Introduction The real setting (Kurdyka) The ρ-adic setting (C., Comte, Loeser)

Lipschitz continuity properties

Raf Cluckers (joint work with G. Comte and F. Loeser)

K.U.Leuven, Belgium

MODNET Barcelona Conference 3 - 7 November 2008 Introduction The real setting (Kurdyka) The *p*-adic setting (C., Comte, Loeser)

2 The real setting (Kurdyka)

3 The *p*-adic setting (C., Comte, Loeser)

Introduction

Definition

A function $f: X \to Y$ is called Lipschitz continuous with constant *C* if, for each $x_1, x_2 \in X$ one has

$$d(f(x_1), f(x_2)) \leq \mathbf{C} \cdot d(x_1, x_2),$$

where d stands for the distance.

(Question)

When is a definable function piecewise C-Lipschitz for some C > 0?

Introduction The real setting (Kurdyka) The *p*-adic setting (C., Comte, Loeser)

Clearly

$$\mathbb{R}_{>0} \to \mathbb{R}: x \mapsto 1/x$$

is not Lipschitz continuous, nor is

$$\mathbb{R}_{>0} \to \mathbb{R} : x \mapsto \sqrt{x},$$

because the derivatives are unbounded.

The real setting

Theorem (Kurdyka, subanalytic, semi-algebraic [1])

Let $f: X \subset \mathbb{R}^n \to \mathbb{R}$ be a definable C^1 -function such that

 $|\partial f/\partial x_i| < M$

for some M and each i.

Then there exist a finite partition of X and C > 0 such that on each piece, the restriction of f to this piece is C-Lipschitz. Moreover, this finite partition only depends on X and not on f. (And C only depends on M and n.)

A whole framework is set up to obtain this (and more).

Krzysztof Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, Real algebraic geometry (Rennes, 1991), Lecture Notes in Math., vol. 1524, Springer, Berlin, 1992, pp. 316–322. For example, suppose that $X \subset \mathbb{R}$ and $f : X \to \mathbb{R}$ is C^1 with |f'(x)| < M. Then it suffices to partition X into a finite union of intervals and points.

Indeed, let $I \subset X$ be an interval and x < y in I. Then

$$|f(x)-f(y)|=|\int_x^y f'(z)dz|$$

$$\leq \int_x^y |f'(z)| dz \leq M |y-x|.$$

(Hence one can take C = M.)

The real setting

A set $X \subset \mathbb{R}^n$ is called an *s*-*cell* if it is a cell for some affine coordinate system on \mathbb{R}^n .

An *s*-cell is called *L*-regular with constant M if all "boundary" functions that appear in its description as a cell (for some affine coordinate system) have partial derivatives bounded by M.

The real setting

Theorem (Kurdyka, subanalytic, semi-algebraic)

Let $A \subset \mathbb{R}^n$ be definable.

Then there exists a finite partition of A into L-regular s-cells with some constant M. (And M only depends on n.)

Lemma

Let $A \subset \mathbb{R}^n$ be an L-regular s-cell with some constant M. Then there exists a constant N such that for any $x, y \in A$ there exists a path γ in A with endpoints x and y and with

 $\mathit{length}(\gamma) \leq \mathit{N} \cdot |x - y|$

(And N only depends on n and M.)

Proof.

By induction on n.

(Uses the chain rule for differentiation and the equivalence of the L_1 and the L_2 norm.)

Corollary (Kurdyka)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a definable function such that

 $|\partial f/\partial x_i| < M$

for some M and each i. Then f is piecewise C-Lipschitz for some C.

Proof.

One can integrate the (directional) derivative of f along the curve γ to obtain

$$f(x) - f(y)$$

as the value of this integral.

On the other hand, one can bound this integral by

 $c \cdot \operatorname{length}(\gamma) \cdot M$

for some c only depending on n, and one is done since

$$\mathsf{length}(\gamma) \leq \mathsf{N} \cdot |\mathsf{x} - \mathsf{y}|$$

Indeed, use

$$\int_0^1 \frac{d}{dt} f \circ \gamma(t) dt,$$

plus chain rule, and use that the Euclidean norm is equivalent with the L_1 -norm.

Proof of existence of partition into *L*-regular cells.

By induction on *n*. If dim A < n then easy by induction. We only treat the case n = 2 here.

Suppose $n = \dim A = 2$. We can partition A into *s*-cells such that the boundaries are ε -flat (that is, the tangent lines at different points on the boundary move " ε -little"), by compactness of the Grassmannian. Now choose new affine coordinates intelligently. Finish by induction.

The *p*-adic setting

No notion of intervals, paths joining two points (let alone a path having endpoints), no relation between integral of derivative and distance.

Moreover, geometry of cells is more difficult to visualize and to describe than on reals.

A *p*-adic cell $X \subset \mathbb{Q}_p$ is a set of the form

$$\{x \in \mathbb{Q}_p \mid |a| < |x-c| < |b|, x-c \in \lambda P_n\},\$$

where P_n is the set of nonzero *n*-th powers in \mathbb{Q}_p , $n \geq 2$.

c lies outside the cell but is called "the center" of the cell.

In general, for a family of definable subsets X_y of \mathbb{Q}_p , *a*, *b*, *c* may depend on the parameters *y* and then the family *X* is still called a cell. A cell $X \subset \mathbb{Q}_p$ is naturally a union of balls. Namely, (when $n \ge 2$) around each $x \in X$ there is a unique biggest ball B with $B \subset X$.

The ball around x depends only on ord(x - c) and the m first p-adic digits of x - c.

Hence, these balls have a nice description using the center of the cell.

Let's call these balls "the balls of the cell".

Let $f: X \to \mathbb{Q}_p$ be definable with $X \subset \mathbb{Q}_p$.

>From the study in the context of *b*-minimality we know that we can find a finite partition of X into cells such that f is C^1 on each cell, and either injective or constant on each cell.

Moreover, |f'| is constant on each ball of any such cell.

Moreover, if f is injective on a cell A, then f sends any ball of A bijectively to a ball in \mathbb{Q}_p , with distances exactly controlled by |f'| on that ball.

(Question)

Can we take the cells A such that each f(A) is a cell? Main point: is there a center for f(A)?

Answer (new): Yes. (not too hard.)

Corollary

Let $f : X \subset \mathbb{Q}_p \to \mathbb{Q}_p$ be such that $|f'| \leq M$ for some M > 0. Then f is piecewise C-Lipschitz continuous for some C.

Proof.

On each ball of a cell, we are ok since |f'| exactly controls distances. A cell A has of course only one center c, and the image f(A) too, say d. Only the first m p-adic digits of x - c and ord(x - c) are fixed on a ball, and similarly in the "image ball" in f(A). Hence, two different balls of A are send to balls of f(A) with the right size,

the right description (centered around the same d).

Hence done.

(easiest to see if only one *p*-adic digit is fixed.)

The same proof yields:

Let $f_y : X_y \subset \mathbb{Q}_p \to \mathbb{Q}_p$ be a (definable) family of definable functions in one variable with bounded derivative. Then there exist *C* and a finite partition of *X* (yielding definable partitions of X_y) such that for each *y* and each part in X_y , f_y is *C*-Lipschitz continuous thereon.

Theorem

Let Y and $X \subset \mathbb{Q}_p^m \times Y$ and $f : X \to \mathbb{Q}_p$ be definable. Suppose that the function $f_y : X_y \to \mathbb{Q}_p$ has bounded partial derivatives, uniformly in y. Then there exists a finite partition of X making the restrictions of the f_y C-Lipschitz continuous for some C > 0.

(This theorem lacked to complete another project by Loeser, Comte, C. on *p*-adic local densities.)

We will focus on m = 2. The general induction is similar. Use coordinates (x_1, x_2, y) on $X \subset \mathbb{Q}_p^2 \times Y$. By induction and the case m = 1, we may suppose that $f_{x_1,y}$ and $f_{x_2,y}$ are Lipschitz continuous.

We can't make a path inside a cell, but we can "jump around" with finitely many jumps and control the distances under f of the jumps.

So, recapitulating, if we fix (x_1, y) , we can move x_2 freely and control the distances under f, and likewise for fixing (x_2, y) .

But, a cell in two variables is not a product of two sets in one variable!

Idea: simplify the shape of the cell.

We may suppose that X is a cell with center c.

Either the derivative of c w.r.t. x_1 is bounded, and then we may suppose that it is Lipschitz by the case m = 1 (induction).

Problem: what if the derivative is not bounded?

(Surprizing) answer (new): switch the order of x_1 and x_2 and use c^{-1} , the compositional inverse. This yields a cell! By the chain rule, the new center has bounded derivative. Hence, we may suppose that the center is identically zero, after the bi-Lipschitz transformation

$$(x_1, x_2, y) \mapsto (x_1, x_2 - c(x_1, y), y).$$

Do inductively the same in the x_1 -variable (easier since it only depends on y).

The cell X_y has the form

$$\{x_1, x_2 \in \mathbb{Q}_p^2 \mid |a(x_1, y)| < |x_2| < |b(x_1, y)|, x_2 \in \lambda P_n, \ (x_1, y) \in A'\},\$$

Now jump from the begin point (x_1, x_2) to $(x_1, a(x_1))$. jump to $(x'_1, a(x'_1))$ jump to (x'_1, x'_2) . We have connected (x_1, x_2) with (x'_1, x'_2) .

Problem: Does $a(x_1)$ have bounded derivative? (recall Kurdyka *L*-regular).

Solution: if not, then just "switch" "certain aspects" of role of x_1 and x_2 . Done.

Open questions:

1) Can one do it based just on the compactness of the Grassmannian?

2) Uniformity in p?

Krzysztof Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, Real algebraic geometry (Rennes, 1991), Lecture Notes in Math., vol. 1524, Springer, Berlin, 1992, pp. 316–322.