A semi-linear group which is not affine

Pantelis E. Eleftheriou

CMAF - Universidade de Lisboa

Barcelona - November 3, 2008

(ロ)、(型)、(E)、(E)、 E) の(の)

Group topology

Let \mathcal{M} be an o-minimal structure, and $G = \langle G, * \rangle$ a definable group, $G \subseteq M^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Group topology

Let \mathcal{M} be an o-minimal structure, and $G = \langle G, * \rangle$ a definable group, $G \subseteq M^n$.

Fact (Pillay, 1988)

G can be equipped with a unique definable manifold topology that makes it into a topological group. Call it G-topology.

Group topology

Let \mathcal{M} be an o-minimal structure, and $G = \langle G, * \rangle$ a definable group, $G \subseteq M^n$.

Fact (Pillay, 1988)

G can be equipped with a unique definable manifold topology that makes it into a topological group. Call it G-topology.

► The G-topology and the subspace topology coincide on a large subset V of G. (dim(G \ V) < dim(G))</p>

Affine embedding

Definition

G is called *affine* if the *G*-topology and the subspace topology coincide on (the whole of) *G*. We say that *G* admits an affine *embedding* if there is a definable isomorphism of topological groups $\tau : G \to G' \subseteq M^r$ between *G* and an affine definable group *G'*.

Affine embedding

Definition

G is called *affine* if the *G*-topology and the subspace topology coincide on (the whole of) *G*. We say that *G* admits an affine embedding if there is a definable isomorphism of topological groups $\tau : G \to G' \subseteq M^r$ between *G* and an affine definable group *G'*. Equivalently:

▶ there a definable injective map $\tau : G \to M^r$, $r \in \mathbb{N}$, which is continuous with respect to the subspace topology in the range.

 ${\cal G}$ admits an affine embedding in each of the following cases: 1. (Robson, 1983) ${\cal M}$ is a real closed field.

- 1. (Robson, 1983) \mathcal{M} is a real closed field.
- 2. (v. d. Dries, 1998) ${\cal M}$ expands a real closed field.

- 1. (Robson, 1983) \mathcal{M} is a real closed field.
- 2. (v. d. Dries, 1998) \mathcal{M} expands a real closed field. (Berarducci, Otero, 2001) In this case, G admits an affine embedding which is moreover a diffeomorphism.

- 1. (Robson, 1983) \mathcal{M} is a real closed field.
- 2. (v. d. Dries, 1998) \mathcal{M} expands a real closed field. (Berarducci, Otero, 2001) In this case, G admits an affine embedding which is moreover a diffeomorphism.

3. (Edmundo, E.) If G is semi-linear and torsion-free.

- 1. (Robson, 1983) \mathcal{M} is a real closed field.
- 2. (v. d. Dries, 1998) \mathcal{M} expands a real closed field. (Berarducci, Otero, 2001) In this case, G admits an affine embedding which is moreover a diffeomorphism.

3. (Edmundo, E.) If G is semi-linear and torsion-free. (G is definably isomorphic to $\langle M^n, + \rangle$.)

Definition (Peterzil, Steinhorn, 1999)

G is definably compact if for every definable continuous $f : (a, b) \subseteq M \rightarrow G, -\infty \leq a, b \leq \infty$, the limit $\lim_{t \to b^-}^{G} f(t)$ exists.

Definition (Peterzil, Steinhorn, 1999)

G is definably compact if for every definable continuous $f : (a, b) \subseteq M \rightarrow G, -\infty \leq a, b \leq \infty$, the limit $\lim_{t \to b^{-}}^{G} f(t)$ exists.

Fact

If $G \subseteq M^n$ is affine, then G is definably compact if and only if it is closed (in M^n) and bounded.

Semi-linear context

Let $\langle M, <, +, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D. A definable group in \mathcal{M} is called *semi-linear*.

・ロト・日本・モート モー うへで

Semi-linear context

Let $\langle M, <, +, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D. A definable group in \mathcal{M} is called *semi-linear*.

Fact

Every definable function $f : A \subseteq M^n \to M^m$ is piecewise-linear (PL); that is, there is a partition of A into finitely many definable sets A_i , i = 1, ..., k, such that for each of them:

there is an n × m matrix λ with entries from D, and an element a ∈ M^m, such that for every x ∈ A_i, f(x) = λx + a.

Fact (E., Starchenko, 2007)

Let G be a definably compact, definably connected semi-linear group of dimension n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact (E., Starchenko, 2007)

Let G be a definably compact, definably connected semi-linear group of dimension n. Then there is a lattice L of rank n,

$$L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \leqslant \langle M^n, + \rangle,$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Fact (E., Starchenko, 2007)

Let G be a definably compact, definably connected semi-linear group of dimension n. Then there is a lattice L of rank n,

$$L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \leqslant \langle M^n, + \rangle,$$

and a definable group $\langle S, +_L \rangle$, with $x +_L y = z \Leftrightarrow x + y - z \in L$,

Fact (E., Starchenko, 2007)

Let G be a definably compact, definably connected semi-linear group of dimension n. Then there is a lattice L of rank n,

$$L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \leqslant \langle M^n, + \rangle,$$

and a definable group $\langle S, +_L \rangle$, with $x +_L y = z \Leftrightarrow x + y - z \in L$, such that

$$G \cong_{defly} \langle S, +_L \rangle.$$

Fact (E., Starchenko, 2007)

Let G be a definably compact, definably connected semi-linear group of dimension n. Then there is a lattice L of rank n,

$$L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \leqslant \langle M^n, + \rangle,$$

and a definable group $\langle S, +_L \rangle$, with $x +_L y = z \Leftrightarrow x + y - z \in L$, such that

$$G \cong_{defly} \langle S, +_L \rangle.$$

Moreover, there is a definable "parallelogram" $H \subseteq M^n$, such that

$$G \cong /L$$

Examples

Let
$$\mathcal{M} = \langle \mathbb{R}, <, +, 0 \rangle$$
.
• $G_1 = \langle [0, 1), +_L, 0 \rangle$, where $L = \mathbb{Z}$.
 $x +_L y = z \Leftrightarrow x + y - z \in \mathbb{Z} \Leftrightarrow x + y - z \in \{0, 1\}$.
• $G_2 = G_1 \times G_1 = \langle [0, 1) \times [0, 1), +_L, 0 \rangle$, where $L = \mathbb{Z}^2$.
• $G_3 = \langle [0, 1) \times [0, \pi/2), +_L, 0 \rangle$, where $L = \mathbb{Z}(0, 1) + \mathbb{Z}(1/2, \pi/2)$.

<□ > < @ > < E > < E > E のQ @

Let $\mathcal{M} = \langle M, <, +, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D. Define

$$x \preccurlyeq_D y \Leftrightarrow \exists d \in D, |x| \le d|y|.$$

Let $\mathcal{M} = \langle M, <, +, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D. Define

$$x \preccurlyeq_D y \Leftrightarrow \exists d \in D, |x| \le d|y|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We let $x \prec_D y$ if $x \preccurlyeq_D y$ but not $y \preccurlyeq_D x$.

Let $\mathcal{M} = \langle M, <, +, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D. Define

$$x \preccurlyeq_D y \Leftrightarrow \exists d \in D, |x| \le d|y|.$$

We let $x \prec_D y$ if $x \preccurlyeq_D y$ but not $y \preccurlyeq_D x$. We have:

$$x \prec_D y \Leftrightarrow \forall d \in D, \ d|x| < |y|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

• Let $\mathcal{M} = \langle M, +, <, 0 \rangle$ be an ordered divisible abelian group.

(ロ)、(型)、(E)、(E)、 E) の(の)

Example

• Let $\mathcal{M} = \langle M, +, <, 0 \rangle$ be an ordered divisible abelian group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let a, b, c > 0 in M, such that $b \prec_{\mathbb{Q}} c \prec_{\mathbb{Q}} a$.

Example

• Let $\mathcal{M} = \langle M, +, <, 0 \rangle$ be an ordered divisible abelian group.

- ▶ Let a, b, c > 0 in M, such that $b \prec_{\mathbb{Q}} c \prec_{\mathbb{Q}} a$. In particular,
 - $\not\exists$ definable onto $f: [0, b) \rightarrow [0, c)$, and
 - $\forall n \in \mathbb{N}$, nc < a.

Example

• Let $\mathcal{M} = \langle M, +, <, 0 \rangle$ be an ordered divisible abelian group.

- ▶ Let a, b, c > 0 in M, such that $b \prec_{\mathbb{Q}} c \prec_{\mathbb{Q}} a$. In particular,
 - $\not\exists$ definable onto $f: [0, b) \rightarrow [0, c)$, and

•
$$\forall n \in \mathbb{N}$$
, $nc < a$.

► Let
$$G = \langle [0, a) \times [0, b), +_L, 0 \rangle$$
, where $L = \mathbb{Z}(a, 0) + \mathbb{Z}(a - c, b) \leq M^2$.

Example

• Let $\mathcal{M} = \langle M, +, <, 0 \rangle$ be an ordered divisible abelian group.

- ▶ Let a, b, c > 0 in M, such that $b \prec_{\mathbb{Q}} c \prec_{\mathbb{Q}} a$. In particular,
 - $\not\exists$ definable onto $f: [0, b) \rightarrow [0, c)$, and

•
$$\forall n \in \mathbb{N}$$
, $nc < a$.

► Let
$$G = \langle [0, a) \times [0, b), +_L, 0 \rangle$$
, where $L = \mathbb{Z}(a, 0) + \mathbb{Z}(a - c, b) \leq M^2$.

Assume that $\tau: G \to M^r$ is an affine embedding.

For every $t \in [0, a - c)$, consider the one-to-one *G*-path $\blacktriangleright \phi_t : [0, b) \rightarrow \{t\} \times [0, b)$, with $\phi_t(x) = (t, x)$.

For every $t \in [0, a - c)$, consider the one-to-one *G*-path $\phi_t : [0, b) \rightarrow \{t\} \times [0, b)$, with $\phi_t(x) = (t, x)$. For every $t \in [0, a - c]$,

$$\blacktriangleright \lim_{x \to b}^{G} \phi_t(x) = (t + c, 0)$$

▶ $\phi_t : [0, b) \rightarrow \{t\} \times [0, b)$, with $\phi_t(x) = (t, x)$.

For every $t \in [0, a - c]$,

$$\lim_{x \to b}^{G} \phi_t(x) = (t+c,0)$$

$$\blacktriangleright \lim_{x \to b} \tau(\phi_t(x)) = \tau(t+c,0)$$

• $\phi_t : [0, b) \to \{t\} \times [0, b)$, with $\phi_t(x) = (t, x)$.

For every $t \in [0, a - c]$,

$$\blacktriangleright \lim_{x \to b}^{G} \phi_t(x) = (t + c, 0)$$

$$\blacktriangleright \lim_{x \to b} \tau \big(\phi_t(x) \big) = \tau(t+c,0)$$

Since $\forall n \in \mathbb{N}$, nc < a, and τ is piecewise linear on [0, a),

• $\phi_t : [0, b) \to \{t\} \times [0, b)$, with $\phi_t(x) = (t, x)$.

For every $t \in [0, a - c]$,

$$\blacktriangleright \lim_{x \to b}^{G} \phi_t(x) = (t + c, 0)$$

Since $\forall n \in \mathbb{N}$, nc < a, and τ is piecewise linear on [0, a),

▶
$$\exists n \in \mathbb{N}$$
 such that τ is linear on $[nc, (n+1)c)$.

For every $t \in [0, a - c)$, consider the one-to-one *G*-path $\phi_t : [0, b) \rightarrow \{t\} \times [0, b)$, with $\phi_t(x) = (t, x)$.

For every $t \in [0, a - c]$,

$$\lim_{x \to b}^{G} \phi_t(x) = (t + c, 0)$$

$$= \lim_{x \to b} \tau(\phi_t(x)) = \tau(t+c,0)$$

Since $\forall n \in \mathbb{N}$, nc < a, and τ is piecewise linear on [0, a),

▶ $\exists n \in \mathbb{N}$ such that τ is linear on [nc, (n+1)c).

 $au(\phi_{\mathit{nc}}):[0,b)
ightarrow \mathit{M}^{r}$ has endpoints $au(\mathit{nc},0)$ and $au((\mathit{n}+1)\mathit{c},0)$,

► \exists definable onto $f: \tau(\phi_{nc})([0, b)) \rightarrow \tau([nc, (n+1)c) \times \{0\}).$

▶ $\phi_t : [0, b) \rightarrow \{t\} \times [0, b)$, with $\phi_t(x) = (t, x)$.

For every $t \in [0, a - c]$,

$$\blacktriangleright \lim_{x \to b}^{G} \phi_t(x) = (t + c, 0)$$

$$= \lim_{x \to b} \tau \big(\phi_t(x) \big) = \tau(t+c,0)$$

Since $\forall n \in \mathbb{N}$, nc < a, and τ is piecewise linear on [0, a),

▶
$$\exists n \in \mathbb{N}$$
 such that τ is linear on $[nc, (n+1)c)$.

 $au(\phi_{nc}): [0,b) \to M^r$ has endpoints au(nc,0) and au((n+1)c,0),

- ► \exists definable onto $f: \tau(\phi_{nc})([0, b)) \rightarrow \tau([nc, (n+1)c) \times \{0\}).$
- ▶ Hence, \exists definable onto $f : [0, b) \rightarrow [0, c)$,

For every $t \in [0, a - c)$, consider the one-to-one *G*-path $\phi_t : [0, b) \rightarrow \{t\} \times [0, b)$, with $\phi_t(x) = (t, x)$. For every $t \in [0, a - c]$,

▶ $\exists n \in \mathbb{N}$ such that τ is linear on [nc, (n+1)c).

 $au(\phi_{\mathit{nc}}):[0,b) o M^r$ has endpoints $au(\mathit{nc},0)$ and $au((\mathit{n}+1)\mathit{c},0)$,

- ► \exists definable onto $f: \tau(\phi_{nc})([0,b)) \rightarrow \tau([nc,(n+1)c) \times \{0\}).$
- ▶ Hence, \exists definable onto $f : [0, b) \rightarrow [0, c)$,

a contradiction.

Let $\mathcal{M} = \langle M, +, <, 0 \rangle$ be an ordered divisible abelian group. Let $G = \langle [0, a) \times [0, b), +_L, 0 \rangle$, where $L = \mathbb{Z}(a, 0) + \mathbb{Z}(a - c, b) \leqslant M^2$.

Let $\mathcal{M} = \langle M, +, <, 0 \rangle$ be an ordered divisible abelian group. Let $G = \langle [0, a) \times [0, b), +_L, 0 \rangle$, where $L = \mathbb{Z}(a, 0) + \mathbb{Z}(a - c, b) \leq M^2$.

Then G admits an affine embedding if and only if

▶ $\exists m, n \in \mathbb{Z}, m^2 + n^2 \neq 0, ma + nc \preccurlyeq_D b.$

Let $\langle M, <, +, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D. Let G be a definably compact, definably connected semi-linear group of dimension n.

Let $\langle M, <, +, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D. Let G be a definably compact, definably connected semi-linear group of dimension n. By the Structure Theorem:

$$G \cong_{defly} \langle S, +_L \rangle \cong /L,$$

where

►
$$L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \leq \langle M^n, + \rangle$$
,
► $H = \{\lambda_1 t_1 + \cdots + \lambda_n t_n : -e_i < t_i < e_i\}$,
with $e_i > 0$ in M , and $\lambda_i \in D^n$.

Let $\langle M, <, +, 0, \{d\}_{d \in D} \rangle$ be an ordered vector space over an ordered division ring D. Let G be a definably compact, definably connected semi-linear group of dimension n. By the Structure Theorem:

$$G \cong_{defly} \langle S, +_L \rangle \cong /L,$$

where

►
$$L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \leq \langle M^n, + \rangle$$
,
► $H = \{\lambda_1 t_1 + \cdots + \lambda_n t_n : -e_i < t_i < e_i\}$,
with $e_i > 0$ in M , and $\lambda_i \in D^n$.

Up to a linear transformation, we may assume that H is a rectangle.

Let $G = \langle H \rangle / L$ be a definably compact, definably connected semi-linear group of dimension n, where

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $L = \mathbb{Z}(a_1, a_2) + \mathbb{Z}(b_1, b_2) \leqslant \langle M^2, + \rangle$
- H is a rectangle.

Let $G = \langle H \rangle / L$ be a definably compact, definably connected semi-linear group of dimension n, where

- $L = \mathbb{Z}(a_1, a_2) + \mathbb{Z}(b_1, b_2) \leqslant \langle M^2, + \rangle$
- H is a rectangle.

Then, G admits an affine embedding if and only if the following two conditions both hold:

1.
$$\exists m_1, n_1 \in \mathbb{Z}, m_1^2 + n_1^2 \neq 0, m_1a_1 + n_1b_1 \preccurlyeq_D |a_2| + |b_2|,$$

2. $\exists m_2, n_2 \in \mathbb{Z}, m_2^2 + n_2^2 \neq 0, m_2a_2 + n_2b_2 \preccurlyeq_D |a_1| + |b_1|.$

Let $G = \langle H \rangle / L$ be a definably compact, definably connected semi-linear group of dimension n, where

- $L = \mathbb{Z}(a_1, a_2) + \mathbb{Z}(b_1, b_2) \leqslant \langle M^2, + \rangle$
- H is a rectangle.

Then, G admits an affine embedding if and only if the following two conditions both hold:

1.
$$\exists m_1, n_1 \in \mathbb{Z}, m_1^2 + n_1^2 \neq 0, m_1a_1 + n_1b_1 \preccurlyeq_D |a_2| + |b_2|,$$

2. $\exists m_2, n_2 \in \mathbb{Z}, m_2^2 + n_2^2 \neq 0, m_2a_2 + n_2b_2 \preccurlyeq_D |a_1| + |b_1|.$

Corollary

If \mathcal{M} is Archimedean, then G admits an affine embedding.

Classical PL-topology

▶ (Whitney, 1944) Every real PL-manifold of dimension n admits an affine embedding into ℝ²ⁿ.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Classical PL-topology

- ▶ (Whitney, 1944) Every real PL-manifold of dimension n admits an affine embedding into ℝ²ⁿ.
- ▶ (Burago, Zalgaller, 1995) Every orientable real PL-manifold of dimension 2 admits an isometric affine embedding into R³. The generalization of this statement to manifolds of higher dimension is open.