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ℵ1-categorical groups

Groups of finite Morley rank appeared as ℵ1-categorical groups.

Theorem (Baldwin, Zilber)

A simple group has finite Morley rank iff it is ℵ1-categorical.

In the 80’s, Borovik and Poizat suggested a more naive approach.

Theorem (Poizat)

A group has finite Morley rank iff there is a rank function rk on the
set of interpretable sets, which behaves like a dimension ought to.
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Morley rank and Zariski dimension

Typical example of a group of finite Morley rank :

an alg. group over an alg. closed field,
equipped with the Zariski dimension.

an infinite field of finite Morley rank is alg. closed (Macintyre)

slogan :

groups of finite Morley rank generalize
alg. groups ranked by the Zariski dimension
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Ranked groups and algebraic groups

Analogies :

chain conditions
connected components for definable subgroups “H◦”
generation lemmas (in part., G ′ is definable!)
presence of a field (sometimes)

Conjecture (Cherlin-Zilber)

A simple infinite group of finite Morley rank is (isomorphic to)
an algebraic group over an algebraically closed field.
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Rank 1 and 2

Let us attack the conjecture inductively.
Fact: There are no simple groups of Morley rank 1 or 2.

Groups of Morley rank 1 are abelian (Reineke).

Groups of Morley rank 2 are solvable (Cherlin).

Now what about groups of rank 3?
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Rank 3 and PSL2

Some tapas:

SL2 = {M ∈ GL2 : det M = 1}
Z (SL2) = {±Id}
PSL2 = SL2/Z (SL2)

PSL2 is the smallest simple algebraic group:
Zariski dimension = 3, Lie rank = 1, Morley rank = 3 rk K
PSL2: only simple algebraic group of Zariski dimension 3

PSL2: only simple algebraic group of Lie rank 1

PSL2 is the basis of inductive arguments → crucial piece

Main question of the talk:

Identify PSL2 among small groups of finite Morley rank
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Rank 3 and bad groups

Theorem (Cherlin)

A simple group of MR 3 is either PSL2(K) or a simple bad group.

A bad group would be a weird non-algebraic configuration.
No fields involved.
Disjoint union of maximal subgroups.
No involutions.

Open for 30 years!

Moral:

“low Morley rank” not a good notion of smallness
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Groups of finite Morley rank and groups of Morley rank 0

Conjecture (Cherlin-Zilber)

A simple infinite group of finite Morley rank is an algebraic group over an ACF.

Theorem (A logician’s CFSG)

A simple group of Morley rank 0 is

the finite version of an algebraic group

or something else.

Well... you know logicians.
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Was the previous slide sabotage?

Theorem (CFSG)

A finite simple group is

cyclic Z/pZ
alternate An

the finite version of an alg. group (Chevalley twists welcome)

or one of 26 “sporadic” known exceptions.

the only infinite cyclic group, Z, is not ω-stable

the infinite version of An is not stable (not MC )

fields of finite Morley rank do not allow Chevalley twists

the sporadics may disappear when one goes to infinite objects
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Borovik’s program

The Cherlin-Zilber Conjecture looks like a simpler CFSG

idea (Borovik): imitate CFSG

(possible gain: a “generic”, simpler CFSG)

Work with 2-elements, involutions, and their centralizers

fortunately: good 2-Sylow theory
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Four types

Let S be a Sylow 2-subgroup. Then S◦ = U ∗ T , with

U of bounded exponent is 2-unipotent
i.e. definable, connected, of exponent 2k

T ' Zd
2∞ is a 2-torus of Prüfer rank d

Z2∞ is the Prüfer 2-group {z ∈ C : z2k

= 1 for some k ∈ N}
One thus defines 4 “types” depending on structure of S◦

T = 1 T 6= 1

U = 1 2⊥ odd

U 6= 1 even mixt

correspond to the char. of the expected underlying field
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State of the Case-Division

Cases U 6= 1 have been solved (Altınel, Borovik, Cherlin).

Cases U = 1 are open.

The case U = T = 1 looks so hard the Conjecture might fail.

no Feit-Thompson Theorem

FT: finite simple groups have involutions... (would kill bad groups!)

Yet one can work in odd type S◦ ' Zd
2∞ (U = 1 but T 6= 1).

Problem: Identify PSL2 among small groups of odd type.
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The Hrushovski analysis

Theorem (Hrushovski)

Let a non-solvable group of finite MR G act definably and faithfully
on a strongly minimal set. Then G ' PSL2 and rk G = 3.

In practice, actions arise from coset spaces.

Corollary (Cherlin)

Let G be a non-solvable group of finite Morley rank with a
definable subgroup of corank 1. Then G ' PSL2 (and rk G = 3).

Moral: try to understand the action on coset spaces
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Delahan-Nesin identification

Caution: this slide contains technical material.

Another identification result using actions.

Theorem (Delahan-Nesin)

Let G be a group of finite Morley rank. Assume that G is an
infinite split Zassenhaus group. Assume further that the stabilizer
of two points contains an involution. Then G ' PSL2.

A Zassenhaus group is a 2-transitive group (G ,X ) s.t. Gx ,y ,z = 1.
It is split if there is N C Gx s.t. Gx = N o Gx ,y .
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The setting

Moral of last slide: useful abstract identification results exist

From now on it will suffice to

fix an involution i ∈ G
fix a Borel B ≥ C◦(i)

Recall that a Borel is a maximal definable, connected, solvable subgroup

split B ' K+ o K×
understand G/B

Nesin’s machinery can then recognize PSL2

Question: find natural properties of PSL2 characterizing it

Latin letters for the abstract group; Greek for the true PSL2.
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Study of PSL2

Let K |= ACF 6=2. Let’s have a look at PSL2(K).

ι =

(
i
−i

)
β =

{(
t a

t−1

)
, a ∈ K, t ∈ K×

}
> C ◦(ι) is a Borel

β′ = F ◦(β) =

{(
1 a

1

)
, a ∈ K

}
' K+

Θ =

{(
t

t−1

)
, t ∈ K×

}
' K×

Then β = F ◦(β) o Θ ' K+ o K×
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Modelling the torus

Observations in PSL2:

Let ι =

(
i
−i

)
∈ Σ◦. Note that ι inverts F ◦(β).

One has Θ =

{(
t

t−1

)
, t ∈ K×

}
= C ◦(ι).

Let ω =

(
0 1
−1 0

)
∈ Σ \ Σ◦. Note that ω inverts Θ.

Modelisation in G : for an involution w 6∈ B, let

T [w ] :=
{

b ∈ B, bw = b−1
}

T [w ] will be our model of the torus.

Target: B = (F ◦(B))−i o T [w ].
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Using T [w ]

i ∈ G , B ≥ C ◦(i) a Borel.
for an involution w 6∈ B, T [w ] =

{
b ∈ B, bw = b−1

}
For generic w , rg T [w ] ≥ rg (F ◦(B))−i .

Theorem (Zilber)

Let A o T be a group of finite Morley rank with A, T two abelian definable infinite
subgroups s.t. T is faithful and A is T -minimal.
Then there is a definable field K s.t. A ' K+ and T ↪→ K×.

If A ⊆ F ◦(B)−i , ranks would force T [w ] ' K×...

... but T [w ] has no reason to be a group!

As T [w ] ⊆ B ∩ Bw , it would be good to

control intersections of Borel subgroups
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Locally◦ solvable◦ groups

Recall MR is no suitable notion of smallness
(as we are unable to solve MR = 3)

Observation in (P)SL2:

if A < G is infinite and abelian, N◦G (A) is solvable.
Fails for finite A (e.g. A = Z(SL2))

characterizes (P)SL2 among non-solvable alg. groups

Definition

A group G is locally◦ solvable◦ if: whenever A < G is infinite and
abelian, N◦G (A) is solvable.

Nothing to do with f.g. subgroups; follows another tradition...

...from finite group theory and Thompson’s papers.
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Results

Theorem

Let G be a locally◦ solvable◦ non-solvable connected group of
finite MR.
Assume:

S◦ ' Zd
2∞ with d ≥ 1

and for any involution i C ◦G (i) solvable.

G 6' PSL2(K) for K |= ACF 6=2.

Then C ◦G (i) is always a Borel and either:

1 S ' Z2∞

2 S ' Z2∞ o 〈ig 〉 and C ◦(i) is abelian

3 S ' Z2
2∞ and the three involutions are conjugate
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Complications

Since the first counting arguments involving T [w ], the proofs
have continuously grown more complex.

Works by Nesin, J., Cherlin and J., D.

Main issue: control intersections of Borel subgroups
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Keywords

Here are some ingredients of a proof:

strongly real elements and T [w ] sets

(0, d)-Sylow subgroups

Rigidity Lemmas

The Bender method, Burdges’ style, revisited

concentration of semi-simple elements and contradiction!
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A key observation

Fact:

In (P)SL2, Borel subgroups meet on tori
(whatever that means)

Question: can one mimic this fact in locally◦ solvable◦ groups?

More precisely: can one prove that distinct Borel subgroups
don’t share unipotent elements?

Subtelty: “unipotent elements” is non-sense to us.
Work with unipotent subgroups. Define them first!
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Torsion unipotence

Observation:

If K |= ACFp, then F ◦(β) =

(
1 ∗

1

)
= {g ∈ β : g p = 1}.

Definition

U ≤ G is p-unipotent if it is definable, connected, nilpotent, of
exponent pk .

Fact (Intersection control)

If G is locally◦ solvable◦ and U ≤ G is p-unipotent, then U lies in
a unique Borel, and actually in its Fitting subgroup.

(In PSL2, β ∩ βω is a torus indeed, thus so is T [ω])
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Burdges’ unipotence

Fact (Burdges)

For each integer d ≥ 1, there is a notion of (0, d)-unipotence
(gradual unipotence) and a d-unipotence radical

d is a unipotence degree (more or less heavy)

problems

the d-unipotence radical is not always in the Fitting!
the heaviest radical (last non-trivial) is in it.
Caution! two Borels can share d-unipotence.
two Borels of degree d can even share d-unipotence!
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Rigidity Lemma

Fact (intersection control)

If G is locally◦ solvable◦ and U ≤ G is p-unipotent, then U is in a unique Borel, and
actually in its Fitting subgroup.

Lemma

Let G be locally◦ solvable◦ and B a Borel with unipotence degree
d. Let U C B be a (0, d)-unipotent subgroup. Then B is the only
Borel of degree d that contains U.

controlling the intersection B ∩ Bw is possible...

... which will enable us to split B. We’re done!

Moral: Burdges’ 0-unipotence allows intersection control
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