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Introduction

Definition

A function f : X → Y is called Lipschitz continuous with constant
C if, for each x1, x2 ∈ X one has

d(f (x1), f (x2)) ≤ C · d(x1, x2),

where d stands for the distance.

(Question)

When is a definable function piecewise C -Lipschitz for some
C > 0?
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Clearly
R>0 → R : x 7→ 1/x

is not Lipschitz continuous,
nor is

R>0 → R : x 7→
√

x ,

because the derivatives are unbounded.
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The real setting

Theorem (Kurdyka, subanalytic, semi-algebraic [1])

Let f : X ⊂ Rn → R be a definable C 1-function such that

|∂f /∂xi | < M

for some M and each i .
Then there exist a finite partition of X and C > 0 such that on
each piece, the restriction of f to this piece is C-Lipschitz.
Moreover, this finite partition only depends on X and not on f .
(And C only depends on M and n.)

A whole framework is set up to obtain this (and more).
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Krzysztof Kurdyka, On a subanalytic stratification satisfying a
Whitney property with exponent 1, Real algebraic geometry
(Rennes, 1991), Lecture Notes in Math., vol. 1524, Springer,
Berlin, 1992, pp. 316–322.
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For example, suppose that X ⊂ R and f : X → R is C 1 with
|f ′(x)| < M.
Then it suffices to partition X into a finite union of intervals and
points.
Indeed, let I ⊂ X be an interval and x < y in I . Then

|f (x)− f (y)| = |
∫ y

x
f ′(z)dz |

≤
∫ y

x
|f ′(z)|dz ≤ M|y − x |.

(Hence one can take C = M.)
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The real setting

A set X ⊂ Rn is called an s-cell if it is a cell for some affine
coordinate system on Rn.

An s-cell is called L-regular with constant M if all “boundary”
functions that appear in its description as a cell (for some affine
coordinate system) have partial derivatives bounded by M.
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The real setting

Theorem (Kurdyka, subanalytic, semi-algebraic)

Let A ⊂ Rn be definable.
Then there exists a finite partition of A into L-regular s-cells with
some constant M. (And M only depends on n.)
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Lemma

Let A ⊂ Rn be an L-regular s-cell with some constant M.
Then there exists a constant N such that for any x , y ∈ A there
exists a path γ in A with endpoints x and y and with

length(γ) ≤ N · |x − y |

(And N only depends on n and M.)

Proof.

By induction on n.

(Uses the chain rule for differentiation and the equivalence of the
L1 and the L2 norm.)
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Corollary (Kurdyka)

Let f : Rn → R be a definable function such that

|∂f /∂xi | < M

for some M and each i .
Then f is piecewise C-Lipschitz for some C.
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Proof.

One can integrate the (directional) derivative of f along the curve
γ to obtain

f (x)− f (y)

as the value of this integral.
On the other hand, one can bound this integral by

c · length(γ) ·M

for some c only depending on n, and one is done
since

length(γ) ≤ N · |x − y |

Raf Cluckers Lipschitz continuity
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Indeed, use ∫ 1

0

d

dt
f ◦ γ(t)dt,

plus chain rule, and use that the Euclidean norm is equivalent with
the L1-norm.
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Proof of existence of partition into L-regular cells.

By induction on n. If dim A < n then easy by induction. We only
treat the case n = 2 here.
Suppose n = dim A = 2. We can partition A into s-cells such that
the boundaries are ε-flat (that is, the tangent lines at different
points on the boundary move “ε-little”), by compactness of the
Grassmannian. Now choose new affine coordinates intelligently.
Finish by induction.
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The p-adic setting

No notion of intervals, paths joining two points (let alone a path
having endpoints), no relation between integral of derivative and
distance.
Moreover, geometry of cells is more difficult to visualize and to
describe than on reals.
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A p-adic cell X ⊂ Qp is a set of the form

{x ∈ Qp | |a| < |x − c| < |b|, x − c ∈ λPn},

where Pn is the set of nonzero n-th powers in Qp, n ≥ 2.

c lies outside the cell but is called “the center” of the cell.

In general, for a family of definable subsets Xy of Qp,
a, b, c may depend on the parameters y and then the family X is
still called a cell.
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A cell X ⊂ Qp is naturally a union of balls. Namely, (when n ≥ 2)
around each x ∈ X there is a unique biggest ball B with B ⊂ X .

The ball around x depends only on ord(x − c) and the m first
p-adic digits of x − c.

Hence, these balls have a nice description using the center of the
cell.

Let’s call these balls “the balls of the cell”.
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Let f : X → Qp be definable with X ⊂ Qp.

>From the study in the context of b-minimality we know that we
can find a finite partition of X into cells such that f is C 1 on each
cell, and either injective or constant on each cell.

Moreover, |f ′| is constant on each ball of any such cell.

Moreover, if f is injective on a cell A, then f sends any ball of A
bijectively to a ball in Qp, with distances exactly controlled by |f ′|
on that ball.
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(Question)

Can we take the cells A such that each f (A) is a cell?
Main point: is there a center for f (A)?

Answer (new): Yes. (not too hard.)
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Corollary

Let f : X ⊂ Qp → Qp be such that |f ′| ≤ M for some M > 0.
Then f is piecewise C-Lipschitz continuous for some C.

Proof.

On each ball of a cell, we are ok since |f ′| exactly controls
distances. A cell A has of course only one center c, and the image
f (A) too, say d . Only the first m p-adic digits of x − c and
ord(x − c) are fixed on a ball, and similarly in the “image ball” in
f (A). Hence, two different balls of A are send to balls of f (A) with
the right size,
the right description (centered around the same d).
Hence done.
(easiest to see if only one p-adic digit is fixed.)
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The same proof yields:
Let fy : Xy ⊂ Qp → Qp be a (definable) family of definable
functions in one variable with bounded derivative.
Then there exist C and a finite partition of X (yielding definable
partitions of Xy ) such that for each y and each part in Xy , fy is
C -Lipschitz continuous thereon.
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Theorem

Let Y and X ⊂ Qm
p × Y and f : X → Qp be definable. Suppose

that the function fy : Xy → Qp has bounded partial derivatives,
uniformly in y.
Then there exists a finite partition of X making the restrictions of
the fy C-Lipschitz continuous for some C > 0.

(This theorem lacked to complete another project by Loeser,
Comte, C. on p-adic local densities.)
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We will focus on m = 2. The general induction is similar.
Use coordinates (x1, x2, y) on X ⊂ Q2

p × Y .
By induction and the case m = 1, we may suppose that fx1,y and
fx2,y are Lipschitz continuous.

We can’t make a path inside a cell, but we can “jump around” with
finitely many jumps and control the distances under f of the jumps.

So, recapitulating, if we fix (x1, y), we can move x2 freely and
control the distances under f , and likewise for fixing (x2, y).
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But, a cell in two variables is not a product of two sets in one
variable!
Idea: simplify the shape of the cell.
We may suppose that X is a cell with center c.
Either the derivative of c w.r.t. x1 is bounded, and then we may
suppose that it is Lipschitz by the case m = 1 (induction).

Problem: what if the derivative is not bounded?

(Surprizing) answer (new): switch the order of x1 and x2 and use
c−1, the compositional inverse. This yields a cell!
By the chain rule, the new center has bounded derivative.
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Hence, we may suppose that the center is identically zero, after the
bi-Lipschitz transformation

(x1, x2, y) 7→ (x1, x2 − c(x1, y), y).

Do inductively the same in the x1-variable (easier since it only
depends on y).
The cell Xy has the form

{x1, x2 ∈ Q2
p | |a(x1, y)| < |x2| < |b(x1, y)|, x2 ∈ λPn, (x1, y) ∈ A′},

Now jump from the begin point (x1, x2) to (x1, a(x1)).
jump to (x ′1, a(x ′1))
jump to (x ′1, x

′
2).

We have connected (x1, x2) with (x ′1, x
′
2).

Problem: Does a(x1) have bounded derivative? (recall Kurdyka
L-regular).
Solution: if not, then just “switch”“certain aspects” of role of x1

and x2. Done.
Raf Cluckers Lipschitz continuity



26/26

Introduction
The real setting (Kurdyka)

The p-adic setting (C., Comte, Loeser)

Open questions:

1) Can one do it based just on the compactness of the
Grassmannian?

2) Uniformity in p?

Krzysztof Kurdyka, On a subanalytic stratification satisfying a
Whitney property with exponent 1, Real algebraic geometry
(Rennes, 1991), Lecture Notes in Math., vol. 1524, Springer,
Berlin, 1992, pp. 316–322.
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