence (bi : i < ω) with bi := a0·i, . . . , a(m−1)·i would witness that
alt(ϕ(x1, . . . , xm; y)) =∞.

2 ⇒ 1 is clear by point 1 in Remark 1.5. 2

Proposition 1.9 If some formula has IP in T , there is some ϕ(x, y) with IP where x is a
single variable.

Proof: By Lemma 1.3 it suffices to find some IP formula ϕ(x, y) where y is a single
variable. This follows from Proposition 1.8 since point 2 for all |B| ≤ n implies point 2 for
all |B| ≤ n + 1. We check this. Assume B = {b1, . . . , bn+1}, α has cofinality ≥ |T |+ and
(ai : i < α) is an indiscernible sequence such that for no j < α the sequence (ai : j < i < α)
is B-indiscernible. Choose j < α such that (ai : j < i < α) is bn+1-indiscernible. Then
(aibn+1 : j < i < α) is indiscernible and we can choose now some l < α such that j ≤ l
and (aibn+1 : l < i < α) is {b1, . . . , bn}-indiscernible. It follows that (ai : l < i < α) is
B-indiscernible. 2
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2 Number of types

Definition 2.1 For any cardinal κ, ded(κ) is the supremum of the number of branches of
a tree of cardinality κ.

Remark 2.2 1. ded(κ) is the supremum of the cardinalities of linearly ordered sets hav-
ing a dense subset of cardinality κ.

2. κω ≤ ded(κ) ≤ 2κ.

Proof: 1. Given a tree, consider the lexicographic order of nodes and branches. Given
a linearly ordered set construct a convenient set of closed intervals with endpoints in the
dense set.

2. For κω ≤ ded(κ) note that κω can be identified with the set of branches of the tree
κ<ω. 2

Lemma 2.3 If F ⊆ 2λ and |F | > ded(λ), then for each n < ω there is some I ⊆ λ such
that |I| = n and F � I = 2I .

Proof: Assume F , λ are a counterexample, with λ minimal. Note that F can be naturally
identified with a set of branches of the tree

⋃
i<λ F � i. By minimality of λ, we may assume

that for each i < λ, |F � i| ≤ ded(λ).

For each f ∈ F � i, let F (f) = {g ∈ F : f ⊆ g}, let Gi = {f ∈ F � i : |F (f)| > ded(λ),
and let G = {f ∈ F : f � i ∈ Gi for all i < λ}. Then G ⊆ F is a set of branches of the
tree

⋃
i<λGi. Note that F rG =

⋃
i<λ

⋃
g∈F �irGi F (g) and hence |F rG| ≤ ded(λ), and

|G| > ded(λ). Therefore, we can assume G = F . In other terms, we can assume that for
each i < λ, |F (f)| > ded(λ).

Now we prove by induction on n, that for each n < ω, for each f ∈
⋃
i<λ F � i there is

some I ⊆ λ such that |I| = n and F (f) � I = 2I . This is clear for n = 0 since F (f) 6= ∅. Let
us consider the case n+ 1. By definition of ded, since F (f) is a set of branches of the tree⋃
i<λ F (f) � i, this tree has cardinality > λ and therefore |F (f) � i| > λ for some i < λ.

By the induction hypothesis, for each g ∈ F (f) � i there is some Ig ⊆ λ such that |Ig| = n
and F (g) � Ig = 2Ig . By cardinality reasons, there are two different g, h ∈ F (f) � i such
that I := Ig = Ih. Choose j < i such that h(j) 6= g(j). Then j 6∈ I. If J = I ∪ {j}, then
F (f) � J = 2J . 2

Proposition 2.4 1. If ϕ has IP, then for each cardinal κ there is a set A of cardinality
κ such that |Sϕ(A)| = 2κ.

2. If ϕ has NIP, then for each cardinal κ: if |A| = κ, then |Sϕ(A)| ≤ ded(κ).

Proof: 1 is clear. For 2 we use Lemma 2.3. Assume |A| = κ and |Sϕ(A)| > ded(κ). Let
ϕ = ϕ(x, y) and let l be the length of y. Fix an enumeration (ai : i < κ) of Al. For each
p(x) ∈ Sϕ(A), let fp ∈ 2κ be defined by fp(i) = 0 iff ϕ(x, ai) ∈ p. Let F = {fp : p ∈ Sϕ(A)}.
Since |F | > ded(κ), for each n < ω there is some I ⊆ κ such that |I| = n and F � I = 2I .
For each X ⊆ I, {ϕ(x, ai) : i ∈ X} ∪ {¬ϕ(x, ai) : i ∈ I rX} is consistent. Hence ϕ(x, y)
has IP. 2

Corollary 2.5 1. If T has IP, then for each cardinal κ ≥ |T | there is a set A of cardi-
nality κ such that |S1(A)| = 2κ.
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2. If ϕ has NIP, then for each cardinal κ ≥ ω: if |A| = κ, then |Sn(A)| ≤ ded(κ)|T |.

Remark 2.6 κ < ded(κ) for all infinite κ.

Proof: Assume κ = ded(κ). This implies every NIP formula is stable, which is not true.
If ϕ(x, y) is NIP, then for each set A of cardinality ≤ κ, |Sϕ(A)| ≤ ded(κ) = κ and hence
ϕ is κ-stable and therefore stable. 2

3 Stability and simplicity

The reader is assumed to be familiar with the following definitions and the facts concerning
stability and simplicity stated thereafter. See [7] for details.

Definition 3.1 (Reminding)

1. ϕ(x, y) is stable if for all infinite λ, for all A, if |A| ≤ λ, then |Sϕ(A)| ≤ λ. Otherwise
it is unstable.

2. ϕ(x, y) has the order property if there are (ai : i < ω) and (bi : i < ω) such that

|= ϕ(ai, bj)⇔ i < j

3. ϕ(x, y) has the strict order property if there are (ai : i < ω) such that ϕ(C, ai) (
ϕ(C, ai+1).

4. T is stable if all formulas are stable in T . Otherwise it is unstable.

Fact 3.2 (Reminding)

1. Stable formulas are NIP.

2. If T is unstable, there is an unstable formula ϕ(x, y) where x is a single variable.

3. ϕ(x, y) is stable if and only if it does not have the order property.

4. If ϕ is stable, then also ϕ−1 is stable.

5. Let y be a n-tuple of variables. If ϕ(x, y) has the strict order property, then

ψ(y1, y2) := ∀x(ϕ(x, y1)→ ϕ(x, y2)) ∧ ∃x(ϕ(x, y2) ∧ ¬ϕ(x, y1))

defines a partial order of Cn which has infinite chains.

6. If ϕ(x, y) is unstable and it is NIP, then

(a) Some conjunction of ϕ(x, y) with formulas of the form ϕ(x, a) and ¬ϕ(x, a) has
the strict order property.

(b) For some n < ω, for some s ∈ 2n, the formula ψ(x; y1, . . . , yn) =
∧
i<n ϕ(x, yi+1)s(i)

has the strict order property (where ϕ0 = ϕ and ϕ1 = ¬ϕ).

7. T is unstable if and only if it has IP or it has the strict order property.
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Proposition 3.3 Assume T is an unstable NIP theory. Then there is a definable partial
order of the universe C with infinite chains.

Proof: Choose an unstable ϕ(x, y) where y is a single variable and apply points 6 (a) and
5 of Proposition 3.2. 2

Definition 3.4 (Reminding)

1. ϕ(x, y) has the k–tree property if there is a tree (as : s ∈ ω<ω) such that {ϕ(x, af�n) :
n < ω} is consistent for every f ∈ ωω, and {ϕ(x, asai) : i < ω} is k-inconsistent for
every s ∈ ω<ω.

2. T is simple if no formula has the k–tree property in T for any k < ω.

Fact 3.5 (Reminding)

1. If T is not simple, some formula ϕ(x, y), where x is a single variable, has the 2-tree
property in T .

2. Stable formulas do not have the k-tree property.

3. Stable theories are simple.

4. If ϕ(x, y) has the strict order property, then

ψ(x; y1y2) := ¬ϕ(x, y1) ∧ ϕ(x, y2)

has the 2-tree property.

5. Simple theories do not have the strict order property.

6. Simple unstable theories have the IP.

7. Stable theories are just those simple theories that have NIP.

4 O-minimality

Definition 4.1 T is o-minimal if the language of T contains a binary predicate < which
is interpreted as a linear order of the universe and every definable set is a finite union of
open intervals ( (a, b), (−∞, b), (a,+∞), (−∞,+∞) ) and points.

Proposition 4.2 Every o-minimal theory is NIP.

Proof: By Proposition 1.9 it is enough to prove that all formulas of the form ϕ(x, y),
where x is a single variable, are NIP. Assume ϕ(x, y) is a counterexample to this. By
Proposition 1.6, there is some indiscernible sequence of elements (ai : i < ω) and some
tuple b such that |= ϕ(ai, b) ↔ ¬ϕ(ai+1, b). By o-minimality ϕ(x, b) defines a finite union
of interval and points. Hence, for some boolean combination ψ(x, z) of formulas x < zi, for
some tuple c, ϕ(x, b) is equivalent to ψ(x, c). Since |= ψ(ai, c)↔ ¬ψ(ai+1, c), ψ(x, z) is IP
too. By Remark 1.7, x < zi is IP. But this contradicts point 1 of Proposition 2.4 since for
each finite A, |Sx<y(A)| ≤ 2 · |A|+ 1. 2
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Proposition 4.3 Assume T is o-minimal. If f is a definable function defined on an open
interval (a, b), there is a finite sequence a = a0 < a1 . . . < an = b such that in every interval
(ai, ai+1) f is constant or strictly increasing or strictly decreasing.

Proof: See, for instance, Théorème 4.6 in [12] or Theorem 4.2 in [14]. 2

Proposition 4.4 If T is o-minimal, then the operator acl = dcl has the exchange property
and therefore it defines a pregeometry.

Proof: The order < allows us to define over A all elements of acl(A) and hence dcl(A) =
acl(A). We check the exchange property. Assume b ∈ acl(Ac) r acl(A). Then b ∈ dcl(Ac)
and for some n there is a 0-definable mapping f : Cn → C and some a1, . . . , an such that
f(a1, . . . , an) = b. Since b 6∈ acl(A), c = ai for some i. Without loss of generality, i = 1. We
may assume there is an open interval (c1, c2) containing c. By Proposition 4.3, there are
c1 = d0 < . . . < dm = c2 such that f is constant or strictly increasing or strictly decreasing
in every interval (di, di+1). We may assume f is not constant nor strictly increasing or
decreasing in (di, di+2) and therefore each di is definable over A. It follows that c 6= di for
all i and hence c ∈ (di, di+1) for some i. If f is constant in (di, di+1) then b is A-definable.
Assume f is strictly increasing or decreasing in (di, di+1). Then f is one-to-one and hence
c is definable over Ab and therefore c ∈ acl(Ab). 2

5 TP1 and TP2

Definition 5.1 ϕ(x, y) has the tree property of the first kind (TP1) if there is a tree (as :
s ∈ ω<ω) such that {ϕ(x, af�n) : n < ω} is consistent for all f ∈ ωω, and ϕ(x, as)∧ϕ(x, at)
is inconsistent if s, t ∈ ω<ω are incomparable in the lexicographic order. We say that ϕ(x, y)
has NTP1 if it does not have TP1. The theory T has TP1 if some formula has TP1 in T .
Otherwise T has NTP1.

Let 2 ≤ k < ω. We say that ϕ(x, y) has the k–tree property of the second kind if
there are aij (i, j < ω) such that {ϕ(x, aif(i)) : i < ω} is consistent for all f ∈ ωω, and

{ϕ(x, aij) : j < ω} is k–inconsistent for all i < ω. The formula ϕ(x, y) has TP2 if it has the
2-tree property of the second kind. Otherwise it has NTP2. The theory T has TP2 if some
formula has TP2 in T . Otherwise it has NTP2.

Proposition 5.2 1. If ϕ(x, y) has TP1, then it has the 2-tree property.

2. If ϕ(x, y) has the k–tree property of the second kind, then it has the k-tree property.

3. Simple theories have NTP1 and NTP2.

4. If ϕ(x, y) has TP2, then ϕ(x, y) has IP.

5. NIP theories have NTP2.

Proof: 1 is clear. For 2 put b∅ = a0
0 and bs = an+1

s(n) if s ∈ ωn+1. 3 follows from 1 and 2.

4. Let (aij : i, j < ω) witness TP2 of ϕ(x, y). We check that (ai0 : i < ω) witnesses IP
of ϕ(x, y). Let X ⊆ ω, and let f : ω → ω be defined by f(n) = 0 if n ∈ X and f(n) = 1
otherwise. Since {ϕ(x, aif(i)) : i < ω} is consistent, {ϕ(x, an0 ) : n ∈ X} ∪ {¬ϕ(x, an0 ) : n ∈
ω rX} is also consistent. 5 follows from 4. 2

Proposition 5.3 T is simple if and only if it has NTP1 and NTP2.

Proof: Later. 2
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6 Limit and average types

Definition 6.1 For any sequence a = (ai : i ∈ I) of tuples of the same length, if F is a
proper filter over I, then we define

lim
F

(a/A) := {ϕ(x) ∈ L(A) : {i ∈ I :|= ϕ(ai) ∈ F}}.

It is a partial type over A and it is finitely satisfiable in {ai : i ∈ I}. If F is an ultrafilter,
it is complete: limF (a/A) ∈ S(A).

If I is a linearly ordered set without last element, Av(a/A) is limF (a/A) where F is the
proper filter over I generated by all (nonempty) final segments. It is called the average type
of a over A.

There is another use of the notion of average type. If I is an infinite indiscernible set
(not just a sequence!), then Av(I/A) is defined as the partial type over A consisting in all
formulas ϕ(x) ∈ L(A) which are true of almost all a ∈ I, i.e., |{a ∈ I : |= ¬ϕ(a)}| < ω.
Note that in this sense Av(I/A) = limF (a/A) if a is a one-to-one enumeration of I and F
is the filter of all cofinite subsets of the index set. We will see that in NIP theories these
two notions of average type are compatible.

All this applies also when A = C.

Proposition 6.2 Assume T has NIP.

1. Let I be a linearly ordered set without last element, and let a = (ai : i ∈ I) be
indiscernible. Then Av(a/A) ∈ S(A).

2. Assume I is an infinite indiscernible set. Then Av(I/A) ∈ S(A). If a is an enumer-
ation of I with an index set linearly ordered without last element, then Av(I/A) =
Av(a/A).

Proof: 1 follows from Proposition 1.6. 2. Assume first |I| = ω and let a be an enumeration
of I of order type ω. In this case it is clear, by definition, that Av(I/A) = Av(a/A). From
this it follows (by considering a suitable countable subset) that for any infinite indiscernible
set I, Av(I/A) ∈ S(A). Now let a be an enumeration of I by a linear ordering without last
element. Clearly Av(I/A) ⊆ Av(a/A). Since they are complete types, they coincide. 2

Remark 6.3 If ϕ(x, y) has NIP, then there is some k < ω such that for every b, for every
infinite indiscernible set I, either |{a ∈ I : |= ϕ(a, b)}| < k or |{a ∈ I : |= ¬ϕ(a, b)}| < k.

Remark 6.4 Assume T has NIP, let I be a linearly ordered set without last element, and
let a = (ai : i ∈ I) be A-indiscernible. Then Av(a/C) is finitely satisfiable in {ai : i ∈ I}
and hence it does not fork over {ai : i ∈ I}. Moreover ai |= Av(a/Aa<i) for all i ∈ I.

Remark 6.5 Assume T has NIP, let I be a linearly ordered set without last element, and
let a = (ai : i ∈ I) be A-indiscernible. Then b |= Av(a/Aa) if and only if aa(b) is A-
indiscernible.

7 Splitting

Definition 7.1 (Reminding) Let A ⊆ B, and let p(x) ∈ S(B). We say that p splits over
A if for some formula ϕ(x, y) ∈ L there are tuples a, b ∈ B such that a ≡A b, ϕ(x, a) ∈ p,
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and ¬ϕ(x, b) ∈ p. The definition applies also to B = C. Note that if p ∈ S(C), then p does
not split over A if and only if pf = p for all automorphisms f ∈ Aut(C/A), that is, if and
only if p is A-invariant.

Remark 7.2 (Reminding) If p(x) ∈ Sn(A), the number of global extensions of p that do

not split over A is at most 2(2|T |+|A|).

Remark 7.3 Let A ⊆ B, assume p(x) ∈ S(B) does not split over A, I is a totally ordered
set, and (ai : i ∈ I) is a sequence of tuples ai ∈ B such that ai |= p � Aa<i. Then (ai : i ∈ I)
is A-indiscernible.

Proof: By induction on n it is easy to see that if i1 < . . . < in and ji < . . . < jn, then
ai1 , . . . , ain ≡A aji , . . . , ajn . 2

Lemma 7.4 Assume T has NIP. Let p1, p2 ∈ S(C) be global types that do not split over A
and assume p1 � A = p2 � A. If there is a sequence (ai : i < ω) such that ai |= p1 � Aa<i
and ai |= p2 � Aa<i for all i < ω, then p1 = p2.

Proof: Assume ϕ(x, y) ∈ L and ϕ(x, b) ∈ p1 and let us check that ϕ(x, b) ∈ p2. Let (ci : i <
ω) be chosen in such a way that c2·i |= p1 � Abc<2·i and c2·i+1 |= p2 � Abc<2·i+1. We claim
that (ci : i < ω) ≡A (ai : i < ω). Assume, inductively, that c0, . . . , c2·n ≡A a0, . . . , a2·n and
suppose |= ψ(c0, . . . , c2·n+1) where ψ(x0, . . . , x2·n+1) ∈ L(A). Then ψ(c0, . . . , c2·n, x) ∈ p2

and by non-splitting over A, ψ(a0, . . . , a2·n, x) ∈ p2. Hence |= ψ(a0, . . . , a2·n, a2·n+1). The
odd case is analogous. By the claim, (ci : i < ω) is A-indiscernible. Since T has NIP, and
|= ϕ(c2·i, b) for all i < ω, also |= ϕ(c2·i+1, b) for all i < ω. Hence ϕ(x, b) ∈ p2. 2

Proposition 7.5 Assume T has NIP. Let p1, p2 ∈ S(C) be global types that do not split
over A and assume p1 � A = p2 � A. If there are sequences (ai : i < ω), (bi : i < ω) such that
ai |= p1 � Aa<i and bi |= p2 � Aa<i for all i < ω, and moreover (ai : i < ω) ≡A (bi : i < ω),
then p1 = p2.

Proof: Let f ∈ Aut(C/A) be such that f(ai : i < ω) = (bi : i < ω). Since p1 does not

split over A, pf1 = p1. But then bi |= p1 � Ab<i and by Lemma 7.4, p1 = p2. 2

Corollary 7.6 Assume T has NIP. If p(x) ∈ Sn(A), the number of global extensions of p
that do not split over A is ≤ 2|A|+|T |.

Proof: By Proposition 7.5 each global non-splitting extension of p is determined by the
type over A of an ω-sequence of realizations of p. 2

Corollary 7.7 Assume T has NIP. Let p ∈ S(C) a global type that does not split over A
and assume ai |= p � Aa<i for all i < ω. If Av((ai : i < ω)/C) does not split over A, then
p = Av((ai : i < ω)/C).

Proof: By Lemma 7.4 and Remark 6.4. 2

8 Coheirs

Definition 8.1 Let M ⊆ A, let p(x) ∈ S(M) and let p(x) ⊆ q(x) ∈ S(A). We say that q is
a coheir of p if it is finitely satisfiable in M . The definition applies also to A = C. Coheirs
are a particular case of non-splitting extensions.
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Proposition 8.2 1. If T has IP, then for each λ ≥ |T | there is some model M of

cardinality λ and some p(x) ∈ S1(M) having 2(2λ) coheirs over C.

2. If T has NIP, then for each λ ≥ |T |, for each model M of cardinality λ, for each
p(x) ∈ Sn(M), p(x) has at most 2λ coheirs over C.

Proof: 1. By IP, there are ϕ(x, y) ∈ L, (ai : i < λ), and (bX : X ⊆ λ) such that
|= ϕ(ai, bX) ⇔ i ∈ X. Let M ⊇ {ai : i < λ} be a model of cardinality λ and for each
ultrafilter U over λ, let pU := limU ((ai : i < λ)/C). If U 6= V , then there is some X ∈ UrV ,
which implies ϕ(x, bX) ∈ pU and ¬ϕ(x, bX) ∈ pV , and hence pU 6= pV . Every pU is finitely

satisfiable in M and therefore it is a coheir of PU � M . There are 22λ ultrafilters over U
and there are only 2λ complete 1-types over M . Hence, for some p(x) ∈ S1(M) there are

2(2λ) types pU extending p.

2. It follows from 7.6 since every coheir is a non-splitting extension. 2

9 Forking and Lascar splitting

Definition 9.1 (Reminding) A partial type π(x, a) (where π(x, y) is over the empty set)
divides over A if for some A-indiscernible sequence (ai : i < ω) of tuples ai ≡A a,⋃
i<ω π(x, ai) is inconsistent. The type π(x, a) forks over A if π(x, a) implies a disjunc-

tion ϕ1(x, a1) ∨ . . . ∨ ϕn(x, an) where every ϕi(x, ai) divides over A. For a global type,
forking and dividing are always equivalent.

Definition 9.2 (Reminding) The group Autf(C/A) of strong automorphisms over A is the
subgroup of Aut(C/A) generated by all automorphisms fixing some model containing A.

Two tuples a, b have same Lascar strong type over A, written a
Ls≡A b, if they are in the same

orbit under Autf(C/A). The relation of being two members of an infinite A-indiscernible
sequence is type-definable over A by a type ncA(x, y). Remind that equality of Lascar
strong type over A is the transitive closure of the relation defined by ncA(x, y).

Remark 9.3 If (ai : i ∈ I) is an infinite A-indiscernible sequence, then for any i0 < . . . <
in ∈ I, and j0 < . . . < jn ∈ I,

ai0 . . . ain
Ls≡A aj0 . . . ajn

Proof: One can assume in < j0 and this case is easy since |= ncA(ai0 . . . ain ; aj0 . . . ajn).
2

Definition 9.4 Let A ⊆ B, and let p(x) ∈ S(B). We say that p strongly splits over A
if for some ϕ(x, y) ∈ L there are tuples a, b ∈ B such that |= ncA(a, b), ϕ(x, a) ∈ p, and
¬ϕ(x, b) ∈ p. We say that p Lascar-splits over A if for some formula ϕ(x, y) ∈ L there

are tuples a, b ∈ B such that a
Ls≡A b, ϕ(x, a) ∈ p, and ¬ϕ(x, b) ∈ p. If A is a model,

Lascar-splitting over A is equivalent to splitting over A. These definitions apply also to
B = C. Note that if p ∈ S(C), then p does not Lascar-split over A if and only if pf = p for
all strong automorphisms f ∈ Autf(C/A).

Remark 9.5 Let A ⊆ B, and let p(x) ∈ S(B).

1. If p(x) strongly splits over A, then p(x) Lascar-splits over A.

9



2. If p(x) Lascar-splits over A, then p splits over A.

Proposition 9.6 Assume T has NIP. A global type p ∈ S(C) does not fork over A if and
only if it does not Lascar-split over A.

Proof: Assume first p does not fork over A. Let ϕ(x, y) ∈ L. It is enough to check
that ϕ(x, b) ∈ p whenever ϕ(x, a) ∈ p and |= ncA(a, b). Let (ai : i < ω) be some A-
indiscernible sequence with a = a0 and b = a1. If ϕ(x, a) ∈ p but ϕ(x, b) 6∈ p then since p
does not divide over A and the sequence (a2·ia2·i+1 : i < ω) is A-indiscernible, it follows
that {ϕ(x, a2·i) ∧ ¬ϕ(x, a2·i+1) : i < ω} is consistent, which implies that alt(ϕ(x, y)) =∞.

Assume now p does not Lascar-split over A. We will check that no formula in p divides
over A. Let ϕ(x, y) ∈ L and assume that ϕ(x, a) ∈ p and (ai : i < ω) is an A-indiscernible

sequence with a = a0. Then ai
Ls≡A a and therefore ϕ(x, ai) ∈ p for all i < ω. This shows

that {ϕ(x, ai) : i < ω} is consistent. 2

Definition 9.7 Extending slightly terminology of [11], we say that B is complete over A
if A ⊆ B, and every n-type over A is realized in B. We also say that B is ω-saturated over
A if A ⊆ B and for each finite B0 ⊆ B every n-type over AB0 is realized in B. This last
condition implies that B is an ω-saturated model. Obviously, if M is ω-saturated over A,
then M is complete over A. In particular, the monster model C is complete over any set A.
This notions can also be extended to Lascar strong types. For instance, we say that B is
Lascar-complete over A if A ⊆ B, and every finitary Lascar strong type over A is realized
in B.

Remark 9.8 If M is ω-saturated over A and p(x) ∈ S(M), then

1. p forks over A if and only if p divides over A.

2. p strongly splits over A if and only if p Lascar-splits over A.

Remark 9.9 If B is A-complete and p(x) ∈ S(B) forks over A, then p splits over A or p
divides over A.

Proof: Assume p(x) forks over A but does not split over A. There are some formulas
θ(x, z), ϕ1(x, y1), . . . , ϕn(x, yn) ∈ L, some tuple c ∈ B and some tuples a1, . . . , an such that
θ(x, c) ∈ p(x), θ(x, c) ` ϕ1(x, a1) ∨ . . . ∨ ϕn(x, an), and each ϕ(x, ai) divides over A. By
A-completeness of B we can choose d, b1, . . . , dn ∈ B such that ca1 . . . an ≡A db1 . . . bn.
Then θ(x, d) ` ϕ1(x, b1)∨ . . .∨ϕn(x, bn) and θ(x, d) ∈ p(x). Hence ϕi(x, bi) ∈ p for some i.
Since ϕi(x, bi) divides over A, p(x) divides over A. 2

Remark 9.10 A careful reading of the proof of Proposition 9.6 shows that if A ⊆ B and
p(x) ∈ S(B), then:

1. If T has NIP and p does not divide over A, then p does not strongly split over A.

2. If B is ω-saturated over A, and p does not strongly split over A, then p does not divide
over A.

Hence, if B is ω-saturated over A, then over A

forking = dividing ⇒ strongly splitting = Lascar splitting ⇒ splitting
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and if moreover T has NIP, then forking, dividing, strongly splitting, and Lascar splitting
over A are all the same. If additionally A is a model, then splitting over A is also equivalent
to all these properties.

Remark 9.11 Assume T has NIP. If p(x) ∈ S(B) does not fork over A ⊆ B, then p does
not Lascar-split over A.

Proof: If p does not fork over A, p has a global extension p that does not fork over A.
By Proposition 9.6, p does not Lascar split over A. Clearly, p does not Lascar-split over A
neither. 2

Proposition 9.12 Let M be ω-saturated over A ⊆ M . If a |̂
A
M and b |̂

Aa
M , then

ab |̂
A
M .

Proof: A well-known property of dividing is: if tp(a/M) does not divide over A and
tp(b/Ma) does not divide over Aa, then tp(ab/M) does not divide over A. Since M is
ω-saturated over A forking and dividing over A for types over M are equivalent. 2

Corollary 9.13 If a |̂
A
A and b |̂

Aa
A, then ab |̂

A
A.

Proof: Choose M ⊇ A, a model ω-saturated over A. Let a′ ≡A a such that a′ |̂
A
M .

Choose b′ such that ab ≡A a′b′. Since b′ |̂
Aa′

A, we may choose b′′ such that b′′ |̂
Aa′

M and
b′′ ≡Aa′ b′. By Proposition 9.12, a′b′′ |̂

A
M . In particular a′b′′ |̂

A
A. Since ab ≡A a′b′′,

ab |̂
A
A. 2

10 Nonsplitting extensions and products

Proposition 10.1 Let B be complete over A and p(x) ∈ S(B). If p does not split over A,
then for every C ⊇ B there is a unique q(x) ∈ S(C) extending p that does not split over A.
Similarly for Lascar-splitting if B is Lascar-complete over A.

Proof: q(x) := p(x) ∪
⋃
ϕ(x,y)∈L{ϕ(x, a) : a ∈ C and ϕ(x, a′) ∈ p for some a′ ≡A a} and

write a′
Ls≡A a in the second case. 2

Definition 10.2 Assume B is complete over A and p(x) ∈ S(B) does not split over A. For
any set C ⊇ B, p|AC is the only complete extension of p to C that does not split over A.

Remark 10.3 Assume B is complete over A and p(x) ∈ S(B) does not split over A.

1. For any D ⊇ C ⊇ B, (p|AC)|AD = p|AD.

2. For any C ⊇ B, if the sequence (ai : i < ω) is chosen in such a way that ai |= p|ACa<i,
then (ai : i < ω) is C-indiscernible.

Remark 10.4 Assume B is AA′-complete and p(x) ∈ S(B) does not split over A nor over
A′. Then for any C ⊇ B, p|AC = p|A′C.

Proof: Assume ϕ(x, y) ∈ L, a ∈ C and ϕ(x, a) ∈ p|AC. Choose b ∈ B such that a ≡AA′ b.
Since a ≡A b, ϕ(x, b) ∈ p ⊆ p|A′C. Since a ≡A′ b, ϕ(x, a) ∈ p|A′C. 2
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Definition 10.5 Assume p(x) ∈ S(B) does not split over some A ⊆ B of cardinality κ ≥ ω
and B is A′-complete for all A′ ⊆ B of cardinality κ. Then for any C ⊇ B, p|C is the unique
extension of p over C that does not split over a subset of B of cardinality κ. It is independent
of the choice of κ.

Definition 10.6 Assume B is complete over A, p(x), q(y) ∈ S(B) and q(y) does not split
over A. We define the product1 p ⊗A q as tp(ab/B) where a |= p and b |= q|ABa. It
is independent of the choice of a, b. If κ = |A| and B is A′-complete for all A′ ⊆ B of
cardinality κ (for instance, B is a κ+ + ω-saturated model), then it is also independent of
the choice of A (and κ) and we denote the product by p⊗ q.

Lemma 10.7 Assume B is complete over A, and p(x), q(y) ∈ S(B) do not split over A.
Then p⊗A q does not split over A.

Proof: Assume ϕ(x, y, z) ∈ L, c ∈ B, and ϕ(x, y, c) ∈ p ⊗A q. Choose a |= p, choose
b |= q|ABa, and let c′ ∈ B be such that c ≡A c′. Since p does not split over A, ac ≡A ac′

and hence ϕ(a, y, c′) ∈ q|ABa and |= ϕ(a, b, c′). It follows that ϕ(x, y, c′) ∈ p⊗A q. 2

Proposition 10.8 Assume B is complete over A and p(x), q(y), r(z) ∈ S(B) do not split
over A.

1. For any C ⊇ B, (p|AC ⊗A q|AC) = (p⊗A q)|AC.

2. (p⊗A q)⊗A r = p⊗A (q ⊗A r).

Proof: 1. (p|AC ⊗A q|AC) is an extension of p⊗A q over C and it does not split over A.

2. Take a |= p, b |= q|ABa and c |= r|ABab. Clearly, abc |= (p⊗ q)⊗A r. On the other
hand, bc |= (q|ABa⊗A r|ABa) and by 1 bc |= (q⊗A r)|ABa. Hence abc |= p⊗A (q⊗A r). 2

Definition 10.9 Assume B is complete over A and p(x) ∈ S(B) does not split over A.
The n-th power p(x1, . . . , xn)(n)A is defined for n ≥ 1 as the product p(x1)⊗A . . .⊗A p(xn).
By associativity, it is well-defined. It is a complete type over B and it does not split over
A. We define the ω-power of p as p(ω)A(xi : i < ω) =

⋃
i<ω p

(i+1)A(x0, . . . , xi). Again, it is
a complete type over B and it does not split over A. If κ = |A| and B is A′-complete for
all A′ ⊆ B of cardinality κ then powers of p are independent of the choice of A and we can
write p(n) and p(ω)

Remark 10.10 Assume B is complete over A and p(x) ∈ S(B) does not split over A.

1. (ai : i < ω) |= p(ω)A if and only if ai |= p|ABa<i for all i < ω.

2. If (ai : i < ω) |= p(ω)A , then (ai : i < ω) is indiscernible over B.

3. If (ai : i < ω) |= p(ω)A , then (ai : j ≤ i < ω) |= p(ω)A |ABa<j.

Proof: 3. Clear since (by 1 ) p(ω)A |Ba<j = (p|Ba<j)(ω)A . 2

1We have changed the order of p and q in the definition of product with the purpose of making the
definition of the power easier to understand.
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11 Lascar strong types and KP-splitting

The results in Section 10 can be generalized to non Lascar-splitting extensions and Lascar-
complete sets. In particular:

Remark 11.1 Let B be Lascar-complete over A and let p(x) ∈ S(B).

1. If p(x) does not Lascar-split over A, then for any C ⊇ B, we also denote by p|AC the
unique extension of p to C that does not Lascar-split over A.

2. If q(y) ∈ S(B) does not Lascar-split over A, we also denote p(x)⊗A q(y) the type of
a tuple ab such that a |= p and b |= q|ABa (in the new sense).

Proposition 11.2 Assume T has NIP and B ⊇ A is Lascar-complete over A and p(x) ∈
S(B). Then p does not fork over A if and only if p does not Lascar-split over A.

Proof: One direction follows from Remark 9.11. Now, if p does not Lascar-split over A,
then p has a global extension p that does not Lascar-split over A. By Proposition 9.6, p
does not fork over A. Hence p does not fork over A. 2

Proposition 11.3 Assume T has NIP.2 Let B ⊇ A be Lascar-complete over A. If the
types p(x), q(y) ∈ S(B) do not Lascar-split over A, then p(x)⊗A q(y) does not Lascar-split
over A.

Proof: Extend B to an ω-saturated over A model M ⊇ B. Assume p′(x), q′(y) ∈ S(M)
do not Lascar-split over A. Let a |= p′ and b |= q′|AMa. Then p′(x)⊗A q′(y) = tp(ab/M).
Since a |̂

A
M and b |̂

Aa
M , by Proposition 9.12, ab |̂

A
M . Hence tp(ab/M) does not

Lascar-split over A. Now consider p(x) ⊗ q(y) for p, q ∈ S(B). We have shown that
p|AM ⊗ q|AM does not Lascar-split over A. Since this type extends p(x)⊗ q(y), it follows
that p(x)⊗ q(y) does not Lascar-split over A. 2

Proposition 11.4 Assume T has NIP. Assume B ⊇ A is Lascar-complete over A and
p(x), q(y), r(z) ∈ S(B) do not Lascar split over A.

1. For any C ⊇ B, (p|AC ⊗A q|AC) = (p⊗A q)|AC.

2. (p⊗A q)⊗A r = p⊗A (q ⊗A r).

Proof: Like the proof of proposition 10.8, but using now Proposition 11.3. 2

Remark 11.5 Assume T has NIP. Let B ⊇ A be Lascar-complete over A. Assuming
p(x) ∈ S(B) does not Lascar-split over A, the powers p(n)A and p(ω)A are defined in anal-
ogous way as we did in the nonsplitting case, using associativity of the product. It follows
from Proposition 11.3 that the powers p(n)A and p(ω)A do not Lascar-split over A.

Lemma 11.6 Assume T has NIP. Let B ⊇ A be Lascar-complete over A, and assume
p(x) ∈ S(B) does not Lascar-split over A.

1. (ai : i < ω) |= p(ω)A if and only if ai |= p|ABa<i for all i < ω.

2In fact the assumption of NIP is unnecessary since one can use left transitivity of |̂ i (see Section 18).
The same applies to Proposition 11.4, Remark 11.5 and Lemma 11.6.
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2. If a, b |= p then a
Ls≡A b.

3. If a1 . . . an |= p(n)A and b1 . . . bn |= p(n)A , then a1 . . . an
Ls≡A b1 . . . bn.

4. If (ai : i < ω) |= p(ω)A � A, then (ai : i < ω) is indiscernible over A.3

5. If (ai : i < ω) |= p(ω)A , then (ai : j ≤ i < ω) |= p(ω)A |Aa<j.

Proof: 1. Clear.

2. Choose a′ ∈ B such that a
Ls≡A a′ and then choose n such that |= ncnA(a, a′). Then

|= ncnA(b, a′) and hence b
Ls≡A a′

Ls≡A a.

3. By 2, since p(n)A does not Lascar-split over A.

4. We may assume (ai : i < ω) |= p(ω)A and then we use 3 since ai1 , . . . , ain |= p(n)A

whenever i0 < . . . < in.

5. Like in Remark 10.10. 2

Proposition 11.7 Let p(x) ∈ S(A) and assume there is a global extension p ∈ S(C) of p
that does not Lascar split over A. For any c, d |= p the following are equivalent:

1. c
Ls≡A d

2. For some Lascar A-complete B there is a non Lascar-splitting extension q(x) ∈ S(B)
of p and some (ai : i < ω) such that both ca(ai : i < ω) and da(ai : i < ω) realize
q(ω)A � A.

3. |= nc2
A(c, d)

Proof: 1 ⇒ 2. Choose B ⊇ A Lascar complete over A. By point 1 of Lemma 11.6, a
Ls≡A b

whenever a, b |= p � B. We can assume c |= p � B and hence p � B ` Lstp(c/A) (otherwise
we choose a |= p � B and some f ∈ Aut(C/A) such that f(a) = c, and we replace p and B
by pf and f(B)). Now let q = p � Bcd, let (ai : i < ω) be a realization of the power q(ω)A

and let ā = (ai : 0 < i < ω). Since c
Ls≡A d and tp(ā/Bcd) = tp((ai : i < ω)/Bcd) does not

Lascar-split over A, cā ≡A dā. By point 1 of Lemma 11.6, ā |= q(ω)A |Bcda0 (a type that

does not Lascar-split over A) and therefore a0
Ls≡A c implies a0ā ≡A cā. Since a0ā |= q(ω)A

we conclude that cā and dā realize q(ω)A � A.

2 ⇒ 3. Clear since (By point 4 Lemma 11.6) any realization of q(ω)A � A is A-
indiscernible.

3 ⇒ 1 is obvious. 2

Definition 11.8 (Reminding) For any given length of tuples, for any set A, there is a least
bounded type-definable over A equivalence relation EKPA , the Kim-Pillay relation. It is
refined by ELA , the Lascar relation, which is the least bounded A-invariant equivalence
relation. If ELA is type-definable, then ELA = EKPA . In any case, ELA is equality of
Lascar strong type over A. Similarly, EKPA is equality of KP -type over A. We write

EKPA(a, b) ⇔ a
KP≡A b. The KP -type over A of a tuple a is tp(a/bdd(A)), where bdd(A)

is the class of all hyperimaginaries that have a bounded A-orbit, that is, a
KP≡A b iff E(a, b)

for all bounded A-type-definable equivalence relation E iff tp(a/bdd(A)) = tp(b/bdd(A)).

3This can be proved directly if one defines p(n)A by left nesting, since this would be the type of each
subtuple of length n.
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Corollary 11.9 Assume T has NIP and p(x) ∈ S(A) does not fork over A. For any
c, d |= p,

c
Ls≡A d if and only if |= nc2

A(c, d)

Hence, in p, equality of Lascar strong type over A,
Ls≡A, is type definable over A and coincides

with
KP≡A, equality of KP -type over A.

Proof: If p does not fork over A, p has a global nonforking extension p. By Proposition 9.6,
p does not Lascar-split over A. The rest follows from Proposition 11.7. 2

Proposition 11.10 Assume T has NIP. Let p1, p2 ∈ S(C) be global types that do not
Lascar-split over A and assume p1 � A = p2 � A. Let B ⊇ A be Lascar-complete over A, let
p = p1 � B and let a = (ai : i < ω) |= p(ω)A . If p1 � Aa = p2 � Aa, then p1 = p2.

Proof: We claim that if a′ = (ai : i < α) is an A-indiscernible sequence extending a, then
a′c is also A-indiscernible for any c |= p1 � Aa′ or c |= p2 � Aa′. Consider the case c |= p1 �
Aa′. Assume i0 < . . . < in < α, ψ(x0, . . . , xn, y) ∈ L(A) and |= ψ(ai0 , . . . , ain , c). Then

ψ(ai0 , . . . , ain , y) ∈ p1. Since p1 does not Lascar-split over A and ai0 . . . ain
Ls≡A a0 . . . an,

ψ(a0, . . . , an, y) ∈ p1. Since an+1 |= p|ABa0 . . . an = p1 � Ba0 . . . an, |= ψ(a0, . . . , an, an+1).
The case c |= p1 � Aa′ is similar but one one needs the assumption p1 � Aa = p2 � Aa.

Now assume ϕ(x, y) ∈ L, ϕ(x, b) ∈ p1 and ¬ϕ(x, b) ∈ p2. Construct (ci : i < ω) in such a
way that c2·i |= p1 � Aabc<2·i and c2·i+1 |= p2 � Aabc<2·i+1. Note that a is A-indiscernible.
By the claim aa(ci : i < ω) is also A-indiscernible. Since |= ϕ(a2·i, b) and |= ϕ(a2·i+1, b) we
see that alt(ϕ) =∞, contradicting NIP of T . 2

Definition 11.11 We say that p(x) ∈ S(B) KP-splits over A ⊆ B if there are tuples

a, b ∈ B and ϕ(x, y) ∈ L such that ϕ(x, a) ∈ p, ¬ϕ(x, b) ∈ p, and a
KP≡A b. Note that

Lascar-splitting implies KP-splitting and KP-splitting implies splitting. Note also that a
global type p does not KP-split over A if and only if it is bdd(A)-invariant, that is, pf = p
for all f ∈ Aut(C/bdd(A)).

Lemma 11.12 Assume T has NIP. Let f ∈ Aut(C/A) an let p be a global type that does

not Lascar-split over A. If for each n < ω, for each a |= p(n) � A, a
Ls≡A f(a), then pf = p.

Proof: Clearly, p � A = pf � A. Choose B Lascar-complete over A and let p = p � B and
a = (ai : i < ω) |= p(ω)A . By Proposition 11.10 it will suffice to prove p � Aa = pf � Aa. By

Corollary 11.9, if a<n
Ls≡A f(a<n) for all n < ω, then a

Ls≡A f(a). Let ϕ(x, y) ∈ L(A) and

assume ϕ(x, a) ∈ p. Since p does not Lascar-split over A and a
Ls≡A f−1(a), ϕ(x, f−1(a)) ∈ p.

Then ϕ(x, a) ∈ pf . It follows that p � Aa = pf � Aa. 2

Proposition 11.13 Assume T has NIP. Let B be Lascar-complete over A and p(x) ∈
S(B). Then p Lascar-splits over A if and only if p KP-splits over A.

Proof: It is enough to check that a type does not KP-split if it does not Lascar-split
and it is enough to consider the case of a global type p. Assume p does not Lascar-split
over A, and let f ∈ Aut(C/bdd(A)). We can check that pf = p using Lemma 11.12. since
p(n)A does not Lascar-split over A and a and f(a) are realizations of p(n)A � A such that

a
KP≡A f(a), and then, by Proposition 11.7, a

Ls≡A f(a). 2
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12 Morley sequences

Definition 12.1 Assume the index set I is linearly ordered by <. We say that (ai : i ∈ I)
is a Morley sequence over A if it is A-indiscernible and it is A-independent in the sense
of forking: for all i ∈ I, tp(ai/Aa<i) does not fork over A. If p(x) is the common type
tp(ai/A) of all ai, we say that (ai : i ∈ I) is a Morley sequence in p.

Remark 12.2 If B is complete over A, and p(x) ∈ S(B) does not split over A, then any
(ai : i < ω) |= p(ω)A � A is a Morley sequence in p � A.

Lemma 12.3 Assume T has NIP. Let p1, p2 be global types that do not fork over A. Let
I be infinite and linearly ordered by <. Let a = (ai : i ∈ I) be a Morley sequence in
p(x) = p1 � A = p2 � A. If ai |= p1 � Aa<i = p2 � Aa<i for all i ∈ I, then p1 = p2.

Proof: Note first that, by compactness, we can assume that I = ω with its standard
ordering. The rest is like the proof of Proposition 11.10. 2

Proposition 12.4 Assume T has NIP and I is a linearly ordered set without last element.

1. If a = (ai : i ∈ I) is a Morley sequence in p(x) ∈ S(A), then there is a unique global
type p ⊇ p such that p does not fork over A and ai |= p � Aa<i for all i ∈ I. Moreover
p � Aa = Av(a/Aa).

2. If p ∈ S(C) does not fork over A, there is a Morley sequence (ai : i < ω) in p = p � A
whose associated global type as in the previous point is p.

Proof: 1. If pi(x) = tp(ai/Aa<i), then
⋃
i∈I pi(x) = Av(a/Aa) does not fork over A and

therefore it has a global nonforking (over A) extension p(x). Then p(x) does not Lascar-split
over A and ai |= p � Aa<i for all i ∈ I. Uniqueness follows from Lemma 12.3.

2. Let M ⊇ A be a model. Then p does not split over M . Choose (ai : i < ω) in such
a way that ai |= p �Ma<i. Then (ai : i < ω) is M -indiscernible and hence A-indiscernible.
It is therefore a Morley sequence in p � A. 2

Proposition 12.5 Assume I is a linearly ordered set. If a = (ai : i ∈ I) is A-independent,
then a |̂

A
A.

Proof: We may assume I is finite. The we can proceed by induction in |I| using Corol-
lary 9.13. 2

Proposition 12.6 Assume T has NIP and p does not split over A. The sequence a = (ai :
i < ω) is a Morley sequence over A with global type p if and only if a |= p(ω) � A.

Proof: Let M ⊇ A be Lascar-complete over A and let p = p � M . Note that p(ω)A |C =
(p|C)(ω)A = p(ω) and hence p(ω)A � A = pω � A. Now, assume a = (ai : i < ω) is a Morley
sequence over A with global type p and let b = (bi : i < ω) |= p(ω)A . By induction it is easy
to see that a<i ≡A b<i for all i < ω. The other direction follows from Remark 12.2. 2

Question 12.7 Does Proposition 12.6 hold assuming only that p does not fork over A ?
The problem is with the direction from left to right.
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13 Special sequences and eventual types

Definition 13.1 An infinite sequence a = (ai : i ∈ I) is A-special if it is A-indiscernible
and every b = (bi : i ∈ I) ≡A (ai : i ∈ I) can be extended to an A-indiscernible sequence
ba(c) by adding a new tuple c such that also aa(c) is A-indiscernible.

Lemma 13.2 Let a, b be infinite A-indiscernible sequences and assume a and b have the
same Ehrenfeucht-Mostowski set over A. Then a is A-special if and only if b is A-special.

Proof: Let Φ(xi : i < ω) be the Ehrenfeucht-Mostowski set over A of the A-indiscernible
sequence a = (ai : i ∈ I). By definition, for any ϕ(x1, . . . , xn) ∈ L(A), ϕ ∈ Φ if and only
if |= ϕ(ai1 , . . . , ain) for all (for some) i1 < . . . < in in I. Assume b = (bj : j ∈ J)
is A-indiscernible, with the same Ehrenfeucht-Mostowski set, and assume b ≡A b′ =
(b′j : j ∈ J). Let ϕ(x1, . . . , xn, xn+1) ∈ Φ and j1 < . . . < jn in J . It is enough to
check that ϕ(bj1 , . . . , bjn , xn+1) ∧ ϕ(b′j1 , . . . , b

′
jn
, xn+1) is consistent. Let p(x1, . . . , xn) =

tp(bj1 , . . . , bjn/A) and choose i1 < . . . < in in I. Since a is A-special and also p =
tp(ai1 , . . . , ain/A), p(x1, . . . , xn) ` ∃xn+1(ϕ(ai1 , . . . , ain , xn+1) ∧ ϕ(x1, . . . , xn, xn+1)). It
follows that p(x1, . . . , xn) ` ∃xn+1(ϕ(bj1 , . . . , bjn , xn+1) ∧ ϕ(x1, . . . , xn, xn+1)) and there-
fore |= ∃xn+1(ϕ(bj1 , . . . , bjn , xn+1) ∧ ϕ(b′j1 , . . . , b

′
jn
, xn+1)) 2

Lemma 13.3 Assume T has NIP and a is A-special. Let n < ω and suppose ai ≡A a for
all i < n. Then for some tuple b all the sequences ai

a(b) are A-indiscernible.

Proof: Since a is A-special, we can construct a sequence d = (di : i < ω) such that aad

is A-indiscernible and for each i < n, if di = (dj·n+i : j < ω), then aai d
i is A-indiscernible.

Now if b |= Av(d/A(ai : i < n)d) = Av(di/A(ai : i < n)d), then aai (b) is A-indiscernible for
all i < n. 2

Proposition 13.4 Assume T has NIP. If a = (ai : i ∈ I) is A-special then for any
family (bi : i < λ) where bi ≡A a, for any linearly ordered set J there is some sequence
c = (cj : j ∈ J) such that every biac is A-indiscernible.

Proof: Notice that if a is A-special and we extend it to an A-indiscernible sequence adding
finitely many tuples c1, . . . , cn at the end of a, then the extended sequence aa(c1, . . . , cn)
has the same Ehrenfeucht-Mostowski set over A and it is therefore A-special. Using this
and compactness, it is easily seen that it suffices to apply Lemma 13.3. 2

Definition 13.5 Assume I is an infinite linearly ordered set. Let a = (ai : i ∈ I) be A-
special. The eventual type of a over B ⊇ A, EvA(a/B), is the set of formulas ϕ(x) ∈ L(B)
such that for any b ≡A a there is some ω-sequence c such that bac is A-indiscernible and
ϕ(x) ∈ Av(bac/B). Usually A is clear from the context, and we can omit it and write
Ev(a/B).

Remark 13.6 If a is A-special, and C ⊇ B ⊇ A, then Ev(a/B) ⊆ Ev(a/C).

Remark 13.7 Let ϕ(x, y) ∈ L and assume alt(ϕ) is finite. For any tuple b, for any set
A, for any Ehrenfeucht-Mostowski set Φ we may choose the least kϕ,b < ω such that in any
A-indiscernible infinite sequence with Ehrenfeucht-Mostowski set Φ ϕ(x, b) has at most kϕ,b
alternations. This number can always be realized in any order type of an infinite sequence:
for any infinite linearly ordered set I there is an A-indiscernible sequence a = (ai : i ∈ I)
with Ehrenfeucht-Mostowski set Φ such that ϕ(x, b) has kϕ,b alternations in a.
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Proof: By compactness. If p(x) = tp(b/A), ψ(x) ∈ p, and i1 < . . . < ikϕ,b it is enough to
find some A-indiscernible sequence (ai : i ∈ I) with Ehrenfeucht-Mostowski set Φ and some
c |= ψ such that |= ϕ(aij , c) ↔ ¬ϕ(aij+1 , c) for all j = 1, . . . , kϕ,b − 1 and this is clearly
possible since the formula

∃x(ψ(x) ∧
∧

1≤j<kϕ,b

ϕ(xj , x)↔ ¬ϕ(xj+1, x))

belongs to Φ. 2

Lemma 13.8 Assume T has NIP and let I be linearly ordered, without last element. Let
a = (ai : i ∈ I) be A-special and let B ⊇ A. For any ϕ(x, y) ∈ L, for any b ∈ B, since
alt(ϕ) <∞ we may choose the least kϕ,b < ω such that in any a′ ≡A a, ϕ(x, b) has at most
kϕ,b alternations. Then ϕ(x, b) ∈ Ev(a/B) if and only if there is some a′ ≡A a such that
ϕ(x, b) has kϕ,b alternations in a′ and ϕ(x, b) ∈ Av(a′/B).

Proof: Assume ϕ(x, b) ∈ Ev(a/B). Choose a′ ≡A a with biggest possible kϕ,b. There is

some ω-sequence c such that a′
a
c is A-indiscernible and ϕ(x, b) ∈ Av(a′

a
c/B). By choice

of a′ (and Remark 13.7), ϕ(x, b) ∈ Av(a′/B). For the other direction, let a′ ≡A a such that
ϕ(x, b) has kϕ,b alternations in a′ and ϕ(x, b) ∈ Av(a′/B). Let d ≡A a. Since a′ ≡A d and
a′ is A-special, there is some ω-sequence c such that a′ a c and dac are A-indiscernible.
Then ϕ(x, b) ∈ Av(a′

a
c/A) = Av(c/A) = Av(dac/A). 2

Lemma 13.9 Assume T has NIP and let I be linearly ordered, without last element. If
a = (ai : i ∈ I) is A-special, ϕ(x) ∈ Ev(a/B) and ψ(x) ∈ Ev(a/B), then (ϕ(x) ∧ ψ(x)) ∈
Ev(a/B)

Proof: Choose a′ ≡A a with maximal alternation number for ϕ(x), a′′ ≡A a with maximal
alternation number for ψ(x), and a′′′ ≡A a with maximal alternation number for (ϕ(x) ∧
ψ(x)). By Proposition 13.4, there is some ω-sequence c such that a′ac, a′′ac and a′′′ac are
indiscernible over A. Since ϕ(x), ψ(x) ∈ Av(c/B), (ϕ(x)∧ψ(x)) ∈ Av(a′′′ac/B) and hence
(ϕ(x) ∧ ψ(x)) ∈ Ev(a/B). 2

Proposition 13.10 Assume T has NIP and let I be linearly ordered, without last element.
For any A-special a = (ai : i ∈ I), for any B ⊇ A, Ev(a/B) ∈ S(B).

Proof: Let ϕ(x, y) ∈ L and b ∈ B. By Lemma 13.8, ϕ(x, b) ∈ Ev(a/B) or ¬ϕ(x, b) ∈
Ev(a/B). Now assume ϕ(x, b) ∈ Ev(a/B) and ¬ϕ(x, b) ∈ Ev(a/B). Choose some a′ ≡A a
with biggest possible alternation number kϕ,b. Without loss of generality, ϕ(x, b) holds in

a final segment of a′. Since ¬ϕ(x, b) ∈ Ev(a/B), there is some ω-sequence c such that a′
a
c

is A-indiscernible and ¬ϕ(x, b) ∈ Av(a′
a
c/A). By Remark 13.7, this contradicts the choice

of kϕ,b. 2

Proposition 13.11 Assume T has NIP and let I be linearly ordered, without last element.
Let a = (ai : i ∈ I) be A-special. Then Ev(a/C) does not split over A and ai |= Ev(a/Aa<i)
for all i ∈ I.

Proof: Let ϕ(x, y) ∈ L(A) and let b ≡A b′ be tuples such that ϕ(x, b) ∈ Ev(a/C). Choose
c ≡A a with a maximal number of alternations of ϕ(x, b) and choose c′ such that bc ≡A b′c′.
Then c′ ≡A a and it has a maximal number of alternations of ϕ(x, b′). By Lemma 13.8,
ϕ(x, b) ∈ Av(c/Ab). Hence ϕ(x, b′) ∈ Av(c′/Ab′) and by Lemma 13.8 ϕ(x, b′) ∈ Ev(a/Ab′).

18



Now assume ϕ(x1, . . . , xn, x) ∈ L(A), i1 < . . . < in < i and ϕ(ai1 , . . . , ain , x) ∈
Ev(a/Aa<i). By definition of eventual type, there is some c = (cj : j < ω) such that
aac is A-indiscernible and ϕ(ai1 , . . . , ain , x) ∈ Av(aac/Aa<i). Then |= ϕ(ai1 , . . . , ain , cj)
for some j and by indiscernibility |= ϕ(ai1 , . . . , ain , ai). This shows that ai |= Ev(a/Aa<i).
2

Corollary 13.12 Assume T has NIP and let I be linearly ordered, without last element.
A sequence a = (ai : i ∈ I) is A-special if and only if there is a global type p that does not
split over A and ai |= p � Aa<i for all i ∈ I. The global type p is Ev(a/C).

Proof: From left to right use Proposition 13.11 with p = Ev(a/C). For the other direction,
it is straightforward that a is A-indiscernible. Assume a′ ≡A a and let c |= p � Aaa′. Then
p � a = Av(a/Aa) and p � a′ = Av(a′/Aa′), and hence aa(c) and a′a(c) are A-indiscernible.
2

Corollary 13.13 (Strong Borel Definability) Assume T has NIP and the global type p
does not split over A. For each ϕ(x, y) ∈ L, {b : ϕ(x, b) ∈ p} is a finite boolean combination
of A-type-definable subsets.

Proof: Let a = (ai : i < ω) be a Morley sequence over A with global type p. By
Corollary 13.12 p = Ev(a/C). Let nϕ be the alternation number of ϕ(x, y) ∈ L. By
Lemma 13.8, ϕ(x, b) ∈ Ev(a/C) if and only if for some n ≤ nϕ there are (a′1, . . . , a

′
n) |=

p(n) � A such that |=
∧

1≤i<n(ϕ(a′i, b) ↔ ¬ϕ(a′i+1, b)) and |= ϕ(a′n, b) and there are not

(a′1, . . . , a
′
n+1) |= p(n+1) � A such that |=

∧
1≤i<n+1(ϕ(a′i, b)↔ ¬ϕ(a′i+1, b)). 2

14 Weakly special sequences

Definition 14.1 An infinite sequence a = (ai : i ∈ I) is weakly A-special if it is A-

indiscernible and every b = (bi : i ∈ I)
Ls≡A (ai : i ∈ I) can be extended to an A-indiscernible

sequence bac by adding an ω-sequence c such that also aac is A-indiscernible.

Lemma 14.2 Let a, c be infinite sequences and assume aac is A-indiscernible. If a is
weakly A-special, then also aac is weakly A-special.

Proof: It is a modification of the proof of Lemma 13.2. Let a = (ai : i ∈ I) and
c = (cj : j ∈ J), let b = aac = (bi : i ∈ I ∪ J) and let Φ(xi : i < ω) be the Ehrenfeucht-

Mostowski set over A of the A-indiscernible sequence a = (ai : i ∈ I). Assume b
Ls≡A b′ =

(b′j : j ∈ I ∪ J). Let ϕ(x1, . . . , xn; y1, . . . , ym) ∈ Φ and j1 < . . . < jn in I ∪ J . It is enough
to check that ϕ(bj1 , . . . , bjn , y1, . . . , ym) ∧ ϕ(b′j1 , . . . , b

′
jn
, y1, . . . , ym) is consistent. Choose

i1 < . . . < in in I. Notice that ai1 , . . . , ain
Ls≡A bj1 , . . . , bjn . Since a is weakly A-special,

whenever ai1 , . . . , ain
Ls≡A d1, . . . , dn then

|= ∃y1, . . . , ym(ϕ(ai1 , . . . , ain , y1, . . . , ym) ∧ ϕ(d1, . . . , dn, y1, . . . , ym)).

By using some f ∈ Autf(C/A) sending ai1 , . . . , ain to bj1 , . . . , bjn , we see that whenever

bj1 , . . . , bjn
Ls≡A d1, . . . , dn then also

|= ∃y1, . . . , ym(ϕ(bj1 , . . . , bjn , y1, . . . , ym) ∧ ϕ(d1, . . . , dn, y1, . . . , ym)).

In particular, |= ∃y1, . . . , ym(ϕ(bj1 , . . . , bjn , y1, . . . , ym) ∧ ϕ(b′j1 , . . . , b
′
jn
, y1, . . . , ym)) 2
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Fact 14.3 (Reminding) KP -equivalence is finitary in the following sense: if a = (ai : i ∈
I), and b = (bi : i ∈ I), then a

KP≡A b if and only if a � I0
KP≡A b � I0 for all finite I0 ⊆ I.

Definition 14.4 Assume I is an infinite linearly ordered set. Let a = (ai : i ∈ I) be
weakly A-special. The eventual type of a over B ⊇ A, EvA(a/B), is the set of formulas

ϕ(x) ∈ L(B) such that for any b
Ls≡A a there is some ω-sequence c such that bac is A-

indiscernible and ϕ(x) ∈ Av(bac/B). We will see that this definition coincides with the
older one if a is A-special. As in the previous case, usually we omit A and write Ev(a/B).

Remark 14.5 Let ϕ(x, y) ∈ L and assume alt(ϕ) is finite. Let b be an n-tuple, let any set
A, and assume a = (ai : i ∈ I) is A-indiscernible. We may choose the maximal kϕ,b < ω
such that for any sequence c such that aac is A-indiscernible ϕ(x, b) has kϕ,b alternations.

This number can always be realized in a sequence a′
Ls≡A a: there is some a′

Ls≡A a such that
ϕ(x, b) has kϕ,b alternations in a′.

Proof: Choose a model M ⊇ A. Let p(x) = tp(b/M) and let q(xi : i ∈ I) = tp(a/M). If
ψ(x) ∈ p, and i1 < . . . < ikϕ,b ∈ I then

{ψ(x) ∧
∧

1≤j<kϕ,b

ϕ(xij , x)↔ ¬ϕ(xij+1
, x)} ∪ q(xi : i ∈ I)

is consistent. Hence for some b′ ≡M b, for some a′ ≡M a, |=
∧

1≤j<kϕ,b ϕ(a′i1 , b
′) ↔

¬ϕ(aij+1 , b
′). Let a′′ be such that b′a′ ≡M ba′′. Then a

Ls≡A a′′ and ϕ(x, b) has kϕ,b
alternations in a′′. 2

Lemma 14.6 Assume T has NIP, and let I be linearly ordered, without last element. Let
a = (ai : i ∈ I) be weakly A-special and let B ⊇ A. For any ϕ(x, y) ∈ L, for any b ∈ B,

since alt(ϕ) <∞ we may choose the maximal kϕ,b < ω such that in some a′
Ls≡A a, ϕ(x, b)

has kϕ,b alternations. Then ϕ(x, b) ∈ Ev(a/B) if and only if there is some a′
Ls≡A a such

that ϕ(x, b) has kϕ,b alternations in a′ and ϕ(x, b) ∈ Av(a′/B).

Proof: Assume ϕ(x, b) ∈ Ev(a/B). Choose a′
Ls≡A a with biggest possible kϕ,b. There is

some ω-sequence c such that a′
a
c is A-indiscernible and ϕ(x, b) ∈ Av(a′

a
c/B). By choice

of a′ (and Remark 14.5), ϕ(x, b) ∈ Av(a′/B). For the other direction, let a′
Ls≡A a such that

ϕ(x, b) has kϕ,b alternations in a′ and ϕ(x, b) ∈ Av(a′/B). Let d
Ls≡A a. Since a′

Ls≡A d and a′

is weakly A-special, there is some ω-sequence c such that a′ a c and dac are A-indiscernible.
Then ϕ(x, b) ∈ Av(a′

a
c/A) = Av(c/A) = Av(dac/A). 2

Proposition 14.7 Assume T has NIP. Let I be linearly ordered, without last element. For
any weakly A-special a = (ai : i ∈ I), for any B ⊇ A, Ev(a/B) ∈ S(B).

Proof: Like Proposition 13.10 but using now Lemma 14.6 and Remark 14.5. 2

Remark 14.8 Assume T has NIP. If a is A-special, then its eventual type Evs(a/B) as
special sequence and its eventual type Evws(a/B) as weakly special sequence coincide.

Proof: By Proposition 14.7, since clearly Evs(a/B) ⊆ Evws(a/B). 2

Proposition 14.9 Assume T has NIP, and let I be linearly ordered without last element.
Let a = (ai : i ∈ I) be weakly A-special. Then Ev(a/C) does not Lascar split over A and
ai |= Ev(a/Aa<i) for all i ∈ I.
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Proof: Like the proof of Proposition 13.11 but using Lascar strong types. 2

Lemma 14.10 Assume T has NIP, and let I be linearly ordered. If a = (ai : i ∈ I) is a

Morley sequence over A and b = (bi : i ∈ I)
Ls≡A (ai : i ∈ I), then there is some tuple c such

that aa(c) and ba(c) are A-indiscernible.

Proof: We may assume I does not have a last element. Let f ∈ Aut(C/A) be such that
f(a) = b. Let p be the global type associated to a as in Proposition 12.4 and let q be the
corresponding type for b. Then pf = q. Since p does not fork over a, it does not Lascar-split
over A and therefore pf = p. Hence p = q. Let c |= p � Aab. Since p � Aa = Av(a/Aa) and
p � Ab = Av(b/Ab), by By Remark 6.5 aa(c) and ba(c) are A-indiscernible. 2

Lemma 14.11 Assume T has NIP, and let I be linearly ordered. Assume a = (ai : i ∈ I)

is an infinite Morley sequence over A. If b = (bi : i ∈ I)
Ls≡A (ai : i ∈ I) and c is a tuple

such that aa(c) and ba(c) are A-indiscernible, then aa(c)
Ls≡A ba(c).

Proof: Since aa(c) and ba(c) are again Morley sequences over A, by Proposition 12.5,

aa(c) |̂
A
A and ba(c) |̂

A
A, and by Corollary 11.9 it is enough to show that aa(c)

KP≡A
ba(c). As stated in Fact 14.3, it suffices to show that all finite subsequences have the same
KP -type over A and this is clear since we can find corresponding finite tuples in a and b
with same KP -type over A. 2

Proposition 14.12 Assume T has NIP, and let I be linearly ordered. If a = (ai : i ∈ I)
is a Morley sequence over A, then a is weakly special over A.

Proof: Let b
Ls≡A a. By Lemma 14.10 there is some tuple c such that aa(c) and ba(c)

are A-indiscernible. By Lemma 14.11, aa(c)
Ls≡A ba(c). Since aa(c) and ba(c) are Morley

sequences over A, the process can be iterated and we can obtain an ω-sequence c such that
aac and bac are A-indiscernible. 2

Corollary 14.13 Assume T has NIP. If a = (ai : i ∈ I) is a Morley sequence over A,
then the global type of a is Ev(a/C).

Proposition 14.14 If a = (ai : i < ω) is a Morley sequence over A and B ⊇ A, there is a
Morley sequence b = (bi : i < ω) over B such that a ≡A b.

Proof: Let α be the length of each ai, let κ = |B| + |T | + |α| and λ = i(2κ)+ . Extend a
to an A-indiscernible sequence (ai : i < λ). It is also a Morley sequence over A. Construct
inductively a sequence (a′i : i < λ) such that for all i < λ, a<i ≡A a′<i and a′i |̂ ABa

′
<i. To

obtain a′i we choose some f ∈ Aut(C/A) such that f(a<i) = a′<i. Since p(x) = tp(ai/Aa<i)
does not fork over A, its conjugate pf (x) ∈ S(Aa′<i) does not fork over A and hence it has
an extension q(x) ∈ S(Ba′<i) which does not fork over A. We take as a′i a realization of q.
Then a<iai ≡A a′<ia′i and a′i |̂ ABa

′
<i. There is a B-indiscernible sequence b = (bi : i < ω)

such that for each n < ω there are i0 < . . . < in < λ such that b0, . . . , bn ≡B a′i0 , . . . , a
′
in

.
Then

b0, . . . , bn ≡A a′i0 , . . . , a
′
in ≡A ai0 , . . . , ain ≡A a0, . . . , an

and therefore a ≡A b. Since a′in |̂ ABa
′
<in

, we see that bn |̂ ABb<n and thus bn |̂ B b<n.
This shows that b is a Morley sequence over B. 2
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Proposition 14.15 If a = (ai : i < ω) is a Morley sequence over A and B ⊇ A, there is a

Morley sequence b = (bi : i < ω) over B such that a
KP≡A b. Assuming NIP we can obtain

a
Ls≡A b.

Proof: It is an elaboration of the proof of Proposition 14.14, so we only point out the
modifications. We extend (ai : i < ω) to the A-indiscernible sequence (ai : i < λ), we
choose a model M ⊇ B, and we construct inductively the sequence (a′i : i < λ) in such a

way that a<i
KP≡A a′<i and a′i |̂ AMa′<i. We explain how to obtain a′i. Since ai |̂ A a<i,

tp(ai/Aa<i) has a extension over bdd(Aa<i) that does not fork over A. Since all exten-
sions of tp(ai/Aa<i) over bdd(Aa<i) are Aa<i-conjugate, no such extension forks over A.
Hence ai |̂ A bdd(Aa<i) and, in particular, ai |̂ A bdd(A)a<i. By the induction hypothe-

sis, a<i
KP≡A a′<i and hence a<i ≡bdd(A) a

′
<i. Choose an automorphism f ∈ Aut(C/bdd(A))

sending a<i to a′<i. If p(x) = tp(ai/bdd(A)a<i), p
f has an extension over Ma′<i that does

not fork over A. We take as a′i a realization of this extension.

Finally we obtain the M -indiscernible sequence b = (bi : i < ω). It is a Morley sequence
over B. For every n < ω, there are i0 < . . . < in < λ such that b0, . . . , bn ≡M a′i0 , . . . , a

′
in

.
Therefore

b0, . . . , bn
Ls≡A a′i0 , . . . , a

′
in

KP≡A ai0 , . . . , ain
Ls≡A a0, . . . , an.

Hence a
KP≡A b. If T is NIP, by Proposition 12.5, a |̂

A
A, and Corollary 11.9 gives a

Ls≡A b.
2

Theorem 14.16 Assume T has NIP. The following are equivalent for a = (ai : i < ω).

1. a is weakly special over A.

2. a is A-indiscernible and there is a global type p that does not fork over A and ai |=
p � Aa<i for all i < ω.

3. a is a Morley sequence over A.

4. For some Lascar-complete set B over A there is a type p(x) ∈ S(B) that does not fork
over A and b |= p(ω)A , for some b ≡A a.

5. For some Lascar-complete set B over A there is a type p(x) ∈ S(B) that does not fork

over A and b |= p(ω)A , for some b
Ls≡A a.

Proof: 1 ⇒ 2. By Proposition 14.9.

2 ⇔ 3. By Proposition 12.4.

3 ⇒ 5. By Proposition 14.15.

5 ⇒ 4. Clear.

4 ⇒ 3. By Lemma 11.6.

3 ⇒ 1. By Proposition 14.12. 2

Corollary 14.17 Assume T has NIP. If a = (ai : i ∈ I) is a Morley sequence over A,

then for any family (bi : i < λ) where bi
Ls≡A a, for any linearly ordered set J there is some

sequence c = (cj : j ∈ J) such that every biac is a Morley sequence over A.

Proof: By Lemma 14.11 and compactness. 2
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Example 14.18 1. A Morley sequence which is not special (in an ω-stable theory). Let
T be the theory of an equivalence relation E with exactly two classes, both infinite.
Choose (ai : i < ω), different elements in one E-class. It is Morley (over ∅) but not
special.

2. Indiscernible sequences that are not Morley (again in an ω-stable theory). Let T be
the theory of an equivalence relation E with infinitely many classes, all infinite. Take
(ai : i < ω), a sequence of different elements in an E-class. It is indiscernible (over ∅)
but not it is not Morley. If we take (bi : i < ω) where each bi is in a different E-class,
then it is special over ∅ (and hence Morley).

3. Eventual types and average types. Let T be the theory of the dense linear order
without endpoints. Let a = (ai : i < ω) be a strictly increasing sequence and let
(X,Y ) be the cut defined by a in the monster model. The sequence is special over ∅.
Then Av(a/C) is the type of the cut (X,Y ) while Ev(a/C) is the type +∞ (the type
of an element greater than every element of C). Notice that if we choose b ∈ Y , then
a is b-special and Evb(a/C) is now the type b− of the left part of the cut determined
by b.

15 Generically stable types

Proposition 15.1 Assume T has NIP and p does not fork over A.

1. If p is definable, then it is definable over acleq(A).

2. If p is finitely satisfiable in some M ⊇ A, then it is finitely satisfiable in every M ⊇ A.

Proof: 1. By Proposition 11.13, p does not KP -split over A, that is, p is bdd(A)-
invariant. Let ϕ(x, y) ∈ L and let c ∈ Ceq be the canonical parameter of a definition of
{a : ϕ(x, a) ∈ p}. Since c ∈ bdd(A) and c is an imaginary, c ∈ acleq(A).

2. Fix N ⊇ A such that p is finitely satisfiable in N and let M ⊇ A. Let ϕ(x, y) ∈ L,
and assume ϕ(x, a) ∈ p. Choose N ′ ≡M N such that tp(N ′/Ma) coheirs from M . Since p
is M -invariant, p is finitely satisfiable in N ′. Then there is some b ∈ N ′ such that |= ϕ(b, a).
It follows that for some b′ ∈M , |= ϕ(b′, a). 2

Proposition 15.2 If p is finitely satisfiable in M and it is definable over M and the se-
quence a = (ai : i < ω) is M -indiscernible and satisfies ai |= p � Ma<i for all i < ω, then
a is totally indiscernible over M .

Proof: It is enough to show that for every n < ω every permutation of {a0, . . . , an}
is elementary over M . Since a permutation is a product of transpositions of consecutive
elements, it is enough to prove that for all i < n,

a<iaiai+1ai+2, . . . , an ≡M a<iai+1aiai+2, . . . , an. (1)

For this we will first prove that for all i ≤ n,

ai |= p �Ma<iai+1 . . . an (2)

Let us check that (2) implies (1). Assume (2). Notice that an+1 |= p �Ma≤iai+2 . . . an and
hence

a<iaiai+1ai+2, . . . , an ≡M a<iaian+1ai+2, . . . , an.
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By indiscernibility over M :

a<iaian+1ai+2, . . . , an ≡M a<iai+1an+1ai+2, . . . , an.

Again by (2) and because an+1 |= p �Ma<iai+1 . . . an,

a<iai+1an+1ai+2, . . . , an ≡M a<iai+1aiai+2, . . . , an.

Now we prove (2). Since p is M -definable, p � Ma<iai+1 . . . an is the unique M -definable
extension of p � M over Ma<iai+1 . . . an and it is therefore the unique heir of p � M over
Ma<iai+1 . . . an. We must check that tp(ai/Ma<iai+1 . . . an) is a heir of tp(ai/M) or, in
other terms, that tp(a<iai+1, . . . , an/Mai) coheirs from M . We start checking that

tp(ai+1, . . . , an/Ma≤i) coheirs from M. (3)

Let ϕ(xi+1, . . . , xn) ∈ L(Ma≤i) be such that |= ϕ(ai+1, . . . , an). Since p is finitely satisfiable
in M and an |= pMa<n, there is some a′n ∈ M such that |= ϕ(ai+1, . . . , an−1, a

′
n). By

iteration we obtain a′i+1, . . . , a
′
n ∈M such that |= ϕ(a′i+1, . . . , a

′
n).

Now we finish the proof checking that

tp(a<iai+1, . . . , an/Mai) coheirs from M. (4)

Let ϕ(x<i, xi+1, . . . , xn, xi) ∈ L(M) be such that |= ϕ(a<i, ai+1, . . . , an, ai). By (3) there
are a′i+1, . . . , a

′
n ∈ M such that |= ϕ(a<i, a

′
i+1, . . . , a

′
n, ai). Since tp(ai/Ma<i = p �

Ma<i is definable over M , there is some θ(x<i, xi+1, . . . , xn) ∈ L(M) such that for all
b<i, bi+1, . . . , bn in Ma<i

|= θ(b<i, bi+1, . . . , bn) if and only if ϕ(b<i, bi+1, . . . , bn, x) ∈ tp(ai/Ma<i). (5)

In particular

|= θ(a<i, a
′
i+1, . . . , a

′
n) if and only if ϕ(a<i, a

′
i+1, . . . , a

′
n, x) ∈ tp(ai/Ma<i)

and therefore |= θ(a<i, a
′
i+1, . . . , a

′
n). It follows that

M |= ∃x<iθ(x<i, a′i+1, . . . , a
′
n)

and then there is some a′<i ∈M such that |= θ(a′<i, a
′
i+1, . . . , a

′
n) and by (5)

ϕ(a′<i, a
′
i+1, . . . , a

′
n, x) ∈ tp(ai/Ma<i),

that is, |= ϕ(a′<i, a
′
i+1, . . . , a

′
n, ai). 2

Lemma 15.3 Let a = (ai : i < ω) and b = (bi : i < ω). If aab is A-indiscernible and a
is totally indiscernible over A, then aab is totally indiscernible over A. Moreover, if T has
NIP, then Av(aab/C) = Av(a/C).

Proof: Let c, c′ be finite subsequences of aab. Assume they have the same length and
they do not contain repetitions. Find a subsequence d of a with the same order type as c
and a suptuple d′ of d with the same order type as c′. Since aab is A-indiscernible, c ≡A d
and c′ ≡A d′. Since a is totally indiscernible over A, d ≡A d′. Hence c ≡A c′.

Assume now T has NIP. By Proposition 6.2, if c = (ci : i < ω) is totally indiscernible,
then ϕ(x) ∈ Av(c/C) if and only if {i < ω :|= ϕ(ci)} is infinite (equivalently, cofinite).
Hence if ϕ(x) ∈ Av(a/C) then also ϕ(x) ∈ Av(aab/C). This shows Av(a/C) ⊆ Av(aab/C)
and therefore Av(a/C) = Av(aab/C). 2
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Proposition 15.4 Assume T has NIP. Let a = (ai : i < ω) be a Morley sequence over
A. If a is totally indiscernible, then Av(a/C) does not fork over A and it is the global type
associated to a.

Proof: Let p be the global type associated to a, that is, p is the unique global type that
does not fork over A and satisfies ai |= p � Aa<i for all i < ω. Since ai |= Av(a/Aa<i),
we only need to show that Av(a/C) does not fork over A. Let f ∈ Autf(C/A) and let

f(a) = a′ = (a′i : i < ω). It suffices to show that Av(a/C) = Av(a′/C). Since a
Ls≡A a′ and

a is weakly special over A, there is an ω sequence b = (bi : i < ω) such that aab and a′
a
b

are A-indiscernible. It is clear that Av(aab/C) = Av(b/C) = Av(a′
a
b/C). By Lemma 15.3,

Av(a/C) = Av(aab/C) and Av(a′/C) = Av(a′
a
b/C). 2

Lemma 15.5 Assume T has NIP, and assume a = (ai : i < ω) is totally indiscernible over
A. Then Av(a/C) is definable over a: if ϕ(x, y) ∈ L, there is a number nϕ < ω such that
for all c,

ϕ(x, c) ∈ Av(a/C) if and only if |=
∨

w⊆2·nϕ, |w|=nϕ

∧
i∈w

ϕ(ai, c)

Proof: The number nϕ is given by Remark 6.3. In fact nϕ = alt(ϕ) + 2. 2

Proposition 15.6 Assume T has NIP. Let a = (ai : i < ω) be a Morley sequence over A
and let p be its associated global type. If for each ϕ(x, y) ∈ L there is a number nϕ < ω
such that p is definable over a by

ϕ(x, c) ∈ p if and only if |=
∨

w⊆2·nϕ, |w|=nϕ

∧
i∈w

ϕ(ai, c)

then for every model M ⊇ A, p is definable over M and it is finitely satisfiable in M .

Proof: Since p is finitely satisfiable in a, it is finitely satisfiable in some model M ⊇ A.
By Proposition 15.1, it is finitely satisfiable in every model M ⊇ A. Since p is definable, by
Proposition 15.1 it is definable over acleq(A). Hence it is definable over every M ⊇ A. 2

Definition 15.7 A global type p is generically stable over A if for some model M ⊇ A, p
is definable over M and it is finitely satisfiable in M .

Theorem 15.8 If T has NIP and p does not fork over A, the following are equivalent:

1. p is generically stable over A.

2. For every model M ⊇ A, p is definable over M and finitely satisfiable in M .

3. For every model M ⊇ A, every Morley sequence (ai : i < ω) over M with associated
global type p is totally indiscernible over M .

4. Every (some) realization of p(ω) � A is totally indiscernible over A.

5. For every ϕ(x, y) ∈ L there is some number nϕ < ω such that for every (some) Morley
sequence (ai : i < ω) over A with global type p, p is definable over a by

ϕ(x, c) ∈ p if and only if |=
∨

w⊆2·nϕ, |w|=nϕ

∧
i∈w

ϕ(ai, c)
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Proof: 1 ⇔ 2. By Proposition 15.1.

2 ⇒ 3. By Proposition 15.2.

3 ⇒ 4. Choose M ⊇ A Lascar-complete over A and let p = p �M . Then p does not fork
over A and p(ω)A = p(ω) � M . If a |= p(ω) � A, then a ≡A b for some b |= p(ω)A , a Morley
sequence over M . The associated global type of b is p. By 3 b is totally indiscernible over
M . Hence a is totally indiscernible over A.

4 ⇒ 5. By Proposition 15.4 and Lemma 15.5.

5 ⇒ 1. By Proposition 15.6. 2

Proposition 15.9 Assume T has NIP. If p is A-invariant and generically stable over A,
then p � A is stationary.

Proof: Let q be a nonforking extension of p � A. We will show that p and q have a
common Morley sequence over A and from this, by Lemma 12.3, it will follow that p = q.
Let a = (ai : i < ω) |= p(ω) � A and let b |= q � Aa. Then a is a Morley sequence over A
with global type p. By Theorem 15.8 and Proposition 15.4, p = Av(a/C). We claim that
for all i < ω,

b ≡Aa<i ai.
We prove it by induction on i. It is clear for i = 0, since p � A = q � A. Let
ϕ(x0, . . . , xi+1) ∈ L(A) and assume |= ϕ(a0, . . . , ai, b). Then ϕ(a0, . . . , ai, x) ∈ q. If j ≥ i,

then a<iai
Ls≡A a<iaj and since q does not Lascar-split over A, ϕ(a0, . . . , ai−1aj , x) ∈ q, that

is |= ϕ(a0, . . . , ai−1aj , b). Since p = Av(a/C), ϕ(a0, . . . , ai−1, x, b) ∈ p. By the induction hy-
pothesis and A-invariance of p, ϕ(a0, . . . , ai−1, x, ai) ∈ p. Then |= ϕ(a0, . . . , ai−1, ai+1, ai).
Since a is totally indiscernible over A, |= ϕ(a0, . . . , ai−1, ai, ai+1). By the claim we get
tp(ai/Aa<i) = tp(b/Aa<i) = q � Aa<i and hence q is the global type associated over A to
the Morley sequence a. 2

Theorem 15.10 Assume T has NIP and p is A-invariant. The following are equivalent:

1. p is generically stable over A.

2. For every B ⊇ A, p � B is stationary.

3. For every n ≥ 1, for every B ⊇ A, p(n) � B is stationary.

Proof: Note that if p is generically stable over A, then it is generically stable over any
B ⊇ A. Hence 1 ⇒ 2 follows from Proposition 15.9.

1 ⇒ 3. Since p is A-invariant, p(n) is A-invariant too. Notice that, by associativity of the
product, (p(n))(m) = p(n·m) and hence any realization of (p(n))(ω) � A is (after elimination
of brackets) a realization of p(ω) � A. By point 4 of Theorem 15.8, p(n) is generically stable
over A. By the previous paragraph, 3 follows from 1.

2 ⇒ 1. Let a = (ai : i < ω) be a Morley sequence over A with global type p. By
Proposition 12.4, p � Aa = Av(a/Aa). By Remark 6.4, Av(a/C) does not fork over B = Aa.
By stationarity, p = Av(a/C). By Lemma 15.5 and point 5 of Theorem 15.8, p is generically
stable over A. 2

Definition 15.11 If p(x, y) ∈ S(A) we define p−1(y, x) as the type tp(ba/A) for any ab |= p.
This is only well-defined when the separation of variables x, y is fixed. Note that p and
p−1 share almost all model-theoretical properties. This notation extends the more familiar
notation used for formulas: ϕ−1(y, x) is the formula ϕ(x, y) with opposite separation of
variables. Note that p−1 = {ϕ−1 : ϕ ∈ p}.
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Lemma 15.12 4 Assume T has NIP. Let B be A-complete and assume p(x) ∈ S(B) does
not split over A. If (p⊗Ap)−1 = p⊗Ap, then every realization of p(ω)A is totally indiscernible
over B.

Proof: It is enough to prove that for every n < ω, for every permutation π of {1, . . . , n},
(a1, . . . , an) |= p(n)A if and only if (aπ(1), . . . , aπ(n)) |= p(n)A . Since every such permutation
is a composition of transpositions of consecutive elements and since the product of types is
associative, it suffices to check that for all n < ω, (a1, . . . , an, an+1) |= p(n+1)A if and only
if (a1, . . . , an−1, an+1, an) |= p(n+1)A . But this is clear since

(a1, . . . , an, an+1) |= p(n+1)A ⇔ a<n |= p(n−1)A and (an, an+1) |= (p⊗A p)|ABa<n,

and
(an, an+1) |= (p⊗A p)|ABa<n ⇔ (an+1, an) |= ((p⊗A p)|ABa<n)−1,

and
((p⊗A p)|ABa<n)−1 = (p⊗A p)−1|ABa<n = (p⊗A p)|Ba<n.

2

Theorem 15.13 Assume T has NIP, p is A-invariant and no type over A forks over A.
Then p is generically stable over A if and only if for all n ≥ 1, p(n) � A is stationary.

Proof: One direction follows from Theorem 15.10. Assume then the right hand side and
let us check that p is generically stable over A. Choose B ⊇ A A-complete and let p = p � A.
By Theorem 15.8 and Lemma 15.12 it suffices to prove that (p⊗A p)−1 = p⊗A p. We need
some preparation. For n < ω, let p(−n)A be the tp(an, . . . , a1/A) for (a1, . . . , an) |= p(n)A

and let
p(ω∗)A =

⋃
n<ω

p−(n+1)A(x0, . . . , xn).

Then p(ω∗)A ∈ S(A) and

(ai : i < ω) |= p(ω∗)A ⇔ ai |= p|ABa>i for all i < ω.

Note that if (ai : i < ω) |= p(ω∗)A , then ai |̂ ABa>i and (ai : i < ω) is B-indiscernible. By

assumption each p(n)A � A is stationary. Then p(−n)A � A is also stationary and it follows
that r(xi : i < ω) = p(ω∗)A � A is stationary. Its unique global nonforking extension is
p(ω∗).

We claim that every realization of r(xi : i < ω) (with the increasing order of ω) is
A-special. Let a = (ai : i < ω) be such a realization an assume b = (bi : i < ω) ≡A a.
Choose c |= p. By assumption tp(ab/A) does not fork over A and hence there are a′b′ ≡A ab
such that a′b′ |̂

A
Bc. Since r is stationary, tp(a′/Bc) = p(ω∗) � Bc. If i1 < . . . < in < ω,

then (a′in , . . . , a
′
i1

) |= p(n)A |ABc and hence (c, a′in , . . . , a
′
i1

) |= p(n+1)A . Therefore a′a(c)
is B-indiscernible (if a′ is considered a decreasing sequence with order type ω∗ we would
say (c)aa′ is indiscernible). Similarly, b′a(c) is B-indiscernible. Now choose c′ such that
abc′ ≡A a′b′c. Clearly, aa(c′) and ba(c′) are A-indiscernible.

By Corollary 13.12 there is a global type q that does not split over A and ai |= q � Aa<i
for all i < ω. By assumption p � A is stationary and hence p = q. Let a = (ai : i <
ω) |= p(ω∗)A and let c |= p � Ba. Since p does not split over B, and ai |= p � Ba>i,
and c |= p � Ba, then by Remark 7.3 the sequence (. . . , a1, a0, c) is B-indiscernible, that

4Suggested by Anand Pillay
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is, (c)aa = (c, a0, a1, . . .) is B-indiscernible. Since q does not split over B and ai |= q �
Ba<i and c |= p � Ba, again by Remark 7.3 the sequence aa(c) = (a0, a1, . . . , c) is B-
indiscernible. Hence aa(c) and (c)aa are B-indiscernible. It follows that a0a1 ≡B a1a0.
Thus (p⊗A p)−1 = tp(a0a1/B) = tp(a1a0/B) = p⊗A p. 2

Theorem 15.14 Assume T has NIP and p is A-invariant. The following are equivalent:

1. p is generically stable over A.

2. p = Av(a/C) for every Morley sequence a = (ai : i < ω) over any M ⊇ A with global
type p.

3. (p⊗ q)−1 = q⊗ p for all B-invariant q, for all B.

4. (p⊗ p)−1 = p⊗ p

Proof: 3 ⇒ 4 is obvious and 4 ⇒ 1 follows from Lemma 15.12 and Theorem 15.8. 1 ⇒
2 follows from Proposition 15.4 and Theorem 15.8.

2 ⇒ 3. Let q be B-invariant. Let ϕ(x, y) ∈ p⊗ q. We will check that ϕ−1(y, x) ∈ q⊗ p.
Choose a model M ⊇ AB complete over AB and such that ϕ(x, y) ∈ L(M). Choose a
Morley sequence a = (ai : i < ω) over M with global type p. By 2 p = Av(a/C). Let
b |= q �Ma. Then

(ai, b) |= p �M ⊗B q �M = (p⊗ q) �M for all i < ω.

In particular |= ϕ(ai, b) for all i < ω. This implies ϕ(x, b) ∈ Av(a/C) = p. Choose now
c |= p �Mb. Then

(b, c) |= q �M ⊗A p �M = (q⊗ p) �M

and |= ϕ(c, b), that is |= ϕ−1(b, c). Therefore ϕ−1(y, x) ∈ q⊗ p. 2

16 Extension bases

Definition 16.1 A set A is an extension base if no type over A forks over A. In other
terms, every p(x) ∈ S(A) has a global nonforking extension.

Lemma 16.2 If p is A-invariant, then p � A ` p � bdd(A).

Proof: Choose a |= p � bdd(A). Assume now b |= p � A. We claim that a ≡bdd(A) b. Since
a ≡A b, there is some f ∈ Aut(C/A) such that f(a) = b. Note that f fixes setwise bdd(A).
By A-invariance pf = p. Hence b = f(a) |= (p � bdd(A))f = p � bdd(A). 2

Lemma 16.3 If for every finite subtuple a′ of a there is a global A-invariant extension of
tp(a′/A), then there is also a global A-invariant extension of tp(a/A).

Proof: By compactness, since if p(x) = tp(a/A) it is enough to prove the consistency of

p(x) ∪ {ϕ(x, b)↔ ϕ(x, c) : b ≡A c and ϕ(x, y) ∈ L(A)}.

2

Lemma 16.4 Assume T has NIP, A = acleq(A) and e ∈ acleq(Aa). If tp(a/A) has a global
A-invariant extension, then tp(ae/A) has a global A-invariant extension too.
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Proof: Let p(x) = tp(a/A) and let p ⊇ p be a global A-invariant extension. Let q(x, y) =
tp(ae/A) and choose q ⊇ q, a global type such that q � x = p. We claim that q is A-invariant.
Choose δ(x, y) ∈ q such that for some m < ω, δ(x, y) ` ∃≤myδ(x, y).

We will prove that q is A-invariant applying Lemma 11.12. It is enough to check that q
does not fork over A and that for each n < ω, q(n) � A is a Lascar strong type.

We first claim that q does not fork over A. In order to check this, let ϕ(x, y; z) ∈ L(A)
and assume that ϕ(x, y; b) ∈ q divides over A. There is an A-indiscernible sequence (bi :
i < ω) with b = b0 such that {ϕ(x, y; bi) : i < ω} is inconsistent. Without loss of generality,
ϕ(x, y; z) ` δ(x, y). Since p does not fork over A, there is some a′ such that |= ∃yϕ(a′, y; bi)
for all i < ω. For each i < ω, choose ei such that |= ϕ(a′, ei, bi). Since |= δ(a′, ei), for some
infinite I ⊆ ω, for all i, j ∈ I, ei = ej . Therefore if j ∈ I, then |= ϕ(a′, ej , bi) for all i ∈ I.
By indiscernibility over A, {ϕ(x, y; bi) : i < ω} is consistent, a contradiction.

Let n < ω. Since p(n) is A-invariant, by Lemma 16.2 and Corollary 11.9, p(n) � A is a
Lascar-strong type. We claim that q(n) � A is a Lascar strong type too. To begin with, we
claim it gives rise only to finitely many Lascar strong types over A. Assume that, on the
contrary,

{((ai1, ei1), . . . , (ain, e
i
n)) : i < ω}

are realizations of q(n) � A with different Lascar strong type over A. Since ai1, . . . , a
i
n

Ls≡A
aj1, . . . , a

j
n, we may assume ai1, . . . , a

i
n = aj1, . . . , a

j
n = a1, . . . , an for all i, j. Since eji ≡Aai eki

for all i, k and eji ∈ acleq(Aai), by Ramsey’s Theorem there is some infinite I ⊆ ω such that

eji = eki for all j, k ∈ I for all i = 1, . . . , n. Then eji = eki for all j, k ∈ I for all i = 1, . . . , n.

Thus,
Ls≡A has only finitely many classes on q(n) � A. Since q(n) does not fork over A, by

Corollary 11.9
Ls≡A =

KP≡A on q(n) � A is a bounded A-type-definable equivalence relation
E. Let b1, . . . , bm be representatives of the different E-classes and for each two different
i, j ≤ m choose a formula ϕij(x, y) ∈ E(x, y) such that |= ¬ϕij(ai, aj) and choose then
some ψij(x, y) ∈ E(x, y) such that

ψij(x, y) ∧ ψij(y, z) ∧ ψij(z, u) ` ϕij(x, u).

It is easy to check that ψ(x, y) =
∧
i<j≤m ψij(x, y) defines E on q(n) � A. We may assume

ψ(x, y) ∈ L(A) defines an equivalence relation F with finitely many classes in the whole
universe. Each F -class is interdefinable over A with some element of acleq(A). Since

A = acleq(A), this implies that F (and hence also
Ls≡A) has only one class in q(n) � A. 2

Proposition 16.5 Assume T has NIP. The following are equivalent:

1. Every set A is an extension base and
Ls≡A =

s≡A.

2. For any A = acleq(A), every p(x) ∈ S1(A) (in the home sort) has a global A-invariant
extension.

3. For any A = acleq(A), every p(x) ∈ S(A) has a global A-invariant extension.

Proof: 1 ⇒ 2. Let p(x) ∈ S1(A), where A = acleq(A). Since A is an extension base, there
is a nonforking extension p of p. Then p does not Lascar-split over A. Since A = acleq(A)

and
s≡A=

Ls≡A, p does not split over A, that is, p is A-invariant.

3 ⇒ 1. Let p(x) ∈ S(A) and let q(x) ∈ S(acleq(A)) be some extension of p. By 3 there
is an acleq(A)-invariant global extension p of q. Since p does not fork over acleq(A), it does
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not fork over A. This shows that A is an extension base. Now assume a
s≡A b, that is

a ≡acleq(A) b. By 3 applied to acleq(A) and Lemma 16.2, a ≡bdd(A) b, that is a
KP≡A b. By

Corollary 11.9, a
Ls≡A b.

2 ⇒ 3. By Lemma 16.3 it is enough to prove the result for finitary types p(x), and
this can be done by induction on the length n of x. Assume the result holds for types
in n variables and let p(x1, . . . , xn+1) ∈ S(A). Let M ⊇ A be a model complete over
A and strongly ω-homogeneous over A. Let (a1, . . . , an+1) |= p. Let e be a sequence of
imaginaries enumerating acleq(Aa1, . . . , an). By Lemmas 16.3 and 16.4 there is some e′

such that tp(e′/M) does not split over A and extends tp(e/A). There are a′1, . . . , a
′
n such

that a1, . . . , an, e ≡A a′1, . . . , a
′
n, e
′. Choose B complete over Me′. Since e′ = acleq(e′), by

2 and conjugation over A, there is some a′n+1 such that a′n+1e
′ ≡A an+1e and tp(a′n+1/B)

does not split over e′.

We claim that q(x, y) = tp(a′n+1e
′/M) does not split over A. To check this, consider

some ϕ(x, y; z) ∈ L(A) and some finite tuple b ∈ M . Since tp(e′/M) does not split over
A and M is strongly ω-homogeneous over A, for each ψ(y, z) ∈ L, the set {b′ ∈ M :|=
ψ(e′, b′)} is invariant under Aut(M/A). Hence also {b′ ∈ M :|= ψ(e′, b′) ↔ ψ(e′, b)} and
{b′ ∈ M : e′b′ ≡ e′b} are invariant under Aut(M/A). Since tp(a′n+1/B) does not split
over e′, for all b′ ∈ M , e′b′ ≡ e′b implies ϕ(x, y; b) ∈ q ⇔ ϕ(x, y; b′) ∈ q. If b′ ∈ M
and b ≡A b′, then f(b) = b′ for some f ∈ Aut(M/A). Hence e′b ≡ e′b′ and therefore
ϕ(x, y; b) ∈ q ⇔ ϕ(x, y; b′) ∈ q.

In particular, tp(a′1, . . . , a
′
n+1/M) does not split over A and it has a global A-invariant

extension. Since a1, . . . , an+1 ≡A a′1, . . . , a
′
n+1, p(x1, . . . , xn+1) has a global A-invariant

extension too. 2

17 Abstract preindependence and independence rela-
tions

Definition 17.1 Let |̂ be a ternary relation between sets. We consider a list of possible
properties of |̂ :

Invariance: If A |̂
C
B and f ∈ Aut(C), then f(A) |̂

f(C)
f(B).

Monotonicity: If A |̂
C
B, A′ ⊆ A, and B′ ⊆ B, then A′ |̂

C
B′.

Right base monotonicity: If A |̂
C
B and C ⊆ D ⊆ B, then A |̂

D
B.

Left base monotonicity: If A |̂
C
B and C ⊆ D ⊆ A, then A |̂

D
B.

Right normality: If A |̂
C
B, then A |̂

C
CB.

Left normality: If A |̂
C
B, then AC |̂

C
B.

Right transitivity: If C ⊆ B ⊆ D, A |̂
C
B, and A |̂

B
D, then A |̂

C
D.

Left transitivity: If C ⊆ B ⊆ D, B |̂
C
A, and D |̂

B
A, then D |̂

C
A.

Symmetry: If A |̂
C
B, then B |̂

C
A.

Right finite character: If A |̂
C
B0 for all finite B0 ⊆ B, then A |̂

C
B.

Left finite character: If A0 |̂ C B for all finite A0 ⊆ A, then A |̂
C
B.
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Strong finite character: If A 6 |̂
C
B, then there are finite tuples a ∈ A, b ∈ B and some

formula ϕ(x, y) ∈ L(C) such that |= ϕ(a, b) and such that a′ 6 |̂
C
b for all a′ |= ϕ(x, b).

Local character: For every A there is a cardinal number κ(A) such that for any B there
is some C ⊆ B such that |C| < κ(A) and A |̂

C
B.

(Right) extension: If A |̂
C
B and B′ ⊇ B, then A′ |̂

C
B′ for some A′ ≡BC A.

Left extension: If A |̂
C
B and A′ ⊇ A, then A′ |̂

C
B′ for some B′ ≡AC B.

Anti-reflexivity: If A |̂
C
A, then A ⊆ acl(C).

Right algebraicity: If A |̂
C
B, then A |̂

C
acl(B).

Left algebraicity: If A |̂
C
B, then acl(A) |̂

C
B.

Base algebraicity: If A |̂
C
B, then A |̂

acl(C)
B.

Existence: A |̂
C
C.

Let us call basic axioms to invariance, monotonicity, right base monotonicity, left transi-
tivity, and left normality. A preindependence relation is a ternary relation |̂ satisfying the
basic axioms and strong finite character. An independence relation is a ternary relation |̂
satisfying the basic axioms, left finite character, local character and extension. Note that
invariance and extension imply right normality. Hence all independence relations satisfy
right normality.

If A |̂ 1

C
B implies A |̂ 2

C
B for all A,B,C we say that |̂ 1

is stronger than |̂ 2
and

that |̂ 2
is weaker than |̂ 1

.

Fact 17.2 All independence relations are symmetric.

Proof: See [1], or [5], or [7]. 2

Definition 17.3 Given a ternary relation |̂ , we define the ternary relation |̂ ∗ as follows:

A
∗
|̂
C

B if and only if for all B′ ⊇ B there is some A′ ≡BC A such that A′ |̂
C

B′

Proposition 17.4 1. If |̂ is invariant, then |̂ ∗ is invariant and stronger than |̂ .

2. If |̂ satisfies monotonicity and invariance, then |̂ ∗ satisfies extension.

3. Each basic axiom and also anti-reflexivity transfers from |̂ to |̂ ∗.

4. Assume |̂ satisfies the basic axioms and left finite character. If |̂ ∗ satisfies local
character, then it is an independence relation.

5. Assume |̂ satisfies monotonicity and invariance. Then, |̂ = |̂ ∗ if and only if |̂
satisfies extension.

6. Assume |̂ is invariant and satisfies monotonicity and strong finite character. Then

|̂ ∗ satisfies strong finite character.

7. If |̂ satisfies left algebraicity, then |̂ ∗ satisfies left algebraicity too.
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8. If |̂ satisfies monotonicity and invariance, |̂ ∗ satisfies right algebraicity. If more-

over |̂ satisfies right base monotonicity, |̂ ∗ satisfies also base algebraicity.

Proof: Everything (except 7 and 8 ) is from Adler [1]. Points 1 –5 are also proved in [7].
7 is straightforward. We prove now 6. Assume |̂ has strong finite character and a 6 |̂ ∗

C
B.

For some B′ ⊇ B, for all a′ ≡BC a, a′ 6 |̂
C
B′. Let p(x) = tp(a/BC) and let

π(x) = {¬ϕ(x, b) : b ∈ B′, ϕ(x, y) ∈ L(C), and a′ 6 |̂
C

b for all a′ |= ϕ(x, b)}

By strong finite character of |̂ , π(x)∪p(x) is inconsistent and therefore for some ψ(x, y) ∈
L(C), for some b ∈ B, ψ(x, b) ∈ p(x) and π(x) ∪ {ψ(x, b)} is inconsistent. Note that
|= ψ(a, b). We claim that for all a′ |= ψ(x, b), a′ 6 |̂ ∗

C
b. To check this, assume |= ψ(a′, b)

but a′ |̂ ∗
C
b. By definition of |̂ ∗, there is some a′′ ≡Cb a′ such that a′′ |̂

C
B′. Then

|= ψ(a′′, b) and a′′ |= π(x), a contradiction.

8. Assume a |̂ ∗
C
B. By extension, there is some a′ ≡BC a such that a′ |̂ ∗

C
acl(B). Fix

some f ∈ Aut(C/BC) such that f(a′) = a. Since f(acl(BC)) = acl(BC), by invariance
a |̂ ∗

C
acl(BC). By monotonicity a |̂ ∗

C
acl(B). On the other hand, by monotonicity and

right base monotonicity, we conclude A |̂ ∗
acl(C)

B. 2

Proposition 17.5 If |̂ is a preindependence relation, then |̂ ∗ is the weakest preinde-
pendence relation that satisfies extension and is stronger than |̂ .

Proof: By points 1, 2, 3, and 6 of Proposition 17.4, we know that |̂ ∗ is a preindependence

relation and satisfies extension. Note that if |̂
1

is stronger than |̂
2
, then |̂ ∗

1
is stronger

than |̂ ∗
2
. Now assume |̂

1
is a preindependence relation with extension and it is stronger

than |̂ . By point 5 of proposition 17.4, |̂
1

= |̂ ∗
1

is stronger than |̂ ∗. 2

Definition 17.6 |̂ f
will denote nonforking independence: A |̂ f

C
B if and only if for every

tuple a ∈ A, tp(a/BC) does not fork over C. In the previous chapters we have used |̂
for this relation, but now |̂ is used as an arbitrary ternary relation on sets. Nondividing

independence can be defined similarly: A |̂ d

C
B if and only if tp(a/BC) does not divide

over C for all tuples a ∈ A.

Fact 17.7 A |̂ d

C
B if and only if for any C-indiscernible sequence (bi : i < ω) with b0 ∈ BC

there is some AC-indiscernible sequence (b′i : i < ω) ≡b0C (bi : i < ω).

Proof: See, for instance, Chapter 4 of [7]. 2

Remark 17.8 1. |̂ d
is a preindependence relation and moreover it satisfies anti-reflexivity,

right normality, existence, and left algebraicity.

2. ( |̂ d
)∗ = |̂ f

.

3. |̂ f
is a preindependence relation and moreover it satisfies anti-reflexivity, right nor-

mality, extension, and all algebraicity conditions.

Proof: 1. Left algebraicity of |̂ d
follows from the fact that A |̂ d

C
B ⇒ acl(AC) |̂ d

C
B,

which can be easily checked using Fact 17.7.

2 is Proposition 12.14 of [7].

3. By Proposition 17.5 |̂ f
is a preindependence relation and satisfies extension. The

remaining points follow from Proposition 17.4. 2
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Fact 17.9 If |̂ is an independence relation, then A |̂ d

C
B ⇒ A |̂

C
B.

Proof: See Proposition 12.19 of [7]. 2

Fact 17.10 If T is simple, then |̂ f
= |̂ d

. Moreover, the following are equivalent:

1. T is simple.

2. |̂ f
is an independence relation.

3. |̂ d
is an independence relation.

4. |̂ f
satisfies local character.

5. |̂ d
satisfies local character.

6. |̂ f
is symmetric.

7. |̂ d
is symmetric.

8. |̂ f
is right transitive.

9. |̂ d
is right transitive.

Proof: See propositions 12.16 and 12.24 of [7]. 2

Fact 17.11 T is simple if and only if in T there is an independence relation |̂ which sat-
isfies the independence theorem over models: for any model M for any A,B ⊇M such that
A |̂

M
B, if a |̂

M
A, and b |̂

M
B and a ≡M b, then there is some c such that c |̂

M
AB,

c ≡A a and c ≡B b. Moreover, if T is simple and |̂ is as indicated, then |̂ = |̂ d
.

Proof: See Theorem 12.21 of [7]. 2

18 More preindependence relations

Definition 18.1 1. A |̂ u

C
B if and only if tp(a/BC) is finitely satisfiable in C for all

tuples a ∈ A.

2. A |̂ s

C
B if and only if for all tuples b1, b2 ∈ BC, if |= ncC(b1, b2), then |= ncAC(b1, b2).

3. A |̂ i

C
B if and only if for each tuple a ∈ A there is a global extension p of tp(a/BC)

that does not Lascar-split over C.

Proposition 18.2 1. |̂ u
is a preindependence relation. Moreover it satisfies right nor-

mality and anti-reflexivity.

2. |̂ u
satisfies extension. Hence ( |̂ u

)∗ = |̂ u
and it satisfies right and base algebraic-

ity.

3. A |̂ u

C
B if and only if for every tuple a ∈ A there is a sequence b = (bi : i ∈ I) in C

and some ultrafilter U on I such that tp(a/BC) = limU (b/BC).

33



Proof: 1 is clear.

2. By compactness, every type p(x) ∈ S(BC) finitely satisfiable in C can be extended
to a complete type over BCD finitely satisfiable in C.

3. Every p(x) ∈ S(BC) finitely satisfiable in C is in fact limU (b/BC) for some sequence
b of tuples in C, for some ultrafilter U on I = p(x): the ultrafilter extends the set of all
[ϕ] = {ψ ∈ p : ψ ≡ ϕ} with ϕ ∈ p and the sequence is obtained by choosing some bϕ |= ϕ
in C for every ϕ ∈ p. 2

Remark 18.3 Notice that A 6 |̂ u
B for all A 6= ∅. In stable T , |̂ u

M
= |̂ f

M
for every

model M . In simple unstable T , |̂ u

M
6= |̂ f

M
for some model M .

Proposition 18.4 |̂ s
is a preindependence relation and satisfies right normality, left base

monotonicity and left and base algebraicity.

Proof: Invariance, monotonicity, left and right normality, and left transitivity are straight-
forward.

Right base monotonicity. Assume A |̂ s

C
B, and C ⊆ D ⊆ B, and let us show that

A |̂ s

D
B. Let b1, b2 ∈ BD = BC be such that |= ncD(b1, b2) and let d enumerate D. Then

|= ncC(b1d, b2d) and therefore |= ncAC(b1d, b2d). It follows that |= ncAD(b1, b2).

Strong finite character. Let A 6 |̂ s

C
B and let b1, b2 ∈ BC be such |= ncC(b1, b2) and

6|= ncAC(b1, b2). For some tuple a ∈ A, for some θ(x, y, z) ∈ L(C), θ(x, y, a) ∈ ncAC(x, y)
and 6|= θ(b1, b2, a). We may assume that for every a′, θ(x, y, a′) is a thick formula. If
|= ¬θ(b1, b2, a′), then a′ 6 |̂ s

C
b1b2, because θ(x, y, a′) ∈ ncCa′(x, y).

Left base monotonicity: clear, since in the definition of |̂ s
we may always assume that

b1, b2 ∈ B.

Finally, it is clear that A |̂ s

C
B ⇒ acl(AC) |̂ s

C
B, and this implies left and base alge-

braicity. 2

Proposition 18.5 If M ⊇ C is ω-saturated over C, then the following are equivalent:

1. A |̂ s

C
M

2. tp(a/M) does not strongly split over C for all tuples a ∈ A.

3. tp(a/M) does not Lascar-split over C for all tuples a ∈ A.

Proof: 1 ⇒ 2 is clear and does not need the assumption of ω-saturation.

3 ⇒ 1. Assume b0, b1 ∈ M and |= ncC(b0, b1). By ω-saturation over C, there is a
C-indiscernible sequence (bi : i < ω) in M . We claim that it is AC-indiscernible. Let
a ∈ A be a tuple, let n < ω and let i0 < . . . < in < ω. We must check that b0, . . . , bn ≡aC
bi0 , . . . , bin . But this is clear, since b0, . . . , bn

Ls≡C bi0 , . . . , bin and hence |= ϕ(a, b0, . . . , bn)↔
ϕ(a, bi0 , . . . , bin) for all ϕ(x, y0, . . . , yn) ∈ L(C).

2 ⇔ 3. By Remark 9.8. 2

Remark 18.6 Assume B is Lascar-complete over C ⊆ B. The following are equivalent:

1. tp(a/B) does not Lascar-split over C for all tuples a ∈ A.
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2. A |̂ i

C
B.

Proof: See Proposition 10.1. 2

Proposition 18.7 ( |̂ s
)∗ = |̂ i

.

Proof: It is clear that |̂ i
is stronger than ( |̂ s

)∗. We prove A( |̂ s
)∗CB ⇒ A |̂ i

C
B. As-

sume A( |̂ s
)∗CB and choose a model M ⊇ BC Lascar-complete over C and ω-saturated over

C. There is some A′ ≡BC A such that A′ |̂ s

C
M . By Proposition 18.5 and Remark 18.6,

A′ |̂ i

C
M . It follows that A |̂ i

C
B. 2

Corollary 18.8 |̂ i
is a preindependence relation and it satisfies additionally extension,

right-normality, anti-reflexivity, and all algebraicity conditions.

Proof: By propositions 18.7, 18.4, and 17.4. 2

Proposition 18.9 A |̂ u

C
B ⇒ A |̂ i

C
B ⇒ A |̂ f

C
B

Proof: |̂ u
has the extension property and a global type finitely satisfiable in C does not

split over C. Similarly, a global type does not fork over C if it does not Lascar-split over
C. 2

Definition 18.10 Let f be a function assigning a cardinal number to each cardinal number.
We say that |̂ is bounded by f if for all C ⊆ B for every finitary type p(x) ∈ S(C), there
are at most f(|T |+ |C|) types q(x) ∈ S(B) extending p such that for any a |= q, a |̂

C
B.

We say that |̂ is bounded if it is bounded by some f .

Proposition 18.11 |̂ i
is the weakest bounded preindependence relation that satisfies the

extension axiom, and it is bounded by f(κ) = 22κ .

Proof: For any finitary p(x) ∈ S(C), the number of global types p extending p that do not

Lascar-split over C is bounded by 22|T |+|C| . Hence, |̂ i
is bounded by f(κ) = 22κ . Now let

|̂ be a bounded preindependence relation satisfying extension and assume |̂ i
is not weaker

than |̂ . There is a tuple a and sets C,B such that a |̂
C
B and a 6 |̂ i

C
B. By extension,

we may assume B is a (|C| + |T |)+-saturated model containing C. By Remark 18.6 and
Proposition 18.5, a 6 |̂ s

C
B. Hence, using saturation of B, there is a C-indiscernible sequence

b = (bi : i < ω) in B such that for some ϕ(x, y) ∈ L(C), |= ϕ(a, b0) and |= ¬ϕ(a, b1). In
fact we obtain i1 < . . . < in and ψ(x, y1, . . . , yn) ∈ L(C) such that |= ψ(a, b1, . . . , bn) and
6|= ψ(a, bi1 , . . . , bin), but we may then assume n < i0 and we can consider a derived C-
indiscernible sequence of n-tuples of bi’s giving the result. We may assume that |= ϕ(a, bi)
for all i ≥ 2 or |= ¬ϕ(a, bi) for all i ≥ 2. Without loss of generality, we may assume we are
in the second case. Note that a |̂

C
b. Let c = (ci : i < κ) be a C-indiscernible sequence

with same Ehrenfeucht-Mostowski set over C as b. We claim that p(x) = tp(a/C) has at
least κ extensions qi(x) over Cc such that a′ |̂

C
c for all a′ |= qi. Let π(x) be the set

of all formulas ¬ψ(x) such that ψ(x) ∈ L(Cc) an for all a′ |= ψ(x), a′ 6 |̂
C
c. For each

i < κ, π(x) ∪ p(x) ∪ {ϕ(x, ci)} ∪ {¬ϕ(x, cj) : j > i} is consistent and we may choose a type
qi(x) ∈ S(Cc) extending it. If i < j, then qi 6= qj since ¬ϕ(x, cj) ∈ qi while ϕ(x, cj) ∈ qj . If
a′ |= qi, then, by strong finite character, a′ |̂

C
c. This contradicts boundedness of |̂ . 2

Proposition 18.12 The following are equivalent and they hold if T has NIP.
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1. |̂ f
is bounded.

2. |̂ f
is bounded by f(κ) = 22κ .

3. |̂ f
= |̂ i

.

Proof: Since |̂ i
is stronger than |̂ f

, the conditions are equivalent by Proposition 18.11.
By Proposition 9.6, 3 holds if T has NIP. 2

Proposition 18.13 The following are equivalent.

1. T is stable.

2. T is simple and |̂ i
= |̂ f

.

3. |̂ i
has local character.

4. |̂ i
is an independence relation.

5. |̂ i
is symmetric.

Proof: 1 ⇒ 2. By Proposition 18.12, since stable theories are simple and have NIP.

2 ⇒ 3. Clear since in a simple theory |̂ f
has local character (for instance, see Propo-

sition 12.16 of [7]).

3 ⇒ 4. Clear, since by Corollary 18.8 |̂ i
satisfies all the other conditions of indepen-

dence.

4 ⇒ 5. By Fact 17.2.

5 ⇒ 3. Given A,B it is easy to find C ⊆ A of cardinality ≤ |B|+ |T | such that A |̂ u

C
B.

By Proposition 18.9, A |̂ i

C
B and by symmetry B |̂

C
A.

4 ⇒ 1. By Proposition 18.11, |̂ i
is bounded. Stable theories are characterized by the

existence of a bounded independence relation. See, for instance, Theorem 12.22 of [7]. 2

19 Algebraic independence

Definition 19.1 A |̂ a

C
B if and only if acl(AC) ∩ acl(BC) = acl(C).

Proposition 19.2 |̂ a
satisfies invariance, symmetry, transitivity, monotonicity, normal-

ity, finite character, local character, anti-reflexivity, algebraicity, existence, and extension.
It satisfies all conditions of an independence relation except, perhaps, base monotonicity.
Moreover it is weaker than |̂ f

.

Proof: Invariance, symmetry, transitivity, monotonicity, normality, finite character, anti-
reflexivity, algebraicity and existence are easy to check.

Local character. Given A and B, construct (Ci : i < ω) and (Di : i < ω) as follows.
Start with C0 = D0 = ∅. Put Di+1 = acl(ACi) ∩ acl(B). For each d ∈ Di+1 choose a finite
subset Cd ⊆ B such that d ∈ acl(Cd) and put Ci+1 =

⋃
d∈Di+1

Cd. Then C =
⋃
i<ω Ci is a

subset of B of cardinality ≤ |A|+ |T | and A |̂ a

C
B.
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Extension. It is enough to prove that for all A,B,C there is some A′ ≡C A such that
A′ |̂ a

C
B. Let a be an enumeration of acl(AC) r acl(C). It suffices to show that for some

a′ ≡acl(C) a, a′ ∩ acl(BC) = ∅ since then we can obtain A′ such that A′a′ ≡acl(C) Aa and
it follows that A′ |̂ a

C
B. To obtain a′ it is enough to prove that for any finite subtuple

a0 of a there is some a′0 ≡acl(C) a0 such that a′0 ∩ acl(BC) = ∅, and this can be done by
P.M. Neumann’s Lemma (see the Appendix) since a0 ∩ acl(C) = ∅. 2

Proposition 19.3 |̂ a
satisfies base monotonicity if and only if the lattice of algebraically

closed sets is modular, that is, for all algebraically closed A,B,C, if C ⊆ B, then B ∩
acl(AC) = acl((B ∩A)C).

Proof: Notice that if B is closed and contains C, then acl(B ∩ A)C ⊆ B ∩ acl(AC).
Now assume base monotonicity. Since A |̂ a

A∩B B, we get A |̂ a

(A∩B)C
B and therefore

acl(AC)∩B ⊆ acl((A∩B)C). For the other direction, we assume modularity, A |̂ a

C
B and

C ⊆ D ⊆ B. Then acl(AD) ∩ acl(B) ⊆ acl((acl(B) ∩ acl(A))D) ⊆ acl(acl(C)D) = acl(D).
Hence A |̂ a

D
B. 2

Fact 19.4 If (Ω, cl) is a pregeometry, the ternary relation |̂ dim
is defined on subsets of Ω

by

A
dim

|̂
C

B ⇔ dim(A0/C) = dim(A0/BC) for all finite A0 ⊆ A.

It can also be defined by

A
dim

|̂
C

B ⇔ every X ⊆ A independent over C is independent over BC.

It satisfies symmetry, transitivity, normality, motonicity, base motonicity, finite character,
existence, and the following stronger form of local character: If A is finite, then for each
B there is a finite C ⊆ B such that A |̂ dim

C
B. Moreover A |̂ dim

C
cl(C) and the following

version of anti-reflexivity holds: if A |̂ dim

C
A, then A ⊆ cl(C). The pregeometry is modular

if and only if

A
dim

|̂
C

B ⇔ cl(AC) ∩ cl(BC) = cl(C).

Proof: See [6]. 2

Proposition 19.5 Assume the algebraic closure operator acl has the exchange property
and therefore defines a pregeometry in the universe. Let |̂ dim

be5 the relation defined as in

Fact 19.4. It satisfies invariance and all the properties stated in Fact 19.4. Moreover |̂ dim

satisfies extension and strong finite character and hence it is an independence relation and
also a preindependence relation. In this situation, |̂ dim

= |̂ a
if and only the pregeometry

is modular.

Proof: We check the extension property, in fact in a strong sense that implies existence.
Let a = (ai : i < α), and let C,B be sets. We prove inductively that for all β ≤ α there

is some a′<β ≡C a<β such that a′<β |̂
dim

C
B. The limit case is clear since we extend the

previous obtained sequences. Assume inductively this is the case for β ≤ α and let us
consider the case of a≤β = a<βaβ . We have a′<β ≡C a<β such that a′<β |̂

dim

C
B. Let b be

5The notation is |̂ g in [2]
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such that a′<βb ≡C a<βaβ . It is enough to find b′ ≡Ca′<β b such that b′ |̂ dim

Ca′<β
B. In other

terms, we must check that for every element a, for all sets B,C there is some a′ ≡C a, such
that a |̂ dim

C
B. If a ∈ acl(C), we put a′ = a. If a 6∈ acl(C), we may choose some a′ ≡C a

such that a′ 6∈ acl(BC), and it follows that a′ |̂ dim

C
B.

Strong finite character. Since |̂ dim
is symmetric, it is enough to check that the reverse

of |̂ dim
has the property. Assume A 6 |̂ dim

C
B. Then for some finite tuples a ∈ A and b =

b1, . . . , bn ∈ B, b is algebraically independent over C but b1 ∈ acl(C, a, b2, . . . , bn). Choose
ϕ(x, y1, . . . , yn) ∈ L(C) such that |= ϕ(a, b1, . . . , bn) and such that b1 ∈ acl(C, a′, b2, . . . , bn)

for every a′ such that |= ϕ(a′, b1, . . . , bn). Then b 6 |̂ dim

C
a′ for each such a′. 2

Corollary 19.6 In any o-minimal theory |̂ dim
is an independence relation and also a

preindependence relation. It satisfies anti-reflexivity and all algebraicity conditions.

20 Appendix

Lemma 20.1 (P.M. Neumann) Assume the group G acts on Ω and all orbits are of size
≥ κ ≥ ω. If Γ ⊆ Ω is finite and ∆ ⊆ Ω satisfies |∆|+ < κ, then there exists some g ∈ G
such that gΓ ∩∆ = ∅.

Proof: By induction on |Γ|. It is obvious if |Γ| = 0. Assume |Γ| = n+ 1. We can assume
Γ 6⊆ ∆ (otherwise choose g ∈ G with gΓ 6⊆ ∆ and replace Γ by Γ′ = gΓ). Fix γ0 ∈ Γ r ∆
and put Γ0 = Γ r {γ0}. Using the induction hypothesis we can construct inductively a
sequence (gi : i < |∆|+) of elements of G such that

giΓ0 ∩ (∆ ∪
⋃
j<i

gj∆) = ∅

for all i < |∆|+. Note that |
⋃
i<|∆|+ gi∆| ≤ |∆|+ < κ. There are two cases. The first one

consists in that giγ0 6∈ ∆ for some i < |∆|+. Then giΓ∩∆ = ∅. In the second case we have
giγ0 ∈ ∆ for all i < |∆|+. By cardinality reasons, giγ0 = gjγ0 for some j < i < |∆|+. Let
g = g−1

j gi. Note that gγ0 = γ0. Then giΓ0 ∩ gj∆ = ∅ and therefore gΓ0 ∩∆ = ∅. Hence
gΓ ∩∆ = ∅. 2

Corollary 20.2 Let a1, . . . , an be elements of the monster model such that ai 6∈ acl(A) for
all i = 1, . . . , n. For any set B there are b1, . . . , bn such that b1 . . . bn ≡ a1 . . . an and bi 6∈ B
for all i = 1, . . . , n.

Proof: By Lemma 20.1 with Ω =
⋃n
i=1{a : a ≡A ai}, Γ = {a1, . . . , an}, ∆ = B ∩ Ω,

G = Aut(C/A) and κ > |∆|+. 2
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