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Group topology

Let M be an o-minimal structure, and G = 〈G , ∗〉 a definable
group, G ⊆ Mn.

Fact (Pillay, 1988)

G can be equipped with a unique definable manifold topology that
makes it into a topological group. Call it G -topology.

I The G -topology and the subspace topology coincide on a
large subset V of G .

(
dim(G \ V ) < dim(G )

)
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Affine embedding

Definition
G is called affine if the G -topology and the subspace topology
coincide on (the whole of) G . We say that G admits an affine
embedding if there is a definable isomorphism of topological groups
τ : G → G ′ ⊆ M r between G and an affine definable group G ′.

Equivalently:

I there a definable injective map τ : G → M r , r ∈ N, which is
continuous with respect to the subspace topology in the range.
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Known results

G admits an affine embedding in each of the following cases:

1. (Robson, 1983) M is a real closed field.

2. (v. d. Dries, 1998) M expands a real closed field.
(Berarducci, Otero, 2001) In this case, G admits an affine
embedding which is moreover a diffeomorphism.

3. (Edmundo, E.) If G is semi-linear and torsion-free.
(G is definably isomorphic to 〈Mn,+〉.)
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Definition (Peterzil, Steinhorn, 1999)

G is definably compact if for every definable continuous
f : (a, b) ⊆ M → G , −∞ ≤ a, b ≤ ∞, the limit limG

t→b− f (t)
exists.

Fact
If G ⊆ Mn is affine, then G is definably compact if and only if it is
closed (in Mn) and bounded.
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Semi-linear context

Let 〈M, <,+, 0, {d}d∈D〉 be an ordered vector space over an
ordered division ring D. A definable group in M is called
semi-linear.

Fact
Every definable function f : A ⊆ Mn → Mm is piecewise-linear
(PL); that is, there is a partition of A into finitely many definable
sets Ai , i = 1, . . . , k, such that for each of them:

I there is an n ×m matrix λ with entries from D, and an
element a ∈ Mm, such that for every x ∈ Ai , f (x) = λx + a.
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Structure Theorem

Fact (E., Starchenko, 2007)

Let G be a definably compact, definably connected semi-linear
group of dimension n.

Then there is a lattice L of rank n,

L = Zv1 + · · ·+ Zvn 6 〈Mn,+〉,

and a definable group 〈S ,+L〉, with x +L y = z ⇔ x + y − z ∈ L,
such that

G ∼=defly 〈S ,+L〉.

Moreover, there is a definable “parallelogram” H ⊆ Mn, such that

G ∼=< H > /L
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Examples

Let M = 〈R, <,+, 0〉.
I G1 = 〈[0, 1),+L, 0〉, where L = Z.

x +L y = z ⇔ x + y − z ∈ Z⇔ x + y − z ∈ {0, 1}.
I G2 = G1 × G1 = 〈[0, 1)× [0, 1),+L, 0〉, where L = Z2.

I G3 = 〈[0, 1)× [0, π/2) ,+L, 0〉, where
L = Z(0, 1) + Z (1/2, π/2).



Let M = 〈M, <,+, 0, {d}d∈D〉 be an ordered vector space over an
ordered division ring D. Define

x 4D y ⇔ ∃d ∈ D, |x | ≤ d |y |.

We let x ≺D y if x 4D y but not y 4D x . We have:

x ≺D y ⇔ ∀d ∈ D, d |x | < |y |.
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Counterexample

Example

I Let M = 〈M,+, <, 0〉 be an ordered divisible abelian group.

I Let a, b, c > 0 in M, such that b ≺Q c ≺Q a. In particular,

I 6 ∃ definable onto f : [0, b)→ [0, c), and
I ∀n ∈ N, nc < a.

I Let G = 〈[0, a)× [0, b),+L, 0〉, where
L = Z(a, 0) + Z(a− c , b) 6 M2.

Assume that τ : G → M r is an affine embedding.
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Let M = 〈M,+, <, 0〉 be an ordered divisible abelian group.
Let G = 〈[0, a)× [0, b),+L, 0〉, where
L = Z(a, 0) + Z(a− c , b) 6 M2.

Then G admits an affine embedding if and only if

I ∃m, n ∈ Z, m2 + n2 6= 0, ma + nc 4D b.
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Let 〈M, <,+, 0, {d}d∈D〉 be an ordered vector space over an
ordered division ring D. Let G be a definably compact, definably
connected semi-linear group of dimension n.

By the Structure
Theorem:
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I L = Zv1 + · · ·+ Zvn 6 〈Mn,+〉,
I H = {λ1t1 + · · ·+ λntn : −ei < ti < ei},

with ei > 0 in M, and λi ∈ Dn.

Up to a linear transformation, we may assume that H is a
rectangle.
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Theorem
Let G =< H > /L be a definably compact, definably connected
semi-linear group of dimension n, where

I L = Z(a1, a2) + Z(b1, b2) 6 〈M2,+〉
I H is a rectangle.

Then, G admits an affine embedding if and only if the following
two conditions both hold:

1. ∃m1, n1 ∈ Z, m2
1 + n2

1 6= 0, m1a1 + n1b1 4D |a2|+ |b2|,
2. ∃m2, n2 ∈ Z, m2

2 + n2
2 6= 0, m2a2 + n2b2 4D |a1|+ |b1|.

Corollary

If M is Archimedean, then G admits an affine embedding.
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Classical PL-topology

I (Whitney, 1944) Every real PL-manifold of dimension n
admits an affine embedding into R2n.

I (Burago, Zalgaller, 1995) Every orientable real PL-manifold of
dimension 2 admits an isometric affine embedding into R3.
The generalization of this statement to manifolds of higher
dimension is open.
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