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This is an updated and slightly expanded version of a tutorial given in the Mini-Course
in Model Theory, Torino, February 9-11, 2011. Some parts were previously exposed in
the Model Theory Seminar of Barcelona. The main goals were to clarify the relation of
forking with some versions of splitting in NIP theories and to present the known results
on G-compactness, including a full proof of a theorem of E. Hrushovski and A. Pillay on
G-compactness of NIP theories over extension bases. The tutorial was given in parallel to
a tutorial of H. Adler on forking and dividing over models in NTP2 theories, now written
in [2]. Thanks are due to D. Zambella, organizer of the course.

The context is the standard in Model Theory. T is a complete theory with infinite
models, L is its language and C is its monster model. Generally x is a tuple of variables and
a a tuple of parameters. A set is small if its cardinality is smaller than the cardinality of
the monster model. For any other issue concerning notation and terminology, consult [4].

1 Strong types and G-compactness

Definition 1.1 Let A be a small set of parameters. A relation R on the monster model is
A-invariant if it is invariant under the group Aut(C/A) of all automorphisms of C pointwise
fixing A, that is, f(R) = R for all f ∈ Aut(C/A). It is type-definable over A if it is the
solution set R = π(C) of a set π(x) of formulas over A. It is definable over A if π(x) consists
of a single formula ϕ(x) ∈ L(A). If A = ∅ we say that R is 0-type-definable or 0-definable.

Clearly, if R is definable over A, it is type-definable over A and this implies it is A-
invariant. In general, these implications can not be reversed.

Remark 1.2 1. R is type-definable over A iff R and its complement are type-definable
over A.

2. If R is type-definable over A and it is B-invariant, then it is type-definable over B.

3. R is A-invariant iff it is a union R =
⋃
i∈I Ri of relations Ri which are type-definable

over A.

Proof: See Lemma 1.4 of [4]. 2

Definition 1.3 An equivalence relation E between tuples of the same length in the monster
model is bounded if the number of its equivalence classes is small. It is called finite if this
number is finite.
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Remark 1.4 Let (Ei : i ∈ I) be a family of equivalence relations on the monster model.

1. If all Ei are A-invariant,
⋂
i∈I Ei is A-invariant.

2. If all Ei are type-definable over A,
⋂
i∈I Ei is type-definable over A.

3. If all Ei are bounded,
⋂
i∈I Ei is bounded.

Proof: For item 3 see Remark 9.2 in [4]. 2

Definition 1.5 Let us fix a set of parameters A and an ordinal α.

1. The intersection of all bounded A-invariant equivalence relations on α-tuples is the
smallest bounded A-invariant equivalence relation on these tuples. It is called the

Lascar equivalence relation over A and it is denoted by
Ls≡A. We say that the tuples

a, b have the same Lascar strong type over A if a
Ls≡A b.

2. The intersection of all bounded type-definable over A equivalence relations on α-tuples
is the smallest bounded type-definable over A equivalence relation on I-tuples, it is

called the Kim-Pillay equivalence relation over A and it is denoted by
KP≡A. Two

tuples a, b have the same KP-type over A if a
KP≡A b.

3. The intersection of all finite A-definable equivalence relations on α-tuples is a bounded
type-definable over A equivalence relation sometimes called the Shelah equivalence
relation and denoted by

s≡A. We say that a, b have the same strong type over A if
a

s≡A b.

4. As usual, we write a ≡A b for equality of type over A: tp(a/A) = tp(b/A). It is a
bounded A-type-definable equivalence relation.

Remark 1.6 a
Ls≡A b⇒ a

KP≡A b⇒ a
s≡A b⇒ a ≡A b.

Definition 1.7 We define the distance over A, dA(a, b) ∈ ω ∪ {∞}, of two tuples a, b of
the same length. There are three cases. If a = b we set dA(a, b) = 0. If there is a natural
number n ≥ 1 for which there are infinite A-indiscernible sequences I1, . . . , In and tuples
a1, . . . , an+1 such that a = a1, b = an+1 and ai, ai+1 ∈ Ii for all i = 1, . . . , n, we define
dA(a, b) as the least such number n. If a 6= b and there is no such n we put dA(a, b) =∞.

Remark 1.8 a
Ls≡A b iff dA(a, b) <∞.

Definition 1.9 An automorphism f ∈ Aut(C/A) is strong over A if it is a finite product
f = f1 ◦ . . . ◦ fn of automorphisms fi ∈ Aut(C/Mi) where each Mi is a model containing
A. The strong automorphisms over A form a normal subgroup Autf(C/A) of Aut(C/A).

The group of strong automorphisms was introduced by D. Lascar in [15]. This group
acts on the tuples of C. The orbits of the action are now called Lascar strong types.

Remark 1.10 1. If dA(a, b) ≤ 1, then a ≡M b for some model M ⊇ A.

2. a ≡M b for some M ⊇ A implies dA(a, b) ≤ 2.
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3. a
Ls≡A b iff f(a) = b for some f ∈ Autf(C/A).

Proof: See Proposition 9.12 and Corollary 9.15 of [4]. 2

Definition 1.11 T is G-compact over A if
Ls≡A=

KP≡A for all possible lengths of tuples.

Remark 1.12 The following are equivalent:

1. T is G-compact over A

2.
Ls≡A is type-definable over A.

3. For some n < ω, for all tuples a, b: a
Ls≡A b iff dA(a, b) ≤ n.

Proof: See Remark 10.16 in [4]. The equivalence with item 3 was first proven by L. Newel-
ski in [16]. 2

Definition 1.13 Let E be a 0-type-definable equivalence relation. A hyperimaginary of
sort E is an equivalence class aE . Note that Aut(C/A) acts on the hyperimaginaries of sort
E by f(aE) = f(a)E . The hyperimaginary aE is A-bounded if it has a small orbit in this
action. The class of all A-bounded hyperimaginaries is bdd(A).

Note that whenever E is a bounded 0-type-definable equivalence relation, then aE ∈
bdd(∅). Moreover (see Proposition 15.27 in [4]) if aE ∈ bdd(∅), then one can find some
bounded 0-type-definable equivalence relation F such that aE = aF .

Definition 1.14 Let A be a class of hyperimaginaries. We write a ≡A b to mean that there
is an automorphism f ∈ Aut(C) fixing all hyperimaginaries of A and such that f(a) = b.

Remark 1.15 a
KP≡A b iff a ≡bdd(A) b.

Proof: We sketch the proof. For details see Proposition 15.21 in [4]. Working in T (A)
and using Lemma 15.20 from [4], we may assume A = ∅. From right to left: clear since
aKP
≡
∈ bdd(∅). For the other direction, one should check that ≡bdd(∅) is bounded and

0-type-definable. There is a single hyperimaginary e ∈ bdd(∅) such that ≡bdd(∅) =≡e.
Let e be of sort E and let c be such that cE = e. Then ≡e is type definable over c by:
x ≡e y ⇔ ∃z(E(z, c) ∧ xc ≡ yz). Since it is invariant over ∅ and type-definable, it is type-
definable over ∅. The mapping sending each equivalence class a≡e

to tp(a/c) is one-to-one
and therefore ≡e is bounded. 2

There is a well-known version of this last result for the case
s≡A in terms of imaginaries:

Fact 1.16 a
s≡A b iff a ≡acleq(A) b.

2 NIP, simple and NTP2 theories

Definition 2.1 The formula ϕ(x, y) ∈ L has the tree property (with respect to k < ω) if
there is a tree (as : s ∈ ω<ω) of tuples as such that

• {ϕ(x, asan) : n < ω} is k-inconsistent for all s ∈ ω<ω.
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• {ϕ(x, af�n) : n < ω} is consistent for all f ∈ ωω.

The theory T is simple if no formula has the tree property in T .

Simple theories were first defined by S. Shelah in [18], but the most relevant facts were
found later by B. Kim and A. Pillay. There are some expository books and our main
reference is [4].

Fact 2.2 Simple theories are G-compact over any set, with distance 2, that is, in a simple

theory for any tuples a, b: a
Ls≡A b iff dA(a, b) ≤ 2.

Proof: See Proposition 10.12 of [4]. This was first proven by B. Kim and A. Pillay in [13].
2

Definition 2.3 The formula ϕ(x, y) ∈ L has the independence property if there is a se-
quence of parameters (an : n < ω) such that for every X ⊆ ω the following is consistent:

{ϕ(x, an) : n ∈ X} ∪ {¬ϕ(x, an) : n 6∈ X}

The theory is NIP (or dependent) if no formula has the independence property in T .

The independence property is studied by S. Shelah in [19] and by B. Poizat in [17]. The
most recent developments in the model theory of NIP theories are due to S. Shelah, E.
Hrushovski and A. Pillay among others. For an exposition we refer to H. Adler [1] and P.
Simon [20].

Both in the definition of NIP and of simplicity we may allow the formula ϕ(x, y) to
contain some parameters since they can be added to the nodes as of the tree or to the
tuples an.

Remark 2.4 The formula ϕ(x, y) ∈ L has the independence property iff for some indis-
cernible sequence (an : n < ω) there is some c such that |= ϕ(c, an) iff n is even.

Proof: Assume ϕ(x, y) has the independence property. By compactness we may assume
that the sequence (an : n < ω) witnessing the independence property is indiscernible. But
{ϕ(x, a2n) : n < ω} ∪ {¬ϕ(x, a2n+1) : n < ω} is consistent.

For the other direction, assume there is an indiscernible sequence (an : n < ω) such
that {ϕ(x, a2n) : n < ω} ∪ {¬ϕ(x, a2n+1) : n < ω} is consistent. We claim that {ϕ(x, an) :
n ∈ X} ∪ {¬ϕ(x, an) : n ∈ ω r X} is consistent for all X ⊆ ω. It is enough to check
that for any finite disjoint X,Y ⊆ ω, Σ(x) = {ϕ(x, an) : n ∈ X} ∪ {¬ϕ(x, an) : n ∈ Y }
is consistent. Let m1 < . . . < mi and k1 < . . . < kj be respective enumerations of X and
Y and choose even numbers m′1 < . . . < m′i and odd numbers k′1 < . . . < k′j such that
m1, . . . ,mi, k1, . . . , kj and m′1, . . . ,m

′
i, k
′
1, . . . , k

′
j have the same order type. By assumption

{ϕ(x, an) : n = m′1, . . . ,m
′
i} ∪ {¬ϕ(x, an) : n = k′1, . . . , k

′
j} is consistent. By indiscernibility

Σ(x) is consistent. 2

A theory is stable if and only if it is simple and NIP. An important class of unstable
NIP theories are the o-minimal theories.

Fact 2.5 In an o-minimal theory all automorphims are strong. If two tuples have the same
type over A, then they have the same type over some model containing A. Hence, all
o-minimal theories are G-compact over any set, with distance 2.
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Proof: See Lemma 24 in [21]. 2

Definition 2.6 The formula ϕ(x, y) ∈ L has TP2, the tree property of the second kind, if
there is an array of tuples (aij : i, j < ω) and some k < ω such that:

• {ϕ(x, aij) : j < ω} is k-inconsistent for every i < ω.

• {ϕ(x, aif(i)) : i < ω} is consistent for every f : ω → ω.

The theory T is TP2 if some formula has the tree property of the second kind in T , otherwise
it is NTP2.

Lemma 2.7 If T has TP2, then some formula ϕ(x, y) has TP2 in T with respect to k = 2.

Proof: Start with an array (ai,j : i, j < ω), a natural number k and a formula ϕ(x, y)
witnessing TP2, We may assume k is minimal, that is, no array and formula witness TP2

of T with a smaller number. We may also assume that the rows of the array are mutually
indiscernible, in the sense that each row is indiscernible over the other rows. For more
details on this see, for instance, Lemma 1.2 of [7]. Consider the set {ϕ(x, ai,0), ϕ(x, ai,1) :
i < ω}. If it is consistent, then (by indiscernibility of the array) the formula ψ(x; y0y1) =
ϕ(x, y0) ∧ ϕ(x, y1) and the array (ai,2jai,2j+1 : i < ω, j < ω) witness TP2 with a smaller
number. If it is inconsistent, we choose n < ω such that {ϕ(x, ai,0), ϕ(x, ai,1) : i < n} is
inconsistent. Then the formula ψ(x; y0, . . . , yn−1) =

∧
i<n ϕ(x, yi) together with the array

(ani,j , . . . , an(i+1)−1,j : i < ω, j < ω) witnesses TP2 with k = 2. 2

Remark 2.8 Simple and NIP theories are NTP2.

Proof: Assume ϕ(x, y) has TP2, witnessed by the array (aij : i, j < ω) and the number
k < ω. If we put b∅ = a00 and bs = an+1,s(n) for s ∈ ωn+1, then the tree (bs : s ∈ ω<ω)
witnesses that ϕ(x, y) has the tree property with respect to k and, therefore, T is not simple.
On the other hand, by Lemma 2.7 we can assume that ϕ(x, y) has TP2 with respect to k = 2,
and then the sequence (ai0 : i < ω) witnesses that ϕ(x, y) has the independence property.
2

NTP2 theories were defined by S. Shelah in [19] and they are being systematically
investigated in the last few years. See A. Chernikov’s exposition in [7].

In section 6 we will show that NIP theories are G-compact over extension bases (to be
defined in Section 6), with distance 2. This result is due to E. Hrushovski and A. Pillay (see
Lemma 2.9 in [10]) and has been recently generalized by I. Ben-Yaacov and A. Chernikov
to all NTP2 theories, but with distance 3 (see Corollary 3.6 of [3]). It is unknown whether
it can be improved to distance 2.

3 Dividing, forking and splitting

Definition 3.1 Let ϕ(x, y) ∈ L.

1. ϕ(x, a) divides over A if there is an A-indiscernible sequence (ai : i < ω) such that
{ϕ(x, ai) : i < ω} is inconsistent and a ≡A a0.

2. ϕ(x, a) forks over A if it implies a disjuntion of formulas that divide over A.
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3. A partial type divides (forks) over A if it implies a formula that divides (forks) over
A.

Dividing implies forking. B. Kim proved in [12] that in simple theories they coincide
(see also Proposition 5.17 in [4]). A basic property of dividing is that a partial type over
A does not divide over A. This is false for forking in some cases. But forking has the
extension property: if a type p(x) over B does not fork over A ⊆ B and C ⊇ B is given,
then some complete extension of p(x) over C does not fork over A. This extension property
is sometimes false for dividing.

Definition 3.2 A type p(x) ∈ S(B) splits over A ⊆ B if there is a formula ϕ(x, y) ∈ L(A)

and finite tuples a ≡A b such that ϕ(x, a) ∈ p(x) and ¬ϕ(x, b) ∈ p(x). If a
KP≡A b we say

that KP-splits over A and if a
Ls≡A b, we say that p(x) Lascar splits over A. If dA(a, b) ≤ 1

we say that p(x) strongly splits over A . The type p(x) is finitely satisfiable in A if every
finite subset of p(x) is realized in A. In case A is a model this means that p(x) is a coheir
of p � A.

We will discuss all these splitting notions and their relation to dividing and forking.
We only consider the case of complete types and the results should not be extrapolated to
formulas.

Remark 3.3 In general for all p(x) ∈ S(B) (over A ⊆ B)

dividing⇒ forking⇒ not finitely satisfiable in A

and

strongly splitting ⇒ Lascar splitting ⇒ KP-splitting⇒ splitting ⇒ not fin. sat. in A

Proof: Only the implications splitting over A ⇒ not finitely satisfiable in A and forking
over A ⇒ not finitely satisfiable in A need some explanation. Assume p(x) ∈ S(B) is
finitely satisfiable in A. If p(x) forks over A, then p(x) ` ψ1(x, a1) ∨ . . . ∨ ψn(x, an) for
some formulas ψi(x, yi) ∈ L and tuples ai such that ψi(x, ai) divides over A. By finite
satisfiability some ψi(x, ai) is satisfied in A, which is incompatible with dividing over A.

If now p(x) splits over A, then for some tuples a, b ∈ B, for some formula ϕ(x, y) ∈ L(A),
a ≡A b, ϕ(x, a) ∈ p(x) and ¬ϕ(x, b) ∈ p(x). Then ϕ(x, a) ∧ ¬ϕ(x, b) is satisfiable in A,
contradicting the fact that a ≡A b. 2

We can obtain better results making B large over A or making A a model.

Definition 3.4 A model N is ω-saturated over A ⊆ N if for every finite tuple b ∈ N every
n-type over Ab is realized in N .

Proposition 3.5 If N is ω-saturated over A ⊆ N , then for all p(x) ∈ S(N) (over A):

dividing = forking⇒ strongly splitting = Lascar splitting⇒ KP-splitting⇒ splitting

Proof: forking ⇒ dividing. Assume p(x) ∈ S(N) and p(x) ` ψ1(x, a1) ∨ . . . ∨ ψn(x, an)
where each ψi(x, ai) divides over A. There is some tuple a ∈ N and some formula ϕ(x, y) ∈
L such that ϕ(x, a) ∈ p(x) and ϕ(x, a) ` ψ1(x, a1) ∨ . . . ∨ ψn(x, an). By saturation of N ,
we can find b1, . . . , bn ∈ N such that a1, . . . , an ≡Aa b1, . . . , bn. Then ϕ(x, a) ` ψ1(x, b1) ∨
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. . . ∨ ψn(x, bn) and each ψi(x, bi) divides over A. It follows that ψ(x, bi) ∈ p(x) for some i,
and this implies that p(x) divides over A.

dividing ⇒ strongly splitting. Assume the formula ϕ(x, a) ∈ p(x) divides over A,
witnessed by the A-indiscernible sequence (ai : i < ω). We can assume a = a0. Let
n < ω be such that {ϕ(x, ai) : i ≤ n} is inconsistent and find, by saturation, some tuples
a′1, . . . , a

′
n ∈ B such that a1, . . . , an ≡Aa a′1, . . . , a′n. Since p(x) is complete and consistent,

¬ϕ(x, a′i) ∈ p(x) for some i ≤ n. Since dA(a, a′i) ≤ 1, this shows that p(x) strongly splits
over A.

Lascar splitting ⇒ strongly splitting. Assume p(x) ∈ S(N) does not strongly split over

A, ϕ(x, y) ∈ L(A), ϕ(x, a) ∈ p(x), b is a tuple of N and b
Ls≡A a. We want to check that

ϕ(x, b) ∈ p(x). For some n < ω, dA(a, b) ≤ n. Choose tuples a1, . . . , an+1 and infinite
indiscernible sequences I1, . . . , In such that a = a1, b = an+1 and ai, ai+1 ∈ I for all i. By
saturation of N , there are b1, . . . , bn ∈ N such that a1, . . . , an ≡Aab b1, . . . , bn. Then a = b1,
b = bn and dA(bi, bi+1) ≤ 1 for all i. Inductively we see that ϕ(x, bi) ∈ p(x) for all i. Hence
ϕ(x, b) ∈ p(x). 2

Proposition 3.6 If A = M is a model and M ⊆ B, then for any p(x) ∈ S(B) (over M):

Lascar splitting = KP-splitting = splitting⇒ not coheir

Proof: We need to check splitting over M ⇒ Lascar splitting over M . But this is clear

since a ≡M b implies a
Ls≡M b since any automorphism f ∈ Aut(C/M) is strong. 2

If T is NIP we can obtain more information:

Proposition 3.7 Assume T is NIP. Strongly splitting implies dividing and Lascar splitting
implies forking. Hence for any p(x) ∈ S(B) (over A ⊆ B):

strongly splitting ⇒ Lascar splitting ⇒ KP-splitting ⇒ splitting
⇓ ⇓ ⇓

dividing ⇒ forking ⇒ not finitely sat. in A

If N is ω-saturated over A then for all p(x) ∈ S(N) (over A):

strongly splitting = dividing = forking = Lascar splitting = KP-splitting⇒ splitting

If A = M ⊆ B is a model, then for all p(x) ∈ S(B) (over M):

strongly splitting ⇒ Lascar splitting = KP-splitting = splitting
⇓ ⇓ ⇓

dividing = forking ⇒ not coheir

Hence, in a NIP theory if N is ω-saturated over a model M ⊆ N , for any p(x) ∈ S(N)
all these notions coincide, although they are stronger than not being a coheir.

Proof: Let T be NIP. We first prove strongly splitting over A⇒ dividing over A. Assume
p(x) ∈ S(B) does not divide over A ⊆ B but it strongly splits over A. For some tuples
a, b ∈ B, for some formula ϕ(x, y) ∈ L(A), dA(a, b) ≤ 1, ϕ(x, a) ∈ p(x) and ¬ϕ(x, b) ∈ p(x).
We may assume that there is an A-indiscernible sequence (ai : i < ω) with a0 = a and
a1 = b. Then (a2ia2i+1 : i < ω) is A-indiscernible and, since ϕ(x, a) ∧ ¬ϕ(x, b) does not
divide over A, {ϕ(x, a2i) ∧ ¬ϕ(x, a2i+1) : i < ω} is consistent. Let c realize this set of
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formulas. Then |= ϕ(c, ai) iff i is even. By Remark 2.4, this implies that ϕ(x, y) has the
independence property.

Lascar splitting over A ⇒ forking over A. Assume p(x) ∈ S(B) does not fork over
A ⊆ B and choose some model N ⊇ B which is ω-saturated over A. There is an extension
q(x) ∈ S(N) of p(x) that does not fork over A. Hence q(x) does not divide over A and (by
NIP) it does not strongly split over A. Hence q(x) does not Lascar split over A and the
same can be said of p(x).

The proof of KP-splitting over A ⇒ Lascar splitting over A for p(x) ∈ S(N) and N
ω-saturated over A ⊆ N is postponed to the last section. See Proposition 6.6.

The implication forking over M ⇒ dividing over M holds more generally for all NTP2

theories. This was first proven by A. Chernikov and I. Kaplan in [8]. For a simplified proof
see [2]. 2

The following diagram summarizes the implications in the general case:

strongly splitting // Lascar splitting
B ω-sat./A
oo

//
KP-splitting // splitting

A a model
oo

��
dividing

B ω-sat./A

OO

//
forking

B ω-sat./A
oo // not finitely satisfiable

If moreover T is NIP, the diagram is as follows:

strongly splitting //

��

Lascar splitting

��

B ω-sat./A
oo // KP-splitting

B ω-sat./A
oo // splitting

A a model

ff

��
dividing

B ω-sat./A

OO

//
forking

B ω-sat./A or A a model
oo // not finitely satisfiable

4 Product of types

Definition 4.1 Following Lascar [15], we say that a set B is complete over A ⊆ B if every
n-type over A is realized in B. It is the right assumption to guarantee the existence of
nonsplitting extensions.

Proposition 4.2 If B is complete over A ⊆ B, p(x) ∈ S(B) does not split over A and
B ⊆ C, then there is a unique type q(x) ∈ S(C) extending p(x) that does not split over A.

Proof: We define:

q(x) = p(x) ∪ {ϕ(x, a) : ϕ(x, y) ∈ L(A), a ∈ C and ϕ(x, a′) ∈ p(x) for some a′ ≡A a}.

The type should extend q(x). Since B is complete over A, q(x) is a complete type over
C (if consistent). This proves the uniqueness. We now check the consistency of q(x).
Assume, searching for a contradiction, that p(x) ` ¬ϕ1(x, a1) ∨ . . . ∨ ¬ϕn(x, an) where
ai ∈ C, ϕi(x, yi) ∈ L(A), ai ≡A a′i and ϕi(x, a

′
i) ∈ p(x) for each i. Choose a formula

θ(x, b) ∈ p(x) which implies the disjunction and choose tuples b′, a′′1 , . . . , a
′′
n in B such

that b′, a′′1 , . . . , a
′′
n ≡A b, a1, . . . , an. Then θ(x, b′) ∈ p(x) and θ(x, b′) ` ¬ϕ1(x, a′′1) ∨ . . . ∨

¬ϕn(x, a′′n). For some i, ¬ϕi(x, a′′i ) ∈ p(x), which contradicts non-splitting of p(x) over A
since a′′i ≡A ai. 2
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Definition 4.3 We will denote p|AC the unique nonsplitting extension of p(x) ∈ S(B) over
C as in the previous proposition. See the next remark to evaluate the dependency on A.

Remark 4.4 Assume B is AA′-complete and p(x) ∈ S(B) does not split over A nor over
A′. Then for every C ⊇ B, p|AC = p|A′C.

Proof: Let ϕ(x, y) ∈ L(A), a ∈ C and ϕ(x, a) ∈ p|AC. Choose a tuple b ∈ B such that
a ≡AA′ b. Since a ≡A b, ϕ(x, b) ∈ p ⊆ p|A′C. Since a ≡A′ b, ϕ(x, a) ∈ p|A′C. 2

Remark 4.5 If A ⊆ B ⊆ C ⊆ D, B is complete over A and p(x) ∈ S(B) does not split
over A, then:

1. (p|AC)|AD = p|AD

2. If the sequence (ai : i < ω) is such that ai |= p|ABa<i for all i < ω, then (ai : i < ω)
is B-indiscernible.

Proof: 1. Clear, since (p|AC)|AD extends p and does not split over A.

2. By induction on n < ω we prove that for all i0 < . . . < in < ω, ai0 , . . . , ain ≡B
a0, . . . , an. The case n = 0 is obvious. For the case n + 1, assume ϕ(x0, . . . , xn+1) ∈
L(B), i0 < . . . < in+1 and |= ϕ(ai0 , . . . , ain+1

). Then ϕ(ai0 , . . . , ain , x) ∈ p|ABa<in+1

and by nonsplitting and the inductive hypothesis, ϕ(a0, . . . , an, x) ∈ p|ABa<n+1. Hence
|= ϕ(a0, . . . , an+1). 2

Definition 4.6 Let B ⊇ A be complete over A and assume q(y) ∈ Sy(B) does not split
over A. For any p(x) ∈ Sx(B) the product p⊗A q is the only type in Sxy(B) such that for
all a, b:

ab |= p⊗A q ⇔ a |= p and b |= q|ABa

Note that this is independent of the choice of a, b: if a′, b′ is another choice, then ab ≡B a′b′.
Sometimes the product is defined in the reverse order: one assumes p(x) does not split over
A, takes b |= q and a |= p|ABb and sets p⊗A q = tp(ab/B).

Lemma 4.7 Assume B is complete over A ⊆ B and p(x), q(y), r(z) ∈ S(B) and q(y), r(z)
do not split over A. Then:

1. p⊗A q and q ⊗A r do not split over A.

2. p⊗A (q ⊗A r) = (p⊗A q)⊗A r.

3. For any C ⊇ B, (q ⊗A r)|AC = q|AC ⊗A r|AC

Proof: 1. We check this for p⊗A q. Assume ϕ(x, y, u) ∈ L(A), c, c′ are tuples of B such
that c ≡A c′ , ab |= p⊗A q and |= ϕ(a, b, c). Then ϕ(a, y, c) ∈ q|ABa, a type that does not
split over A. Hence ϕ(a, y, c′) ∈ q|ABa and |= ϕ(a, b, c′).

2. If a |= p, b |= q|Aa and c |= r|Aab, then ab |= p⊗A q and abc |= (p⊗A q)⊗A r.
3. Clear, since q|AC ⊗A r|AC is an extension of q ⊗A r that does not split over A. 2

Definition 4.8 If B is complete over A ⊆ B and p(x) ∈ S(B) does not split over A, the
power p(n)A is defined as the n-times iterated product p ⊗A . . . ⊗A p. More generally, we
can define for any ordinal α the power p(α)A as the type over B of a sequence (ai : i < α)
such that ai |= p|Aa<i for all i < α. These types do not split over A.
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Being complete over a subset A is a weaker condition than being a model ω-saturated
over A. However, forking still implies splitting in this situation.

Remark 4.9 Let B be complete over A ⊆ B and assume p(x) ∈ S(B) forks over A. Then
p(x) splits over A.

Proof: Suppose p(x) does not split over A. Let N ⊇ B be ω-saturated over A. Let
q(x) = p(x)|AN . Since q(x) ∈ S(N) does not split over A, by Proposition 3.5 it does not
fork over A. Then p(x) does not fork over A, a contradiction. 2

A similar treatment of Lascar splitting is possible. We can define B to be Lascar

complete over A ⊆ B if for every finite tuple a there is some a′ ∈ B such that a′
Ls≡A a. An

analogous of Proposition 4.2 holds: if B is Lascar complete over B and C ⊇ B, any type
p(x) ∈ S(B) that does not Lascar split over A has a unique extension q(x) ∈ S(C) that
does not Lascar split over A. Using this we can prove, as in Remark 4.9, that if p(x) ∈ S(B)
forks over A ⊆ B and B is Lascar complete over A, then p(x) Lascar splits over A.

5 Global types

Definition 5.1 A global type is a type p(x) over the monster model C . Every automor-
phism f ∈ Aut(C) moves p(x) to some conjugate

pf (x) = {ϕ(x, f(a)) : ϕ(x, y) ∈ L,ϕ(x, a) ∈ p(x)}

We say that p(x) is A-invariant if pf (x) = p(x) for all f ∈ Aut(C/A). Similarly, we
say that it is KP-invariant over A or bdd(A)-invariant if it is fixed under the action of
Aut(C/bdd(A)) and we say that it is Lascar invariant over A if it is fixed under the action
of Autf(C/A).

Remark 5.2 1. p(x) is A-invariant iff it does not split over A.

2. p(x) is bdd(A)-invariant iff it does not KP-split over A.

3. p(x) is Lascar invariant over A iff it does not Lascar split over A.

Remark 5.3 1. Since the monster model is ω-saturated over A, for any global type p(x),
over any small set A:

dividing = forking⇒ strongly splitting = Lascar splitting

2. If A is a model, then additionally:

invariant = KP-invariant = Lascar invariant

3. In a NIP theory, p(x)does not divide over A iff it does not fork over A iff it is Lascar
invariant over A iff it is KP-invariant over A. If additionally A is a model, these
conditions are also equivalent to being A-invariant.

Recall that a global type p(x) is A-definable if for each ϕ(x, y) ∈ L the set {a : ϕ(x, a) ∈
p(x)} is definable over A. The type is definable if it is A-definable for some small set A.
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Remark 5.4 Assume p(x) is definable. Then p(x) is definable over A iff it is A-invariant.

Proof: Let Xϕ = {a : ϕ(x, a) ∈ p(x)}. If p is A-definable, then f(Xϕ) = Xϕ and hence
pf = p for every f ∈ Aut(C/A). For the other direction use Remark 1.2. 2

Definition 5.5 A global type p(x) is called invariant if it is A-invariant for some set A.

Remark 5.6 If p(x) is A-invariant, B ⊇ A is complete over A, and p(x) = p � B, then
p(x)|AC = p(x).

Proof: p(x) is an extension of p(x) that does not split over A. 2

Let q be an invariant global type. There are different ways to define the product p⊗ q.
One option is to step outside the monster model C and work in another monster model C′

extending C where every type over C and any small subset of C′ is realized. Then we can
realize a |= p and b |= q|Ca in C′ and define p ⊗ q = tp(ab/C). By Remark 4.4, this is
independent of the choice of the small set A over which q is invariant. Another equivalent
possibility is to choose a set B ⊇ A which is complete over A and define p ⊗ q = (p �
B ⊗A q � B)|AC. There is a third option, described in the next result.

Remark 5.7 Let q(x) and q(y) be global types, let A be a small set and assume q(y) is
A-invariant. For each C ⊇ A let rC(x, y) = tp(ab/C), where a |= p � C and b |= q � Ca.
Note that rC is well-defined independently of the choice of a and b. Since C ⊆ C ′ implies
rC ⊆ rC′ the type r(x, y) =

⋃
C⊇A rC is a global type. Then r = p⊗ q.

Proof: We first check that rC(x, y) is well-defined. Assume ai |= p � C and bi |= q � Cai
for i = 1, 2. Choose f ∈ Aut(C/C) such that f(a1) = a2 and let b = f(b1). Since qf = q,
b |= q � Ca2 and hence a1b1 ≡C a2b ≡C a2b2.

For the rest it is enough to show that rB = p � B ⊗A q � B for every B ⊇ A complete
over A. And this is clear, because (q � B)|ABa = q � Ba for any a |= p � B. 2

More generally, one can define in a similar way the power p(α) = p(α)(xi : i < α) for any
invariant type p and any ordinal α. We set p(α+1)(xi : i ≤ α) = p(α)(xi : i < α) ⊗ p(xα)
and for limit α, p(α)(xi : i < α) =

⋃
β<α p

(β)(xi : i < β).

Remark 5.8 1. If q is A-invariant, then p⊗ q is A-invariant.

2. If q, r are invariant types, then p⊗ (q⊗ r) = (p⊗ q)⊗ r.

3. If p is A-invariant, then p(α) is A- invariant for every ordinal α.

4. If p is A-invariant, then any realization (ai : i < α) of the power p(α) is an A-
indiscernible sequence.

Proof: By Lemma 4.7. 2

Definition 5.9 A Morley sequence in p over A is a sequence (ai : i < α) such that ai |=
p � Aa<i for all i < α.

Remark 5.10 Let p be A-invariant. A sequence (ai : i < α) is a Morley sequence in p
over A iff it realizes p(α) � A.

Proof: Induction on α. 2
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Lemma 5.11 p(x) is Lascar invariant over A if and only if it is M -invariant for every
model M ⊇ A.

Proof: If A ⊆ M , then Aut(C/M) ⊆ Autf(C/A). On the other hand, every strong
automorphism f ∈ Autf(C/A) is of the form f = f1 ◦ . . . ◦ fn where for every i, fi ∈
Aut(C/Mi) for some model Mi ⊇ A. 2

In particular, Lascar invariant types are invariant. Hence product and powers are well-
defined.

Remark 5.12 If p is Lascar invariant over A, then p(α) is Lascar invariant over A for
every ordinal α.

Proof: By Lemma 5.11 and Remark 5.8. 2

6 G-compactness in NIP theories

Lemma 6.1 Assume the global type p(x) is Lascar invariant over A. Any realization (ai :
i < ω) of p(ω) � A is A-indiscernible.

Proof: Assume (ai : i < ω) |= p(ω) � A and choose a model M ⊇ A. Then p is M -invariant.
Let (a′i : i < ω) |= p(ω) � M . By Remark 5.8 (a′i : i < ω) is M -indiscernible and hence
A-indiscernible. Since (ai : i < ω) ≡A (a′i : i < ω), clearly (ai : i < ω) is A-indiscernible. 2

Theorem 6.2 (Hrushovski-Pillay) Let p(x) be a global type, Lascar invariant over A. If

a
Ls≡A b are realizations of p � A, then there is some realization (ai : i < ω) of p(ω) � A such

that the sequences a, a0, a1, . . . and b, a0, a1, . . . are both A-indiscernible. Hence dA(a, b) ≤ 2.

Proof: We can assume a |= p � M for some model M ⊇ A. The reason is that we can
choose a model N ⊇ A, some c |= p � N and some automorphism f ∈ Aut(C/A) sending
c to a. Then put M = f(N), and let q = pf be the A-conjugate of p by f . Notice that
a |= q � M . Since f maps a Morley sequence in p over N into a Morley sequence in q over
M , it follows that p(ω) � A = q(ω) � A.

Now let (ai : i < ω) be a realization of p(ω) � Mab. It follows that the sequence
a, a0, a1, . . . is a Morley sequence in p over M and therefore it is M -indiscernible and A-
indiscernible. We claim that for each n < ω, a ≡Aa0,...,an b, which implies that also
b, a0, a1, . . . , is A-indiscernible. Let ϕ(x, y0, . . . , yn) ∈ L(A). Since p(ω) does not Lascar
split over A,

|= ϕ(a, a0, . . . , an)⇔ ϕ(a, y0, . . . , yn) ∈ p(ω) ⇔ ϕ(b, y0, . . . , yn) ∈ p(ω) ⇔|= ϕ(b, a0, . . . , an).

2

Corollary 6.3 If T is NIP and p(x) ∈ S(A) does not fork over A, then for any realizations

a, b of p(x): a
Ls≡A b if and only if dA(a, b) ≤ 2.

Proof: If p(x) ∈ S(A) does not fork over A, it has a global nonforking extension p(x).
Since T is NIP, p(x) is Lascar invariant over A. 2

An extension base is a set A such that no type over A forks over A. It follows that any
NIP theory is G-compact over extension bases.
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Lemma 6.4 Let T be NIP and let p1(x), p2(x) be global types, Lascar invariant over A. If

there is a realization I = (ai : i < ω) of p
(ω)
1 � A, such that p1 � AI = p2 � AI, then p1 = p2.

Proof: Notice that I |= p
(ω)
1 � M for some model M ⊇ A. We claim that if I ′ = (ai :

i < α) is an A-indiscernible sequence extending I, then I ′c is also A-indiscernible for any
c |= p1 � AI ′ or c |= p2 � AI ′. Consider the case c |= p1 � AI ′. Assume i0 < . . . < in < α,
ψ(x0, . . . , xn, y) ∈ L(A) and |= ψ(ai0 , . . . , ain , c). Then ψ(ai0 , . . . , ain , y) ∈ p1. Since p1

does not Lascar-split over A and ai0 . . . ain
Ls≡A a0 . . . an, ψ(a0, . . . , an, y) ∈ p1. Since

an+1 |= p1 � Ma0 . . . an, |= ψ(a0, . . . , an, an+1). The case c |= p1 � AI ′ is similar but uses
the assumption p1 � AI = p2 � AI.

Now assume ϕ(x, y) ∈ L, ϕ(x, b) ∈ p1 and ¬ϕ(x, b) ∈ p2. Construct (ci : i < ω) in such
a way that c2i |= p1 � AIbc<2i and c2i+1 |= p2 � AIbc<2i+1. Note that I is A-indiscernible.
By the claim Ia(ci : i < ω) is also A-indiscernible. Since |= ϕ(a2i, b) and |= ϕ(a2i+1, b),
ϕ(x, y) has the independence property, a contradiction. 2

Lemma 6.5 Let T be NIP, let f ∈ Aut(C/A) and let p be a global type which is Lascar

invariant over A. Assume that for each n < ω, for each a |= p(n) � A, a
Ls≡A f(a). Then

pf = p.

Proof: Let I = (ai : i < ω) |= p(ω) � A. By Lemma 6.4 it will suffice to prove p � AI =
pf � AI. Let ϕ(x, y0, . . . , yn) ∈ L(A) and assume ϕ(x, a0, . . . , an) ∈ p. Since the tuple

a0, . . . , an realizes p(n+1) � A, by assumption a0, . . . , an
Ls≡A f(a0), . . . , f(an). Since p does

not Lascar split over A, ϕ(x, f(a0), . . . , f(an)) ∈ p. This shows that p � AI ⊇ pf � AI.
Repeating the argument for f−1, p � AI ⊆ pf � AI. 2

Proposition 6.6 Assume T has NIP. Let M be ω-saturated over A ⊆ M and p(x) ∈
S(M). Then p Lascar splits over A if and only if p KP-splits over A.

Proof: We only need to prove the direction from right to left. If p(x) does not Lascar
split over A, then it does not fork over A and therefore it has a global extension p which
does not fork over A. Hence p is Lascar invariant over A. It is enough to check that p is
bdd(A)-invariant. For this purpose, let f ∈ Aut(C/bdd(A)) and let us prove that pf = p

using Lemma 6.5. Let a |= p(n) � A. Note that f(a) also realizes p(n) � A and a
KP≡A f(a).

Since p(n) does not fork over A, by Corollary 6.3, a
Ls≡A f(a). 2

Remark 6.7 Using the comments made on Lascar completeness after Remark 4.9 we can
easily obtain a sharper version of Proposition 6.6: If T is NIP and B is Lascar complete
over A ⊆ B, then for any p(x) ∈ S(B), p Lascar splits over A if and only if p KP-splits
over A.

There are non G-compact theories. The first example was due to M. Ziegler and it
is presented in [5]. There are also ω-categorical examples (see [11] and [6]). L. Newelski

proved in [16] that in any small theory, for finites tuples
Ls≡A and

KP≡A coincide for any finite
set A. In [9] A. Conversano and A. Pillay exhibit a natural example of a non G-compact
theory. It is a principal homogeneous space on G, a saturated elementary extension of the
universal cover of the group SL(2,R). This is a NIP example.
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