A semi-linear group which is not affine

Pantelis E. Eleftheriou

CMAF - Universidade de Lisboa
Barcelona - November 3, 2008

Group topology

Let \mathcal{M} be an o-minimal structure, and $G=\langle G, *\rangle$ a definable group, $G \subseteq M^{n}$.

Group topology

Let \mathcal{M} be an o-minimal structure, and $G=\langle G, *\rangle$ a definable group, $G \subseteq M^{n}$.
Fact (Pillay, 1988)
G can be equipped with a unique definable manifold topology that makes it into a topological group. Call it G-topology.

Group topology

Let \mathcal{M} be an o-minimal structure, and $G=\langle G, *\rangle$ a definable group, $G \subseteq M^{n}$.
Fact (Pillay, 1988)
G can be equipped with a unique definable manifold topology that makes it into a topological group. Call it G-topology.

- The G-topology and the subspace topology coincide on a large subset V of $G .(\operatorname{dim}(G \backslash V)<\operatorname{dim}(G))$

Affine embedding

Definition

G is called affine if the G-topology and the subspace topology coincide on (the whole of) G. We say that G admits an affine embedding if there is a definable isomorphism of topological groups $\tau: G \rightarrow G^{\prime} \subseteq M^{r}$ between G and an affine definable group G^{\prime}.

Affine embedding

Definition

G is called affine if the G-topology and the subspace topology coincide on (the whole of) G. We say that G admits an affine embedding if there is a definable isomorphism of topological groups $\tau: G \rightarrow G^{\prime} \subseteq M^{r}$ between G and an affine definable group G^{\prime}.
Equivalently:

- there a definable injective map $\tau: G \rightarrow M^{r}, r \in \mathbb{N}$, which is continuous with respect to the subspace topology in the range.

Known results

G admits an affine embedding in each of the following cases:

1. (Robson, 1983) \mathcal{M} is a real closed field.

Known results

G admits an affine embedding in each of the following cases:

1. (Robson, 1983) \mathcal{M} is a real closed field.
2. (v. d. Dries, 1998) \mathcal{M} expands a real closed field.

Known results

G admits an affine embedding in each of the following cases:

1. (Robson, 1983) \mathcal{M} is a real closed field.
2. (v. d. Dries, 1998) \mathcal{M} expands a real closed field.
(Berarducci, Otero, 2001) In this case, G admits an affine embedding which is moreover a diffeomorphism.

Known results

G admits an affine embedding in each of the following cases:

1. (Robson, 1983) \mathcal{M} is a real closed field.
2. (v. d. Dries, 1998) \mathcal{M} expands a real closed field. (Berarducci, Otero, 2001) In this case, G admits an affine embedding which is moreover a diffeomorphism.
3. (Edmundo, E.) If G is semi-linear and torsion-free.

Known results

G admits an affine embedding in each of the following cases:

1. (Robson, 1983) \mathcal{M} is a real closed field.
2. (v. d. Dries, 1998) \mathcal{M} expands a real closed field. (Berarducci, Otero, 2001) In this case, G admits an affine embedding which is moreover a diffeomorphism.
3. (Edmundo, E.) If G is semi-linear and torsion-free. (G is definably isomorphic to $\left\langle M^{n},+\right\rangle$.)

Definition (Peterzil, Steinhorn, 1999)
G is definably compact if for every definable continuous $f:(a, b) \subseteq M \rightarrow G,-\infty \leq a, b \leq \infty$, the limit $\lim _{t \rightarrow b^{-}}^{G} f(t)$ exists.

Definition (Peterzil, Steinhorn, 1999)

G is definably compact if for every definable continuous
$f:(a, b) \subseteq M \rightarrow G,-\infty \leq a, b \leq \infty$, the limit $\lim _{t \rightarrow b^{-}}^{G} f(t)$ exists.

Fact
If $G \subseteq M^{n}$ is affine, then G is definably compact if and only if it is closed (in M^{n}) and bounded.

Semi-linear context

Let $\left\langle M,<,+, 0,\{d\}_{d \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. A definable group in \mathcal{M} is called semi-linear.

Semi-linear context

Let $\left\langle M,<,+, 0,\{d\}_{d \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. A definable group in \mathcal{M} is called semi-linear.

Fact

Every definable function $f: A \subseteq M^{n} \rightarrow M^{m}$ is piecewise-linear $(P L)$; that is, there is a partition of A into finitely many definable sets $A_{i}, i=1, \ldots, k$, such that for each of them:

- there is an $n \times m$ matrix λ with entries from D, and an element $a \in M^{m}$, such that for every $x \in A_{i}, f(x)=\lambda x+a$.

Structure Theorem

Fact (E., Starchenko, 2007)
Let G be a definably compact, definably connected semi-linear group of dimension n.

Structure Theorem

Fact (E., Starchenko, 2007)
Let G be a definably compact, definably connected semi-linear group of dimension n. Then there is a lattice L of rank n,

$$
L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n} \leqslant\left\langle M^{n},+\right\rangle,
$$

Structure Theorem

Fact (E., Starchenko, 2007)
Let G be a definably compact, definably connected semi-linear group of dimension n. Then there is a lattice L of rank n,

$$
L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n} \leqslant\left\langle M^{n},+\right\rangle
$$

and a definable group $\langle S,+L\rangle$, with $x+\llcorner y=z \Leftrightarrow x+y-z \in L$,

Structure Theorem

Fact (E., Starchenko, 2007)
Let G be a definably compact, definably connected semi-linear group of dimension n. Then there is a lattice L of rank n,

$$
L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n} \leqslant\left\langle M^{n},+\right\rangle
$$

and a definable group $\langle S,+L\rangle$, with $x+L y=z \Leftrightarrow x+y-z \in L$, such that

$$
G \cong{ }_{\text {defly }}\langle S,+L\rangle
$$

Structure Theorem

Fact (E., Starchenko, 2007)
Let G be a definably compact, definably connected semi-linear group of dimension n. Then there is a lattice L of rank n,

$$
L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n} \leqslant\left\langle M^{n},+\right\rangle,
$$

and a definable group $\langle S,+\llcorner \rangle$, with $x+L y=z \Leftrightarrow x+y-z \in L$, such that

$$
G \cong{ }_{\text {defly }}\langle S,+L\rangle
$$

Moreover, there is a definable "parallelogram" $H \subseteq M^{n}$, such that

$$
G \cong<H>/ L
$$

Examples

$$
\text { Let } \begin{aligned}
& \mathcal{M}= \\
\quad & \langle\mathbb{R},<,+, 0\rangle . \\
& G_{1}=\langle[0,1),+\iota, 0\rangle, \text { where } L=\mathbb{Z} . \\
& x+\llcorner y=z \Leftrightarrow x+y-z \in \mathbb{Z} \Leftrightarrow x+y-z \in\{0,1\} \\
- & G_{2}=G_{1} \times G_{1}=\left\langle[0,1) \times[0,1),+\llcorner, 0\rangle, \text { where } L=\mathbb{Z}^{2} .\right. \\
& G_{3}=\langle[0,1) \times[0, \pi / 2),+\llcorner, 0\rangle, \text { where } \\
& L=\mathbb{Z}(0,1)+\mathbb{Z}(1 / 2, \pi / 2) .
\end{aligned}
$$

Let $\mathcal{M}=\left\langle M,<,+, 0,\{d\}_{d \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. Define

$$
x \preccurlyeq D y \Leftrightarrow \exists d \in D,|x| \leq d|y| .
$$

Let $\mathcal{M}=\left\langle M,<,+, 0,\{d\}_{d \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. Define

$$
x \preccurlyeq D y \Leftrightarrow \exists d \in D,|x| \leq d|y| .
$$

We let $x \prec_{D} y$ if $x \preccurlyeq_{D} y$ but not $y \preccurlyeq_{D} x$.

Let $\mathcal{M}=\left\langle M,<,+, 0,\{d\}_{d \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. Define

$$
x \preccurlyeq D y \Leftrightarrow \exists d \in D,|x| \leq d|y| .
$$

We let $x \prec_{D} y$ if $x \preccurlyeq_{D} y$ but not $y \preccurlyeq_{D} x$. We have:

$$
x \prec_{D} y \Leftrightarrow \forall d \in D, d|x|<|y|
$$

Counterexample

Example

- Let $\mathcal{M}=\langle M,+,<, 0\rangle$ be an ordered divisible abelian group.

Counterexample

Example

- Let $\mathcal{M}=\langle M,+,<, 0\rangle$ be an ordered divisible abelian group.
- Let $a, b, c>0$ in M, such that $b \prec_{\mathbb{Q}} c \prec_{\mathbb{Q}} a$.

Counterexample

Example

- Let $\mathcal{M}=\langle M,+,<, 0\rangle$ be an ordered divisible abelian group.
- Let $a, b, c>0$ in M, such that $b \prec_{\mathbb{Q}} c \prec_{\mathbb{Q}} a$. In particular,
- \nexists definable onto $f:[0, b) \rightarrow[0, c)$, and
- $\forall n \in \mathbb{N}, n c<a$.

Counterexample

Example

- Let $\mathcal{M}=\langle M,+,<, 0\rangle$ be an ordered divisible abelian group.
- Let $a, b, c>0$ in M, such that $b \prec_{\mathbb{Q}} c \prec_{\mathbb{Q}} a$. In particular,
- \nexists definable onto $f:[0, b) \rightarrow[0, c)$, and
- $\forall n \in \mathbb{N}, n c<a$.
- Let $G=\langle[0, a) \times[0, b),+\iota, 0\rangle$, where $L=\mathbb{Z}(a, 0)+\mathbb{Z}(a-c, b) \leqslant M^{2}$.

Counterexample

Example

- Let $\mathcal{M}=\langle M,+,<, 0\rangle$ be an ordered divisible abelian group.
- Let $a, b, c>0$ in M, such that $b \prec_{\mathbb{Q}} c \prec_{\mathbb{Q}} a$. In particular,
- \nexists definable onto $f:[0, b) \rightarrow[0, c)$, and
- $\forall n \in \mathbb{N}, n c<a$.
- Let $G=\langle[0, a) \times[0, b),+\iota, 0\rangle$, where $L=\mathbb{Z}(a, 0)+\mathbb{Z}(a-c, b) \leqslant M^{2}$.

Assume that $\tau: G \rightarrow M^{r}$ is an affine embedding.

For every $t \in[0, a-c)$, consider the one-to-one G-path

- $\phi_{t}:[0, b) \rightarrow\{t\} \times[0, b)$, with $\phi_{t}(x)=(t, x)$.

For every $t \in[0, a-c)$, consider the one-to-one G-path

- $\phi_{t}:[0, b) \rightarrow\{t\} \times[0, b)$, with $\phi_{t}(x)=(t, x)$.

For every $t \in[0, a-c]$,

- $\lim _{x \rightarrow b}^{G} \phi_{t}(x)=(t+c, 0)$

For every $t \in[0, a-c)$, consider the one-to-one G-path

- $\phi_{t}:[0, b) \rightarrow\{t\} \times[0, b)$, with $\phi_{t}(x)=(t, x)$.

For every $t \in[0, a-c]$,

- $\lim _{x \rightarrow b}^{G} \phi_{t}(x)=(t+c, 0)$
- $\lim _{x \rightarrow b} \tau\left(\phi_{t}(x)\right)=\tau(t+c, 0)$

For every $t \in[0, a-c)$, consider the one-to-one G-path

- $\phi_{t}:[0, b) \rightarrow\{t\} \times[0, b)$, with $\phi_{t}(x)=(t, x)$.

For every $t \in[0, a-c]$,

- $\lim _{x \rightarrow b}^{G} \phi_{t}(x)=(t+c, 0)$
- $\lim _{x \rightarrow b} \tau\left(\phi_{t}(x)\right)=\tau(t+c, 0)$

Since $\forall n \in \mathbb{N}, n c<a$, and τ is piecewise linear on $[0, a)$,

For every $t \in[0, a-c)$, consider the one-to-one G-path

- $\phi_{t}:[0, b) \rightarrow\{t\} \times[0, b)$, with $\phi_{t}(x)=(t, x)$.

For every $t \in[0, a-c]$,

- $\lim _{x \rightarrow b}^{G} \phi_{t}(x)=(t+c, 0)$
- $\lim _{x \rightarrow b} \tau\left(\phi_{t}(x)\right)=\tau(t+c, 0)$

Since $\forall n \in \mathbb{N}, n c<a$, and τ is piecewise linear on $[0, a)$,

- $\exists n \in \mathbb{N}$ such that τ is linear on $[n c,(n+1) c)$.

For every $t \in[0, a-c)$, consider the one-to-one G-path

- $\phi_{t}:[0, b) \rightarrow\{t\} \times[0, b)$, with $\phi_{t}(x)=(t, x)$.

For every $t \in[0, a-c]$,

- $\lim _{x \rightarrow b}^{G} \phi_{t}(x)=(t+c, 0)$
- $\lim _{x \rightarrow b} \tau\left(\phi_{t}(x)\right)=\tau(t+c, 0)$

Since $\forall n \in \mathbb{N}, n c<a$, and τ is piecewise linear on $[0, a)$,

- $\exists n \in \mathbb{N}$ such that τ is linear on $[n c,(n+1) c)$.
$\tau\left(\phi_{n c}\right):[0, b) \rightarrow M^{r}$ has endpoints $\tau(n c, 0)$ and $\tau((n+1) c, 0)$,
- \exists definable onto

$$
f: \tau\left(\phi_{n c}\right)([0, b)) \rightarrow \tau([n c,(n+1) c) \times\{0\})
$$

For every $t \in[0, a-c)$, consider the one-to-one G-path

- $\phi_{t}:[0, b) \rightarrow\{t\} \times[0, b)$, with $\phi_{t}(x)=(t, x)$.

For every $t \in[0, a-c]$,

- $\lim _{x \rightarrow b}^{G} \phi_{t}(x)=(t+c, 0)$
- $\lim _{x \rightarrow b} \tau\left(\phi_{t}(x)\right)=\tau(t+c, 0)$

Since $\forall n \in \mathbb{N}, n c<a$, and τ is piecewise linear on $[0, a)$,

- $\exists n \in \mathbb{N}$ such that τ is linear on $[n c,(n+1) c)$.
$\tau\left(\phi_{n c}\right):[0, b) \rightarrow M^{r}$ has endpoints $\tau(n c, 0)$ and $\tau((n+1) c, 0)$,
- \exists definable onto

$$
f: \tau\left(\phi_{n c}\right)([0, b)) \rightarrow \tau([n c,(n+1) c) \times\{0\})
$$

- Hence, \exists definable onto $f:[0, b) \rightarrow[0, c)$,

For every $t \in[0, a-c)$, consider the one-to-one G-path

- $\phi_{t}:[0, b) \rightarrow\{t\} \times[0, b)$, with $\phi_{t}(x)=(t, x)$.

For every $t \in[0, a-c]$,

- $\lim _{x \rightarrow b}^{G} \phi_{t}(x)=(t+c, 0)$
- $\lim _{x \rightarrow b} \tau\left(\phi_{t}(x)\right)=\tau(t+c, 0)$

Since $\forall n \in \mathbb{N}, n c<a$, and τ is piecewise linear on $[0, a)$,

- $\exists n \in \mathbb{N}$ such that τ is linear on $[n c,(n+1) c)$.
$\tau\left(\phi_{n c}\right):[0, b) \rightarrow M^{r}$ has endpoints $\tau(n c, 0)$ and $\tau((n+1) c, 0)$,
- \exists definable onto

$$
f: \tau\left(\phi_{n c}\right)([0, b)) \rightarrow \tau([n c,(n+1) c) \times\{0\})
$$

- Hence, \exists definable onto $f:[0, b) \rightarrow[0, c)$,
a contradiction.

Theorem
Let $\mathcal{M}=\langle M,+,<, 0\rangle$ be an ordered divisible abelian group.
Let $G=\langle[0, a) \times[0, b),+\llcorner, 0\rangle$, where
$L=\mathbb{Z}(a, 0)+\mathbb{Z}(a-c, b) \leqslant M^{2}$.

Theorem
Let $\mathcal{M}=\langle M,+,<, 0\rangle$ be an ordered divisible abelian group.
Let $G=\langle[0, a) \times[0, b),+\llcorner, 0\rangle$, where
$L=\mathbb{Z}(a, 0)+\mathbb{Z}(a-c, b) \leqslant M^{2}$.
Then G admits an affine embedding if and only if

- $\exists m, n \in \mathbb{Z}, m^{2}+n^{2} \neq 0, m a+n c \preccurlyeq_{D} b$.

Let $\left\langle M,<,+, 0,\{d\}_{d \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. Let G be a definably compact, definably connected semi-linear group of dimension n.

Let $\left\langle M,<,+, 0,\{d\}_{d \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. Let G be a definably compact, definably connected semi-linear group of dimension n. By the Structure Theorem:

$$
G \cong{ }_{\text {defly }}\langle S,+L\rangle \cong<H>/ L
$$

where

- $L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n} \leqslant\left\langle M^{n},+\right\rangle$,
- $H=\left\{\lambda_{1} t_{1}+\cdots+\lambda_{n} t_{n}:-e_{i}<t_{i}<e_{i}\right\}$, with $e_{i}>0$ in M, and $\lambda_{i} \in D^{n}$.

Let $\left\langle M,<,+, 0,\{d\}_{d \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. Let G be a definably compact, definably connected semi-linear group of dimension n. By the Structure Theorem:

$$
G \cong{ }_{\text {defly }}\langle S,+L\rangle \cong<H>/ L,
$$

where

- $L=\mathbb{Z} v_{1}+\cdots+\mathbb{Z} v_{n} \leqslant\left\langle M^{n},+\right\rangle$,
- $H=\left\{\lambda_{1} t_{1}+\cdots+\lambda_{n} t_{n}:-e_{i}<t_{i}<e_{i}\right\}$, with $e_{i}>0$ in M, and $\lambda_{i} \in D^{n}$.
Up to a linear transformation, we may assume that H is a rectangle.

Theorem

Let $G=<H>/ L$ be a definably compact, definably connected semi-linear group of dimension n, where

- $L=\mathbb{Z}\left(a_{1}, a_{2}\right)+\mathbb{Z}\left(b_{1}, b_{2}\right) \leqslant\left\langle M^{2},+\right\rangle$
- H is a rectangle.

Theorem

Let $G=<H>/ L$ be a definably compact, definably connected semi-linear group of dimension n, where

- $L=\mathbb{Z}\left(a_{1}, a_{2}\right)+\mathbb{Z}\left(b_{1}, b_{2}\right) \leqslant\left\langle M^{2},+\right\rangle$
- H is a rectangle.

Then, G admits an affine embedding if and only if the following two conditions both hold:

1. $\exists m_{1}, n_{1} \in \mathbb{Z}, m_{1}^{2}+n_{1}^{2} \neq 0, m_{1} a_{1}+n_{1} b_{1} \preccurlyeq D\left|a_{2}\right|+\left|b_{2}\right|$,
2. $\exists m_{2}, n_{2} \in \mathbb{Z}, m_{2}^{2}+n_{2}^{2} \neq 0, m_{2} a_{2}+n_{2} b_{2} \preccurlyeq D\left|a_{1}\right|+\left|b_{1}\right|$.

Theorem

Let $G=<H>/ L$ be a definably compact, definably connected semi-linear group of dimension n, where

- $L=\mathbb{Z}\left(a_{1}, a_{2}\right)+\mathbb{Z}\left(b_{1}, b_{2}\right) \leqslant\left\langle M^{2},+\right\rangle$
- H is a rectangle.

Then, G admits an affine embedding if and only if the following two conditions both hold:

$$
\begin{aligned}
& \text { 1. } \exists m_{1}, n_{1} \in \mathbb{Z}, m_{1}^{2}+n_{1}^{2} \neq 0, m_{1} a_{1}+n_{1} b_{1} \preccurlyeq D\left|a_{2}\right|+\left|b_{2}\right|, \\
& \text { 2. } \exists m_{2}, n_{2} \in \mathbb{Z}, m_{2}^{2}+n_{2}^{2} \neq 0, m_{2} a_{2}+n_{2} b_{2} \preccurlyeq D\left|a_{1}\right|+\left|b_{1}\right| .
\end{aligned}
$$

Corollary
If \mathcal{M} is Archimedean, then G admits an affine embedding.

Classical PL-topology

- (Whitney, 1944) Every real PL-manifold of dimension n admits an affine embedding into $\mathbb{R}^{2 n}$.

Classical PL-topology

- (Whitney, 1944) Every real PL-manifold of dimension n admits an affine embedding into $\mathbb{R}^{2 n}$.
- (Burago, Zalgaller, 1995) Every orientable real PL-manifold of dimension 2 admits an isometric affine embedding into \mathbb{R}^{3}. The generalization of this statement to manifolds of higher dimension is open.

