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1 Pregeometries

Definition 1.1 Let Ω be a set (more generally, a class) and let cl be a mapping assigning
to each X ⊆ Ω some cl(X) ⊆ Ω. We say that cl is a closure operator if:

P1. X ⊆ cl(X).

P2. If X ⊆ Y , then cl(X) ⊆ cl(Y ).

P3. cl(cl(X)) ⊆ cl(X).

The operator cl is finitary if

P4. For all a ∈ cl(X), there is some finite X0 ⊆ X such that a ∈ cl(X0).

A finitary closure operator is a pregeometry on Ω if additionally the exchange property
holds:

P5. If a, b ∈ Ω and a ∈ cl(Xb) r cl(X), then b ∈ cl(Xa).

Definition 1.2 Let (Ω, cl) be a closure operator. A subset X ⊆ Ω is called closed if cl(X) =
X. Clearly cl(X) is the smallest closed set containing X. The intersection of closed sets
is closed because cl(cl(X) ∩ cl(Y )) ⊆ cl(cl(X)) ∩ cl(cl(Y )) = cl(X) ∩ cl(Y ). The closed sets
form a lattice with inf(X,Y ) = X ∩ Y and sup(X,Y ) = cl(X ∪ Y )

Definition 1.3 Let (Ω, cl) be a pregeometry. We say that a ∈ Ω is independent of X ⊆ Ω
if a 6∈ cl(X). We say that X ⊆ Ω is independent if for all a ∈ X, a is independent of
X r {a}. A basis of X ⊆ Ω is a maximally independent subset of X. We will see that all
bases of X have the same cardinality, which will be called the dimension of X and will be
denoted by dim(X).

Lemma 1.4 Let (Ω, cl) be a pregeometry.

∗Notes of talks given at the Model Theory Seminar. Thanks to Hans Adler, Silvia Barbina, Rafel Farré,
Juan Francico Pons and Joris Potier for their comments. Special thanks to Joris Potier for the careful
reading
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1. X ⊆ Ω is independent if and only if every finite subset of X is independent.

2. If X is independent and a 6∈ cl(X), then X ∪ {a} is independent.

3. If (ai : i < α) is an enumeration of X ⊆ Ω such that ai 6∈ cl({aj : j < i}) for all
i < α, then X is independent.

Proof: 1 is clear since the closure operator is finitary. 2 follows from P5. By 1, to
prove 3 it is enough to check that any finite subset A of X is independent and this can be
done by induction on n = |A|. The case n = 0 is trivial. Assume n = m + 1 an let A =
{ai1 , . . . , aim+1} where i1 < . . . < im+1 < α. By inductive hypothesis, B = {ai1 , . . . , aim

}
is independent. Since aim+1 6∈ cl(B), by 2 A = B ∪ {aim+1} also is independent. 2

Proposition 1.5 Let (Ω, cl) be a pregeometry. Each of the following conditions is equiva-
lent to X ⊆ Z being a basis of Z:

1. X is independent and cl(X) = cl(Z).

2. X is a minimal subset of Z such that cl(X) = cl(Z).

Proof: Let X be a basis of Z. Then Z ⊆ cl(X) and hence cl(Z) = cl(X). Thus X satisfies
the conditions of 1. Such an X can not include a proper subset X ′ with cl(X ′) = cl(Z)
because any a ∈ X rX ′ belongs to cl(X ′) ⊆ cl(X r {a}), contradicting the independency
of X. Thus, 1 implies 2. Assume now X is as in 2. We will show it is a basis of Z. If
a ∈ X and a ∈ cl(Xr {a}) then Xr {a} is a proper subset of X with cl(X) = cl(Xr {a}),
a contradiction. Thus X is independent. If a ∈ Z r X and X ∪ {a} is independent, then
a 6∈ cl(X) = cl(Z), which is impossible. Therefore X is maximally independent and X is a
basis. 2

Lemma 1.6 Let (Ω, cl) be a pregeometry.

1. If X is minimal such that a ∈ cl(X), then for each b ∈ X, (X r {b}) ∪ {a} is a basis
of cl(X).

2. If X = Y ∪̇Z is independent and Y ′ is a basis of cl(Y ) then Y ′ ∪Z is a basis of cl(X)

3. If X is a basis of Z, X ′ ⊆ X and a ∈ Z r cl(X ′), then there is some b ∈ X rX ′ such
that (X r {b}) ∪ {a} is a basis of Z.

Proof: 1. By minimality, X is independent. Also by minimality of X, a 6∈ cl(X r {b})
and therefore (X r {b})∪ {a} is independent. By P5 we know that b ∈ cl((X r {b})∪ {a})
and this implies cl((X r {b}) ∪ {a}) = cl(X).

2. For the independence of Y ′ ∪ Z apply point 3 of Lemma 1.4. On the other hand
cl(X) = cl(Y ∪ Z) = cl(cl(Y ) ∪ Z) = cl(cl(Y ′) ∪ Z) = cl(Y ′ ∪ Z).

We prove 3. Clearly, a ∈ cl(X) and therefore there is some finite X0 ⊆ X of minimal
size such that a ∈ cl(X0). Since a 6∈ cl(X ′), X0 6⊆ X ′ and we can pick b ∈ X0 r X ′. By
point 1 (X0 r {b}) ∪ {a} is a basis of cl(X0). By point 2 ((X0 r {b}) ∪ {a}) ∪ (X rX0) is
a basis of cl(X) = cl(Z). But (X r {b}) ∪ {a} = ((X0 r {b}) ∪ {a}) ∪ (X rX0). 2

Proposition 1.7 Let (Ω, cl) be a pregeometry.

1. Any independent subset X of Z can be extended to a basis X ′ of Z.
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2. If X is a basis of Z and Y is an independent subset of Z, then there is some X ′ ⊆ X
such that |X ′| = |Y | and (X rX ′) ∪ Y is a basis of Z.

3. If X,Y are bases of Z, then |X| = |Y |.

Proof: 1 can be obtained as an application of Zorn’s Lemma using only properties P4 and
P2. 2 can be easily proven using point 3 from Lemma 1.6. 3 is a direct consequence of
point 2. 2

Definition 1.8 If (Ω, cl) is a pregeometry and A ⊆ Ω, we define the localization of cl at
A, clA, by

clA(X) = cl(A ∪X)

It is easy to check that (Ω, clA) is also a pregeometry. Let X ⊆ Ω. We say that X is
independent over A (in (Ω, cl)) if X is independent in (Ω, clA). A basis of X over A (in
(Ω, cl)) is a basis of X in (Ω, clA). We use the notation dim(X/A) for the dimension of
X ⊆ Ω in (Ω, clA).

Remark 1.9 Let (Ω, cl) be a pregeometry and X ⊆ Ω.

1. Any basis of X is also a basis of cl(X) and therefore

dim(X) = dim(cl(X))

2. Since localizing at A or at cl(A) gives the same pregeometry,

dim(X/A) = dim(X/cl(A))

3. For any A ⊆ Ω, any basis of A can be completed with any basis of X over A to obtain
a basis of X ∪A, and therefore

dim(X ∪A) = dim(X/A) + dim(A)

4. If Y ⊆ Ω then any basis Z of X ∩ Y can be completed to a basis Z1 of X and also to
a basis Z2 of Y and therefore

dim(X ∪ Y ) + dim(X ∩ Y ) ≤ dim(X) + dim(Y ).

Moreover equality holds if Z1 r Z is independent over Z2.

Proof: In the case of 4, note that

dim(X) + dim(Y ) = |Z1|+ |Z2|
= |Z|+ (|Z1 r Z|+ |Z2|)
= dim(X ∩ Y ) + (|Z1 r Z|+ |Z2|)

Now X ∪ Y ⊆ cl((Z1 r Z) ∪ Z2), and hence dim(X ∪ Y ) ≤ (|Z1 r Z|+ |Z2|). If Z1 r Z is
independent over Z2 then (Z1 r Z) ∪ Z2 is a basis of X ∪ Y and since (Z1 r Z) ∩ Z2 = ∅
we get

dim(X ∪ Y ) = |(Z1 r Z) ∪ Z2| = |Z1 r Z|+ |Z2|.

2
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Proposition 1.10 Let (Ω, cl) be a pregeometry and A,B ⊆ Ω. If A is finite, then there
exist some finite B0 ⊆ B such that dim(A/B) = dim(A/B0)

Proof: Let X ⊆ A be a basis of A over B. Clearly X is independent over B′ for all
B′ ⊆ B. For each a ∈ A, since a ∈ cl(XB) there is a finite subset Ba ⊆ B such that
a ∈ cl(XBa). Let B0 =

⋃
a∈ABa. For each a ∈ A, a ∈ cl(XB0) and hence X is a basis of

A over B0. We conclude then that dim(A/B0) = |X| = dim(A/B). 2

Definition 1.11 A geometry (Ω, cl) is a pregeometry such that

1. cl(∅) = ∅.

2. cl({a}) = {a} for every a ∈ Ω.

Definition 1.12 If (Ω, cl) is a pregeometry, we define in Ω′ = Ω r cl(∅) an equivalence
relation

a ∼ b if and only if cl(a) = cl(b).

Note that by the exchange property, for a, b ∈ Ω′,

a ∈ cl(b)⇔ b ∈ cl(a)⇔ cl(a) = cl(b)

and therefore cl(a) r cl(∅) = a/ ∼. Let us define for X ⊂ Ω′/ ∼

cl′(X) = {a/ ∼ : a ∈ cl(
⋃
X) ∩ Ω′}

Then (Ω′/ ∼, cl′) is a geometry and it will be called the canonical geometry associated
to the pregeometry (Ω, cl).

Definition 1.13 An isomorphism between the pregeometries (Ω1, cl1) and (Ω2, cl2) is a
bijection f from Ω1 onto Ω2 which respects the closure operators: cl2(f(X)) = f(cl1(X))
for all X ⊆ Ω1. In other words: X is closed in (Ω1, cl1) if and only if f(X) is closed in
(Ω2, cl2). If they are the same pregeometry we talk of an automorphism of the pregeometry.
A pregeometry (Ω, cl) is homogeneous if for each closed X ⊆ Ω, for each a, b ∈ Ω rX there
is an automorphism of (Ω, cl) which fixes pointwise X and sends a to b.

Remark 1.14 1. If a pregeometry (Ω, cl) is homogeneous, its localization (Ω, clA) at
A ⊆ Ω is homogeneous.

2. If a pregeometry (Ω, cl) is homogeneous, its associated canonical geometry (Ω′/ ∼, cl′)
is homogeneous.

Proof: It is an easy verification. 2

Definition 1.15 Let (Ω, cl) be a pregeometry. For A,B,C ⊆ Ω, we say that A is inde-
pendent from C over B if for all finite A0 ⊆ A, dim(A0/BC) = dim(A0/B). We write
A |̂ cl

B
C for this.

Remark 1.16 Let (Ω, cl) be a pregeometry and let A,B,C ⊆ Ω. Then A |̂ cl

B
C if and only

if every X ⊆ A independent over B is also independent over BC.

Proposition 1.17 Let (Ω, cl) be a pregeometry and let A,B,C ⊆ Ω. Then
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1. A |̂ cl

B
cl(B)

2. Normality: If A |̂ cl

B
C then A |̂ cl

B
BC.

3. Base monotonicity: If A |̂ cl

B
C then A |̂ cl

BD
C for all D ⊆ C.

4. Monotonicity: If A |̂ cl

B
C then A′ |̂ cl

B
C ′ for all A′ ⊆ A and all C ′ ⊆ C.

5. Finite character: If A0 |̂ cl

B
C for all finite A0 ⊆ A, then A |̂ cl

B
C.

6. Transitivity: If A |̂ cl

B
C and A |̂ cl

BC
D, then A |̂ cl

B
CD.

7. Symmetry: If A |̂ cl

B
C, then C |̂ cl

B
A.

8. Local character: If A is finite, then for each C there is a finite B ⊆ C such that
A |̂ cl

B
C.

9. Anti-reflexivity: If A |̂ cl

B
A, then A ⊆ cl(B).

Proof: 1 to 4 are straightforward. 5 and 8 follow from Proposition 1.10. 6 and 9 are also
clear.

7. Note that the righthand version of finite character also holds: if A |̂ cl

B
C0 for all

finite C0 ⊆ C, then A |̂ cl

B
C. By this and 4 we may assume that A, C are finite. Working

over B, we may assume that B = ∅. Now, if A |̂ cl
C, then dim(A) = dim(A/C). Then

dim(C/A) = dim(CA)− dim(A) = (dim(C) + dim(A/C))− dim(A) = dim(C)

and hence C |̂ cl
A. 2

2 Modularity

Definition 2.1 Let (Ω, cl) be a pregeometry.

1. (Ω, cl) is trivial or degenerate or disintegrated if cl(X) =
⋃

a∈X cl(a) for all nonempty
X ⊆ Ω.

2. (Ω, cl) is modular if the modularity law

dim(X) + dim(Y ) = dim(X ∪ Y ) + dim(X ∩ Y )

holds for any closed sets X,Y .

3. (Ω, cl) is locally modular if for some a ∈ Ω the localization (Ω, cla) is modular.

4. (Ω, cl) is projective if it is nontrivial and modular.

5. (Ω, cl) is locally projective if for some a ∈ Ω the localization (Ω, cla) is projective.

6. (Ω, cl) is locally finite if for any finite X ⊆ Ω, cl(X) is finite.

Proposition 2.2 Each one of the defined properties of pregeometries (triviality, modu-
larity,...) is possessed by (Ω, cl) if and only if it is possessed by its associated canonical
geometry.
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Remark 2.3 Trivial pregeometries are modular.

Proposition 2.4 (Ω, cl) is modular if and only if for all closed X,Y : X |̂ cl

X∩Y
Y

Proof: As in point 4 of Remark 1.9 fix Z a basis of X ∩ Y , and Z1 ⊇ Z a basis of X,
and Z2 ⊇ Z a basis of Y . If X |̂ cl

X∩Y
Y then Z1 r Z (which is independent over Z) is

independent over Z2 and hence

dim(X ∪ Y ) = |Z1 r Z|+ |Z2|

and
dim(X) + dim(Y ) = dim(X ∩ Y ) + dim(X ∪ Y ).

Thus modularity is implied by this new condition. For the other direction we can clearly
assume X, Y have finite dimension. In this case the modularity law implies

dim(X ∪ Y ) = dim(X)− dim(X ∩ Y ) + dim(Y ) = dim(X/X ∩ Y ) + dim(Y ).

Since also dim(X ∪ Y ) = dim(X/Y ) + dim(Y ) we conclude dim(X/Y ) = dim(X/X ∩ Y )
and hence X |̂ cl

X∩Y
Y . 2

Corollary 2.5 (Ω, cl) is modular if and only if for all closed finite dimensional X,Y :

dim(X ∪ Y ) = dim(X) + dim(Y )− dim(X ∩ Y ).

Proposition 2.6 (Ω, cl) is modular if and only if for all X,Y,A such that A ⊆ X ∩ Y :

X
cl

|̂
A

Y if and only if cl(X) ∩ cl(Y ) ⊆ cl(A).

Proof: Each implication will be based on Proposition 2.4. We first prove that this new
condition implies modularity. Let X,Y be closed and let A = X ∩ Y . Then X |̂ cl

A
Y .

For the other direction, it is always the case that X |̂ cl

A
Y implies cl(X)∩cl(Y ) ⊆ cl(A).

Now assume modularity and cl(X) ∩ cl(Y ) ⊆ cl(A). By modularity X |̂ cl

cl(X)∩cl(Y )
Y and

since cl(X) ∩ cl(Y ) ⊆ cl(A) ⊆ cl(Y ), X |̂ cl

cl(A)
Y . This clearly implies X |̂ cl

A
Y . 2

Proposition 2.7 For any pregeometry (Ω, cl), those following are equivalent.

1. (Ω, cl) is modular.

2. If a ∈ cl(Xc) , then a ∈ cl(bc) for some b ∈ cl(X).

3. If a ∈ cl(XY ) then a ∈ cl(bc) for some b ∈ cl(X), c ∈ cl(Y ).

Proof: 1 ⇒ 2. Assume the pregeometry is modular. Let a ∈ cl(Xc). We may assume
X has finite dimension. Choosing X minimal if necessary, we may assume a, c 6∈ cl(X).
If Y = cl(ac), dim(Y/X) = 1. If a ∈ cl(c) we are done. In other case dim(ac) = 2. By
modularity dim(cl(X)∩Y ) = 1. Hence there is some b ∈ cl(X)∩Y r cl(∅). Since c 6∈ cl(X),
c 6∈ cl(b) and by exchange b 6∈ cl(c). Since b ∈ cl(ac) r cl(c), again by exchange, a ∈ cl(bc).

2 ⇒ 3. We prove the claim for finite dimensional X,Y by induction on dim(XY ). Let
a ∈ cl(XY ). By changing X,Y for minimal subsets if necessary, we may assume that for
some closed Z ⊆ Y , for some c ∈ Y , Y = cl(Zc), a 6∈ cl(XZ) and c 6∈ cl(XZ). By 1 there

6



is some b ∈ cl(XZ) such that a ∈ cl(bc). Since XZ ⊆ XY , c ∈ Y , and c 6∈ cl(XZ), we see
that dim(XZ) < dim(XY ). By the inductive hypothesis there are d ∈ X, e ∈ Z such that
b ∈ cl(de). Then a ∈ cl(cde). Since c, e ∈ Y , by 2 a ∈ cl(df) for some f ∈ Y .

3 ⇒ 1. If modularity fails then there are closed finite dimensional X,Y such that
X 6 |̂ cl

X∩Y
Y . Then there is some Y ′ ⊆ Y independent over X ∩Y and not independent over

X. For some a ∈ Y ′, a ∈ cl((Y ′r{a})∪X). If Z = (Y ′r{a})∪(X∩Y ), then a ∈ cl(Z∪X)
and a 6∈ cl(Z). By 3 a ∈ cl(bc) for some b ∈ cl(Z), c ∈ X. If a ∈ cl(b), then a ∈ cl(Z),
which is not the case. Hence a ∈ cl(bc) r cl(b) and by exchange c ∈ cl(ab) ⊆ Y . Therefore
c ∈ X ∩ Y ⊆ Z, and then a ∈ cl(Z), a contradiction. 2

Proposition 2.8 If (Ω, cl) is an homogeneous pregeometry, the following are equivalent to
the local modularity of (Ω, cl):

1. For all closed X,Y , if dim(X ∩ Y ) > 0, then dim(X ∪ Y ) + dim(X ∩ Y ) = dim(X) +
dim(Y ).

2. For all finite dimensional closed sets X,Y , if dim(X ∩ Y ) > 0, then dim(X ∪ Y ) =
dim(X) + dim(Y )− dim(X ∩ Y ).

3. For all closed X,Y if dim(X ∩ Y ) > 0, then X |̂ cl

X∩Y
Y .

4. For any a ∈ Ω r cl(∅), the localization (Ω, cla) is modular.

Proof: The proof of Proposition 2.4 shows that in fact conditions 1, 2 and 3 are equivalent.

Let a ∈ cl(∅). Then every independent set X is also independent over a, cla(X) = cl(X)
and dim(X) = dim(X/a).

Let a 6∈ cl(∅). If a ∈ cl(X), then dim(X/a) + 1 = dim(X). The reason is that we may
find a basis Z of cl(X) with a ∈ Z and then Z r {a} is a basis of cla(X) = cl(X) over a.
In case a 6∈ cl(X) we have dim(X/a) = dim(X). The reason now is that if Z is a basis of
cl(X) then Z ∪ {a} is independent and hence Z is independent over a and therefore Z is
also a basis of cla(X) = cl(Xa) over a.

1 ⇒ 4. Let X,Y be two closed sets in (Ω, cla). Since a ∈ X ∩ Y and a 6∈ cl(∅),
dim(X ∩ Y ) > 0. Then we can apply 1 to obtain dim(X ∪ Y ) + dim(X ∩ Y ) = dim(X) +
dim(Y ). In this situation, dim coincides with dim( /a) + 1 for all the sets involved and
hence dim(X ∪ Y/a) + dim(X ∩ Y/a) = dim(X/a) + dim(Y/a). This shows the modularity
of (Ω, cla).

It is clear that 4 implies local modularity. Now we assume the localization (Ω, cla) is
modular for some a and we prove 4. If a ∈ cl(∅), any closed set in (Ω, cl) is also closed
in (Ω, cla) and the dimensions dim and dim( /a) coincide. Hence the geometry (Ω, cl) is
modular in this case. Thus all its localizations are also modular. If a 6∈ cl(∅), by homogeneity
the localization at any other b 6∈ cl(∅) is also modular.

4 ⇒ 1. Let X,Y be closed sets with dim(X ∩ Y ) > 0. Then we can choose a ∈
X ∩ Y r cl(∅). Then X and Y are also closed in (Ω, cla) and dim(Z) = dim(Z/a) + 1
for Z = X,Y,X ∩ Y,X ∪ Y . By modularity of (Ω, cla), dim(X ∪ Y/a) + dim(X ∩ Y/a) =
dim(X/a) + dim(Y/a). It follows then that dim(X ∪Y ) + dim(X ∩Y ) = dim(X) + dim(Y ).
2
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3 Minimal types

Definition 3.1 Let A ⊆ M and let π(x) be a type over A, where x is a single variable.
We say that π is minimal in M if π(M) is infinite and any relatively definable (in M)
X ⊆ π(M) is finite or cofinite. We say that π(x) is minimal if it is minimal in the monster
model C.

Remark 3.2 Let A, M , π(x) be as above. Assume M is |A|+ + ω-saturated. Then π is
minimal in M if and only if there is exactly one nonalgebraic extension p(x) ∈ S(M) of π.
Therefore, π is minimal in M if and only if it is minimal.

Remark 3.3 1. If ϕ(x) ∈ L(A) axiomatizes the partial type π(x) over A, then π is
minimal if and only if ϕ is a strongly minimal formula.

2. A complete type p(x) ∈ S(A) is minimal if and only if SU(p) = 1 and it is stationary.

Proof: For 2, assume first p is minimal. Since p is not algebraic, SU(p) ≥ 1. Suppose
SU(p) ≥ 2. Then p has a forking extension q over some set B ⊇ A such that SU(q) ≥ 1,
that is, q is nonalgebraic. Note that {ϕ(x) ∈ L(C) : |ϕ(C)∩ p(C)| ≥ ω} is a global extension
of p that does not fork over A (for example because it does not split over A). Hence p
has a nonforking extension q′ over B. Again, it is nonalgebraic and hence we obtain two
nonalgebraic extensions of p. Similarly for the stationarity of p since nonforking extensions
of p are nonalgebraic.

Assume now p is a stationary type of SU-rank one. It is nonalgebraic. If p has two
nonalgebraic extensions over B ⊇ A, by stationarity one of them is a forking extension and
hence SU(p) ≥ 2, a contradiction. 2

Remark 3.4 For any sets A,B, the operator defined by cl(X) = acl(XA)∩B is a finitary
closure operator on B.

Definition 3.5 Let A ⊆ M and let π(x) be a type over A, where x is a single variable.
We say that π(x) is pregeometrical in M if the closure operator defined in Ω = π(M) by
cl(X) = acl(XA)∩Ω for any X ⊆ Ω is a pregeometry. In the case M = C we say that π is
pregeometrical.

Remark 3.6 Let π(x) be a partial type over A.

1. If π is pregeometrical, then it is pregeometrical in any model M ⊇ A.

2. If π is pregeometrical in some |A|+ +ω-saturated model M ⊇ A, then π is pregeomet-
rical.

Lemma 3.7 Let π(x) be a minimal type over A. For all B ⊇ A, if a, b, a′, b′ are realizations
of π such that a, a′ 6∈ acl(B), b 6∈ acl(Ba), and b′ 6∈ acl(Ba′), then ab ≡B a′b′.

Proof: Note first that for any B ⊇ A there is only one nonalgebraic type p(x) ∈ S(B)
extending π. Therefore, if a, a′ 6∈ acl(B) realize π then a ≡B a′. Now let b, b′ as indicated
and choose b′′ such that ab ≡B a′b′′. Since b′, b′′ 6∈ acl(Ba′) are realizations of π, they have
the same type over Ba′. Hence ab ≡B a′b′′ ≡B a′b′. 2

Proposition 3.8 Any minimal type is pregeometrical.
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Proof: Let π be over A. Assume the exchange property does not hold. Then for some
X ⊆ π(C), there are realizations a, b of π such that a 6∈ acl(AX), a ∈ acl(AXb), and
b 6∈ acl(AXa). Clearly, there is a sequence (bi : i < ω) of different realizations bi 6∈ acl(AX)
of π for which there is some c |= π such that c 6∈ acl(AX(bi : i < ω)). Since c ≡AX a, there
are also infinitely many realizations b′ of π such that b′ 6∈ acl(AX) and a 6∈ acl(AXb′). By
Lemma 3.7, all such b′ have the same type over AXa and therefore are not algebraic over
AXa. Again by Lemma 3.7 if b′ is one of them, ab ≡AX b′a and hence a 6∈ acl(AXb). 2

Lemma 3.9 Let T simple and let π(x) be a partial type over A in the single variable x.
Assume for all a |= π, for all B,C such that A ⊆ B ⊆ C, a 6 |̂

B
C iff a ∈ acl(C) r acl(B).

Then π is pregeometrical.

Proof: The exchange property follows from the hypothesis and the symmetry of forking
independence in simple theories. 2

Definition 3.10 A formula ϕ(x) is weakly minimal if D(ϕ(x)) = 1. Recall that (i)
D(ϕ(x)) = 0 iff ϕ(x) is algebraic and (ii) if ϕ(x) ∈ L(A) then D(ϕ(x)) ≥ α + 1 iff
D(ψ(x)) ≥ α for some ψ(x) ` ϕ(x) which divides over A. D-rank coincides with Shelah
continuous rank if T is stable.

Remark 3.11 1. Strongly minimal formulas are weakly minimal.

2. Assuming T is stable, a nonalgebraic formula ϕ(x) ∈ L(A) is weakly minimal if and
only if for every B ⊇ A there are at most 2|T | nonalgebraic complete types p(x) ∈ S(B)
containing ϕ(x).

Proof: 1. A strongly minimal formula has Morley rank 1 and hence also D-rank 1.

2. In a stable theory every type has multiplicity bounded by 2|T | and when a global
type forks over a set A it has unboundedly many A-conjugates. 2

Proposition 3.12 Let T be simple. Weakly minimal formulas and types of SU-rank 1 are
pregeometrical.

Proof: By Lemma 3.9. Let A ⊆ B ⊆ C. Note that in any case (i) if a 6 |̂
B
C, then

a 6∈ acl(B) and (ii) if a ∈ acl(C) r acl(B), then a 6 |̂
B
C. Hence it only remains to show

that (iii) if a 6 |̂
B
C, then a ∈ acl(C). This is clear in the case of SU-rank 1. Let us consider

the case of a weakly minimal formula ϕ(x) ∈ L(A). Assume a 6 |̂
B
C where |= ϕ(a) and

a 6∈ acl(C). There is some ψ(x) ∈ tp(a/C) which forks over B. We can assume ψ(x) ` ϕ(x).
Since a 6∈ acl(C), ψ(x) is not algebraic and hence D(ψ(x)) > 0. It follows that D(ϕ(x)) > 1.
2

Proposition 3.13 Let π(x) be a pregeometrical type over A and let us consider the prege-
ometry (Ω, cl), where Ω = π(C) and cl(X) = acl(XA) ∩ Ω. Assume SU(a/A) ≤ 1 for all
a ∈ Ω.

1. dim(a1, . . . , an/B) = SU(a1, . . . , an/AB) for any B ⊆ Ω and for any a1, . . . , an ∈ Ω.

2. If T is simple, then for all subsets B,C,D of Ω, B |̂
AC

D iff B |̂ cl

C
D.

Proof: 1. By induction on n, using the assumption and Lascar inequalities.

2. For any B,C,D ⊆ Ω,
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B |̂
AC

D iff SU(b/AC) = SU(b/ACD) for all finite b ∈ B
iff dim(b/C) = dim(b/CD) for all finite b ∈ B
iff B |̂ cl

C
D

2

Remark 3.14 1. The assumption of Proposition 3.13 is satisfied when π is minimal or
it is a weakly minimal formula or it is a complete type of SU-rank 1.

2. This section can be easily generalized to partial types π(x) where x is an n-tuple of
variables instead of being a single variable. The closure operator has to be defined as
cl(X) = acl(XA)n ∩ Ω.
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