Trees of definable sets in \mathbb{Z}_p

I. Halupczok

Ecole Normale Superieure rue d'Ulm, Paris

Barcelona Modnet conference 2008

Trees of definable sets in \mathbb{Z}_p

Э 1 / 13 I. Halupczok

nac

・ロト ・回ト ・ヨト ・ヨト

• Work in \mathbb{Q}_p (*p*-adics)

- Two-sorted language:
 - Q_p with field language
 - value group $\mathbb Z$ with ordered group language
 - valuation $v: \mathbb{Q}_p \to \mathbb{Z} \cup \{\infty\}$
- For tuples $\bar{x} \subset \mathbb{Q}_p^n$, set $v(\bar{x}) := \min\{v(x_i) \mid 1 \le i \le n\}$
- **Ball** around $\bar{x} \in \mathbb{Q}_p^n$ of (valuative) radius $\lambda \in \mathbb{Z}$: $B(\bar{x}, \lambda) := \{\bar{x}' \mid v(\bar{x}' - \bar{x}) \ge \lambda\} = \bar{x} + p^{\lambda} \mathbb{Z}_p^n$
- Recall: Balls of fixed radius λ form a partition of \mathbb{Q}_p^n

I. Halupczok

- Work in \mathbb{Q}_p (*p*-adics)
- Two-sorted language:
 - \mathbb{Q}_p with field language
 - value group ${\mathbb Z}$ with ordered group language
 - valuation $v: \mathbb{Q}_p \to \mathbb{Z} \cup \{\infty\}$
- For tuples $\bar{x} \subset \mathbb{Q}_p^n$, set $v(\bar{x}) := \min\{v(x_i) \mid 1 \le i \le n\}$
- **Ball** around $\bar{x} \in \mathbb{Q}_p^n$ of (valuative) radius $\lambda \in \mathbb{Z}$: $B(\bar{x}, \lambda) := \{\bar{x}' \mid v(\bar{x}' - \bar{x}) \ge \lambda\} = \bar{x} + p^{\lambda} \mathbb{Z}_p^n$
- Recall: Balls of fixed radius λ form a partition of \mathbb{Q}_p^n

《聞》 《臣》 《臣》

2 / 13

I. Halupczok

- Work in \mathbb{Q}_p (*p*-adics)
- Two-sorted language:
 - \mathbb{Q}_p with field language
 - value group $\ensuremath{\mathbb{Z}}$ with ordered group language
 - valuation $v \colon \mathbb{Q}_p \to \mathbb{Z} \cup \{\infty\}$
- For tuples $\bar{x} \subset \mathbb{Q}_p^n$, set $v(\bar{x}) := \min\{v(x_i) \mid 1 \le i \le n\}$
- **Ball** around $\bar{x} \in \mathbb{Q}_p^n$ of (valuative) radius $\lambda \in \mathbb{Z}$: $B(\bar{x}, \lambda) := \{\bar{x}' \mid v(\bar{x}' - \bar{x}) \ge \lambda\} = \bar{x} + p^{\lambda} \mathbb{Z}_p^n$
- Recall: Balls of fixed radius λ form a partition of \mathbb{Q}_p^n

《聞》 《臣》 《臣》 三臣

2 / 13

I. Halupczok

Setting

- Work in \mathbb{Q}_p (*p*-adics)
- Two-sorted language:
 - \mathbb{Q}_p with field language
 - value group $\ensuremath{\mathbb{Z}}$ with ordered group language
 - valuation $v \colon \mathbb{Q}_p \to \mathbb{Z} \cup \{\infty\}$
- For tuples $\bar{x} \subset \mathbb{Q}_p^n$, set $v(\bar{x}) := \min\{v(x_i) \mid 1 \le i \le n\}$
- **Ball** around $\bar{x} \in \mathbb{Q}_p^n$ of (valuative) radius $\lambda \in \mathbb{Z}$: $B(\bar{x}, \lambda) := \{\bar{x}' \mid v(\bar{x}' - \bar{x}) \ge \lambda\} = \bar{x} + p^{\lambda} \mathbb{Z}_p^n$
- Recall: Balls of fixed radius λ form a partition of \mathbb{Q}_p^n

(本部) (《注》 (注》) [注

2 / 13 I. Halupczok

- Work in \mathbb{Q}_p (*p*-adics)
- Two-sorted language:
 - \mathbb{Q}_p with field language
 - value group ${\mathbb Z}$ with ordered group language
 - valuation $v \colon \mathbb{Q}_p \to \mathbb{Z} \cup \{\infty\}$
- For tuples $\bar{x} \subset \mathbb{Q}_p^n$, set $v(\bar{x}) := \min\{v(x_i) \mid 1 \le i \le n\}$
- **Ball** around $\bar{x} \in \mathbb{Q}_p^n$ of (valuative) radius $\lambda \in \mathbb{Z}$: $B(\bar{x}, \lambda) := \{ \bar{x}' \mid v(\bar{x}' - \bar{x}) \ge \lambda \} = \bar{x} + p^{\lambda} \mathbb{Z}_p^n$
- Recall: Balls of fixed radius λ form a partition of \mathbb{Q}_p^n

((日) (王) (王) (王)

2 / 13 I. Halupczok

• Subballs of \mathbb{Z}_p^n form a tree

- Suppose Ø ≠ X ⊂ Zⁿ_p. This yields a sub-tree T(X) of those balls intersecting X:
 - Vertices: $T(X) = \{B = B(\bar{x}, \lambda) \mid \bar{x} \in X, \lambda \ge 0\}$
 - Root of T(X) is \mathbb{Z}_p
 - Tree structure given by inclusion
- B ⊂ Zⁿ_p ball, B ∩ X ≠ Ø
 → T_B(X) := subtree of T(X) above B (i.e. vertices are balls contained in B)

白 ト く ヨ ト く ヨ ト ー

- Subballs of \mathbb{Z}_p^n form a tree
- Suppose Ø ≠ X ⊂ Zⁿ_p. This yields a sub-tree T(X) of those balls intersecting X:
 - Vertices: $T(X) = \{B = B(\bar{x}, \lambda) \mid \bar{x} \in X, \lambda \ge 0\}$
 - Root of T(X) is \mathbb{Z}_p
 - Tree structure given by inclusion
- B ⊂ Zⁿ_p ball, B ∩ X ≠ Ø
 → T_B(X) := subtree of T(X) above B (i.e. vertices are balls contained in B)

▲部 ▶ ▲ 注 ▶ ▲ 注 ▶ … 注

- Subballs of \mathbb{Z}_p^n form a tree
- Suppose Ø ≠ X ⊂ Zⁿ_p. This yields a sub-tree T(X) of those balls intersecting X:
 - Vertices: $T(X) = \{B = B(\bar{x}, \lambda) \mid \bar{x} \in X, \lambda \ge 0\}$
 - Root of T(X) is \mathbb{Z}_p
 - Tree structure given by inclusion
- B ⊂ Zⁿ_p ball, B ∩ X ≠ Ø
 → T_B(X) := subtree of T(X) above B (i.e. vertices are balls contained in B)

(本部) (《注》 (注》) [注

3 / 13 I. Halupczok

- X = Zⁿ_p → Every node of T(X) has pⁿ children
- X finite → each x ∈ X corresponds to infinite path in T(X)...

4 / 13

I. Halupczok

- Infinite path in a tree *T* is a sequence of vertices
 {*v*₀, *v*₁, *v*₂,...} ⊂ *T* with *v*₀ = root and *v*_{i+1} is child of *v*_i
- We have bijection

{Infinite paths in T(X)} $\longleftrightarrow \overline{X}$ (= *p*-adic closure of X)

- $X = \mathbb{Z}_p^n \rightsquigarrow$ Every node of T(X) has p^n children
- X finite → each x ∈ X corresponds to infinite path in T(X)...

4 / 13

I. Halupczok

- Infinite path in a tree \mathcal{T} is a sequence of vertices $\{v_0, v_1, v_2, \dots\} \subset \mathcal{T}$ with $v_0 = \text{root}$ and v_{i+1} is child of v_i
- We have bijection

{Infinite paths in T(X)} $\longleftrightarrow \overline{X}$ (= *p*-adic closure of X)

- $X = \mathbb{Z}_p^n \rightsquigarrow$ Every node of T(X) has p^n children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X)...

4 / 13

I. Halupczok

- Infinite path in a tree T is a sequence of vertices
 {v₀, v₁, v₂,...} ⊂ T with v₀ = root and v_{i+1} is child of v_i
- We have bijection

{Infinite paths in T(X)} $\longleftrightarrow \overline{X}$ (= *p*-adic closure of X)

- $X = \mathbb{Z}_p^n \rightsquigarrow$ Every node of $\mathsf{T}(X)$ has p^n children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X)...

(4月) (日) (日) 日

4 / 13 I. Halupczok

- Infinite path in a tree T is a sequence of vertices
 {v₀, v₁, v₂,...} ⊂ T with v₀ = root and v_{i+1} is child of v_i
- We have bijection

{Infinite paths in T(X)} $\longleftrightarrow \bar{X}$ (= *p*-adic closure of X)

- Examples:
 - $X = \mathbb{Z}_p^n \rightsquigarrow$ Every node of $\mathsf{T}(X)$ has p^n children
 - X finite → each x ∈ X corresponds to infinite path in T(X)...

- 4 同 2 4 日 2 4 日 2 - 日

4 / 13 I. Halupczok

- Infinite path in a tree \mathcal{T} is a sequence of vertices $\{v_0, v_1, v_2, \dots\} \subset \mathcal{T}$ with $v_0 = \text{root}$ and v_{i+1} is child of v_i
- We have bijection

{Infinite paths in T(X)} $\stackrel{1:1}{\longleftrightarrow} \overline{X}$ (= *p*-adic closure of X)

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: *T* has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong \mathsf{T}(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is *definable* subset of \mathbb{Z}
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

□ ▶ 《 臣 ▶ 《 臣 ▶

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: \mathcal{T} has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong \mathsf{T}(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is *definable* subset of \mathbb{Z}
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: ${\mathcal T}$ has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong \mathsf{T}(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is definable subset of $\ensuremath{\mathbb{Z}}$
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: ${\mathcal T}$ has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong T(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is definable subset of $\ensuremath{\mathbb{Z}}$
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: ${\mathcal T}$ has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong T(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is definable subset of $\ensuremath{\mathbb{Z}}$
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: ${\mathcal T}$ has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong T(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is definable subset of $\ensuremath{\mathbb{Z}}$
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: ${\mathcal T}$ has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong \mathsf{T}(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is definable subset of $\ensuremath{\mathbb{Z}}$
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

▲聞▶ ▲屋▶ ▲屋▶

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: ${\mathcal T}$ has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong \mathsf{T}(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is definable subset of $\ensuremath{\mathbb{Z}}$
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

(1日) (日) (日)

For which abstract trees \mathcal{T} does there exist a definable X such that $\mathcal{T} \cong T(X)$?

- Obvious condition: ${\mathcal T}$ has no leaves.
- Less obvious condition:
 - Suppose $\mathcal{T} \cong \mathsf{T}(X)$; fix infinite path $\mathcal{P} \subset \mathcal{T}$.
 - This yields $x \in \overline{X}$.
 - Define: Side branch of *P* := subtree of *T* starting at a vertex of *P*, without *P* itself.
 - *P* has a side branch at depth λ ⇐⇒ there exists x' ∈ X such that v(x' − x) = λ
 - Thus: set of depths of side branches is definable subset of $\mathbb Z$
- Goal: Find combinatorial description of the set of (abstract) trees T(X) for X definable.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

•
$$T(X) = T(\bar{X})$$
; so from now on suppose $X = \bar{X}$

Lemma

 $X \subset \mathbb{Z}_p^n, X' \subset \mathbb{Z}_p^{n'}$ Then: {bijective isometries $X \to X'$ } $\xleftarrow{1:1} \{T(X) \xrightarrow{\sim} T(X')\}$

Sketch of proof:

- $\phi: X \to X'$ yields $T(X) \to T(X'), B(\bar{x}, \lambda) \mapsto B(\phi(\bar{x}), \lambda)$ for $\bar{x} \in X$. Well-defined as ϕ isometry.
- $\psi \colon \mathsf{T}(X) \to \mathsf{T}(X')$ induces map on infinite paths...

Analogously: {bij. isomet. $X \cap B \to X' \cap B$ } $\stackrel{1:1}{\leftrightarrow}$ {T_B(X) \longrightarrow T_B(X')}

•
$$T(X) = T(\bar{X})$$
; so from now on suppose $X = \bar{X}$

Lemma

 $X \subset \mathbb{Z}_p^n, X' \subset \mathbb{Z}_p^{n'}$ Then: {bijective isometries $X \to X'$ } $\xleftarrow{1:1} \{T(X) \xrightarrow{\sim} T(X')\}$

Sketch of proof:

- $\phi: X \to X'$ yields $T(X) \to T(X'), B(\bar{x}, \lambda) \mapsto B(\phi(\bar{x}), \lambda)$ for $\bar{x} \in X$. Well-defined as ϕ isometry.
- $\psi \colon \mathsf{T}(X) \to \mathsf{T}(X')$ induces map on infinite paths...

Analogously: {bij. isomet. $X \cap B \to X' \cap B$ } $\stackrel{1:1}{\leftrightarrow}$ {T_B(X) $\xrightarrow{\sim}$ T_B(X')}

▲部 ▶ ▲ 注 ▶ ▲ 注 ▶ … 注

•
$$T(X) = T(\bar{X})$$
; so from now on suppose $X = \bar{X}$

Lemma

 $X \subset \mathbb{Z}_p^n, X' \subset \mathbb{Z}_p^{n'}$ Then: {bijective isometries $X \to X'$ } $\xleftarrow{1:1} \{T(X) \xrightarrow{\sim} T(X')\}$

Sketch of proof:

- $\phi: X \to X'$ yields $T(X) \to T(X'), B(\bar{x}, \lambda) \mapsto B(\phi(\bar{x}), \lambda)$ for $\bar{x} \in X$. Well-defined as ϕ isometry.
- ψ : $T(X) \rightarrow T(X')$ induces map on infinite paths...

Analogously: {bij. isomet. $X \cap B \to X' \cap B$ } $\stackrel{1:1}{\leftrightarrow}$ {T_B(X) \longrightarrow T_B(X')}

- 4 回 ト - 4 回 ト - - 回

•
$$T(X) = T(\bar{X})$$
; so from now on suppose $X = \bar{X}$

Lemma

 $X \subset \mathbb{Z}_p^n, X' \subset \mathbb{Z}_p^{n'}$ Then: {bijective isometries $X \to X'$ } $\xleftarrow{1:1} \{T(X) \xrightarrow{\sim} T(X')\}$

Sketch of proof:

• $\phi: X \to X'$ yields $T(X) \to T(X'), B(\bar{x}, \lambda) \mapsto B(\phi(\bar{x}), \lambda)$ for $\bar{x} \in X$. Well-defined as ϕ isometry.

• $\psi \colon \mathsf{T}(X) \to \mathsf{T}(X')$ induces map on infinite paths...

Analogously: {bij. isomet. $X \cap B \to X' \cap B$ } $\stackrel{1:1}{\leftrightarrow}$ {T_B(X) \longrightarrow T_B(X')}

- 세례 에 제 문 에 문 에 문 에 문

•
$$T(X) = T(\bar{X})$$
; so from now on suppose $X = \bar{X}$

Lemma

 $X \subset \mathbb{Z}_p^n, X' \subset \mathbb{Z}_p^{n'}$ Then: {bijective isometries $X \to X'$ } $\xleftarrow{1:1} \{T(X) \xrightarrow{\sim} T(X')\}$

Sketch of proof:

• $\phi: X \to X'$ yields $T(X) \to T(X'), B(\bar{x}, \lambda) \mapsto B(\phi(\bar{x}), \lambda)$ for $\bar{x} \in X$. Well-defined as ϕ isometry.

• ψ : $T(X) \rightarrow T(X')$ induces map on infinite paths...

Analogously: {bij. isomet. $X \cap B \to X' \cap B$ } $\stackrel{1:1}{\leftrightarrow}$ {T_B(X) \longrightarrow T_B(X')}

•
$$T(X) = T(\bar{X})$$
; so from now on suppose $X = \bar{X}$

Lemma

 $X \subset \mathbb{Z}_p^n, X' \subset \mathbb{Z}_p^{n'}$ Then: {bijective isometries $X \to X'$ } $\xleftarrow{1:1} \{T(X) \xrightarrow{\sim} T(X')\}$

Sketch of proof:

- $\phi: X \to X'$ yields $T(X) \to T(X'), B(\bar{x}, \lambda) \mapsto B(\phi(\bar{x}), \lambda)$ for $\bar{x} \in X$. Well-defined as ϕ isometry.
- ψ : $T(X) \rightarrow T(X')$ induces map on infinite paths...

Analogously: {bij. isomet. $X \cap B \to X' \cap B$ } $\stackrel{1:1}{\leftrightarrow}$ {T_B(X) $\xrightarrow{\sim}$ T_B(X')}

•
$$T(X) = T(\bar{X})$$
; so from now on suppose $X = \bar{X}$

Lemma

 $X \subset \mathbb{Z}_p^n, X' \subset \mathbb{Z}_p^{n'}$ Then: {bijective isometries $X \to X'$ } $\xleftarrow{1:1} \{T(X) \xrightarrow{\sim} T(X')\}$

Sketch of proof:

- $\phi: X \to X'$ yields $T(X) \to T(X'), B(\bar{x}, \lambda) \mapsto B(\phi(\bar{x}), \lambda)$ for $\bar{x} \in X$. Well-defined as ϕ isometry.
- ψ : $T(X) \rightarrow T(X')$ induces map on infinite paths...

Analogously: {bij. isomet. $X \cap B \to X' \cap B$ } $\stackrel{1:1}{\leftrightarrow} \{\mathsf{T}_B(X) \xrightarrow{\sim} \mathsf{T}_B(X')\}$

For X ⊂ Qⁿ_p definable, Scowcroft and van den Dries defined:
 dim X := dimension of Zariski closure of X in Qⁿ_p.

<ロト <回ト < 回ト < 回ト < 回ト -

7 / 13

I. Halupczok

• We will define trees of level d (purely combinatorial).

Conjecture (H.)

Suppose T is an (abstract) tree. Then: T is of level $d \iff$ there exists definable $X \subset \mathbb{Z}_p^n$ with $\dim X = d$ such that $T \cong T(X)$

Theorem (H.)

 $\label{eq:constraint} \begin{array}{ll} \overset{``}{\Longrightarrow} & `` \textit{holds} & if \ X \subset \mathbb{Z}_p^2 & or \ if \ dim \ X \leq 1 \\ & or \ if \ X \ is \ algebraic \ without \ singularities \end{array}$

In this talk: consider mainly " \Leftarrow ".

For X ⊂ Qⁿ_p definable, Scowcroft and van den Dries defined:
 dim X := dimension of Zariski closure of X in Qⁿ_p.

<ロト < 団ト < 巨ト < 巨ト - 巨

7 / 13

I. Halupczok

• We will define trees of level d (purely combinatorial).

Conjecture (H.)

Suppose T is an (abstract) tree. Then: T is of level $d \iff$ there exists definable $X \subset \mathbb{Z}_p^n$ with $\dim X = d$ such that $T \cong T(X)$

Theorem (H.)

 $\label{eq:constraint} \begin{array}{ll} ``\Longrightarrow'' \ \ holds & \ \ if \ X \subset \mathbb{Z}_p^2 & \ \ or \ if \ dim \ X \leq 1 \\ & \ \ or \ if \ X \ \ is \ algebraic \ without \ singularities \end{array}$

For X ⊂ Qⁿ_p definable, Scowcroft and van den Dries defined:
 dim X := dimension of Zariski closure of X in Qⁿ_p.

<ロト < 団ト < 巨ト < 巨ト - 巨

7 / 13

I. Halupczok

• We will define trees of level d (purely combinatorial).

Conjecture (H.)

Suppose \mathcal{T} is an (abstract) tree. Then: \mathcal{T} is of level $d \iff$ there exists definable $X \subset \mathbb{Z}_p^n$ with $\dim X = d$ such that $\mathcal{T} \cong \mathsf{T}(X)$

Theorem (H.)

" \Longrightarrow " holds. " \Leftarrow " holds if $X \subset \mathbb{Z}_p^2$ or if dim $X \leq 1$ or if X is algebraic without singularities

For X ⊂ Qⁿ_p definable, Scowcroft and van den Dries defined:
 dim X := dimension of Zariski closure of X in Qⁿ_p.

イロト 不得 トイヨト イヨト 二日

7 / 13

I. Halupczok

• We will define trees of level d (purely combinatorial).

Conjecture (H.)

Suppose \mathcal{T} is an (abstract) tree. Then: \mathcal{T} is of level $d \iff$ there exists definable $X \subset \mathbb{Z}_p^n$ with $\dim X = d$ such that $\mathcal{T} \cong \mathsf{T}(X)$

Theorem (H.)

" \implies " holds. " \Leftarrow " holds if $X \subset \mathbb{Z}_p^2$ or if dim $X \leq 1$ or if X is algebraic without singularities

In this talk: consider mainly " \Leftarrow ".

For X ⊂ Qⁿ_p definable, Scowcroft and van den Dries defined:
 dim X := dimension of Zariski closure of X in Qⁿ_p.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

7 / 13

I. Halupczok

• We will define trees of level d (purely combinatorial).

Conjecture (H.)

Suppose \mathcal{T} is an (abstract) tree. Then: \mathcal{T} is of level $d \iff$ there exists definable $X \subset \mathbb{Z}_p^n$ with $\dim X = d$ such that $\mathcal{T} \cong \mathsf{T}(X)$

Theorem (H.)

 $\label{eq:constraint} \stackrel{"}{\longleftrightarrow} \stackrel{"}{\longrightarrow} holds.$

In this talk: consider mainly "<="

For X ⊂ Qⁿ_p definable, Scowcroft and van den Dries defined:
 dim X := dimension of Zariski closure of X in Qⁿ_p.

7 / 13

I. Halupczok

• We will define trees of level d (purely combinatorial).

Conjecture (H.)

Suppose \mathcal{T} is an (abstract) tree. Then: \mathcal{T} is of level $d \iff$ there exists definable $X \subset \mathbb{Z}_p^n$ with $\dim X = d$ such that $\mathcal{T} \cong \mathsf{T}(X)$

Theorem (H.)

 $\label{eq:constraint} \stackrel{"}{\longleftrightarrow} \stackrel{"}{\longrightarrow} holds.$

In this talk: consider mainly " \Leftarrow ".
• Definition of level *d* trees is recursive. Start with level 0:

- Define: *T* is of level 0 ⇐⇒ *T* has no leaves and only finitely many bifurcations.
- These are exactly the trees of finite sets.
 ⇒ Conjecture holds for d = 0:
- For $d \geq 1$ we will define when $\mathcal T$ is of level $\leq \mathbf{d}$
- Then: \mathcal{T} is of level = **d** if it is of level $\leq d$ but not of level $\leq d-1$

I. Halupczok

8 / 13

- Definition of level *d* trees is recursive. Start with level 0:
 - Define: *T* is of level 0 ⇐⇒ *T* has no leaves and only finitely many bifurcations.
 - These are exactly the trees of finite sets.
 ⇒ Conjecture holds for d = 0:
- For $d \geq 1$ we will define when \mathcal{T} is of level \leq d
- Then: \mathcal{T} is of level = **d** if it is of level $\leq d$ but not of level $\leq d 1$

8 / 13

- Definition of level *d* trees is recursive. Start with level 0:
 - Define: \mathcal{T} is of level $0 \iff \mathcal{T}$ has no leaves and only finitely many bifurcations.
 - These are exactly the trees of finite sets.
 ⇒ Conjecture holds for *d* = 0:
- For $d \geq 1$ we will define when \mathcal{T} is of level $\leq \mathbf{d}$
- Then: \mathcal{T} is of level = **d** if it is of level $\leq d$ but not of level $\leq d-1$

< @ ▶ < 볼 ▶ < 볼 ▶ 8 / 13 Ⅰ.

- Definition of level *d* trees is recursive. Start with level 0:
 - Define: \mathcal{T} is of level $0 \iff \mathcal{T}$ has no leaves and only finitely many bifurcations.
 - These are exactly the trees of finite sets.
 ⇒ Conjecture holds for *d* = 0:
- For $d \ge 1$ we will define when \mathcal{T} is of level $\leq \mathbf{d}$
- Then: \mathcal{T} is of level = d if it is of level $\leq d$ but not of level $\leq d-1$

8 / 13

- Definition of level *d* trees is recursive. Start with level 0:
 - Define: \mathcal{T} is of level $0 \iff \mathcal{T}$ has no leaves and only finitely many bifurcations.
 - These are exactly the trees of finite sets.
 ⇒ Conjecture holds for *d* = 0:
- For $d \geq 1$ we will define when \mathcal{T} is of level $\leq \mathbf{d}$
- Then: \mathcal{T} is of level = d if it is of level $\leq d$ but not of level $\leq d-1$

- 4 回 ト - 4 回 ト - - 回

8 / 13

Fix $d \geq 1$. Define: \mathcal{T} of level $\leq d \iff$

There exists S_0 finite set of infinite paths $\mathcal{P} \subset \mathcal{T}$ such that: ① For each depth $\lambda \in \mathbb{N}$:

- Sut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
- The remaining tree has to satisfy:

Examples:
$$X = \mathbb{Z}_{p} \longrightarrow 1$$

 $X = \mathbb{Z}_{p}^{n} \longrightarrow n$
 $X = \{x \in \mathbb{Z}_{p} \mid v(x) \text{ even}\} \rightarrow 1$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Fix $d \ge 1$. Define: \mathcal{T} of level $\le d \iff$ There exists S_0 finite set of infinite paths $\mathcal{P} \subset \mathcal{T}$ such that:

1 For each depth $\lambda \in \mathbb{N}$:

- Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
- The remaining tree has to satisfy
 - It consists of a finite tree F with trees T₁, ..., T_k attached tool it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}_i' imes \mathsf{T}(\mathbf{Z}_p)$, with \mathcal{T}_i' of level $\leq d-1$
- 2 Uniformity condition when walking up a path $\mathcal{P} \in \mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_p \longrightarrow 1$$

 $X = \mathbb{Z}_p^n \longrightarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \rightarrow 1$

Fix $d \ge 1$. Define: \mathcal{T} of level $\le d \iff$ There exists S_0 finite set of infinite paths $\mathcal{P} \subset \mathcal{T}$ such that:

1 For each depth $\lambda \in \mathbb{N}$:

- Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
- The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees T_1, \ldots, T_k attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i imes \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.

2 Uniformity condition when walking up a path $\mathcal{P}\in\mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_p \longrightarrow 1$$

 $X = \mathbb{Z}_p^n \longrightarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \longrightarrow 1$

Fix $d \ge 1$. Define: \mathcal{T} of level $\le d \iff$ There exists S_0 finite set of infinite paths $\mathcal{P} \subset \mathcal{T}$ such that: **1** For each depth $\lambda \in \mathbb{N}$: • Cut each path $\mathcal{P} \in S_0$ at depth λ • The remaining tree has to satisfy: • It consists of a finite tree \mathcal{P} with trees $\mathcal{T}_{n-2} = \mathcal{T}_n$ attached it • Each \mathcal{T}_n is of the form $\mathcal{T}_n = \mathcal{T}_n$, with \mathcal{T}_n of level $\subseteq d$. **2** Uniformity condition when walking up a path $\mathcal{P} \in S_0$

[On next slide]

Examples:
$$X = \mathbb{Z}_p \longrightarrow 1$$

 $X = \mathbb{Z}_p^n \longrightarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \rightarrow 1$

Fix $d \ge 1$. Define: \mathcal{T} of level $\le d \iff$ There exists S_0 finite set of infinite paths $\mathcal{P} \subset \mathcal{T}$ such that:

- **1** For each depth $\lambda \in \mathbb{N}$:
 - Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
 - The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i \times \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.

2 Uniformity condition when walking up a path $\mathcal{P}\in\mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_p \longrightarrow 1$$

 $X = \mathbb{Z}_p^n \longrightarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \longrightarrow 1$

Fix $d \ge 1$. Define: \mathcal{T} of level $\le \mathbf{d} \iff$ There exists S_0 finite set of infinite paths $\mathcal{P} \subset \mathcal{T}$ such that:

- **1** For each depth $\lambda \in \mathbb{N}$:
 - Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
 - The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i \times \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.

2 Uniformity condition when walking up a path $\mathcal{P}\in\mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_p \longrightarrow 1$$

 $X = \mathbb{Z}_p^n \longrightarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \longrightarrow 1$

Fix $d \ge 1$. Define: \mathcal{T} of level $\le \mathbf{d} \iff$ There exists S_0 finite set of infinite paths $\mathcal{P} \subset \mathcal{T}$ such that:

- **1** For each depth $\lambda \in \mathbb{N}$:
 - Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
 - The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i \times \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.
- 2 Uniformity condition when walking up a path $\mathcal{P}\in\mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_{\rho} \longrightarrow 1$$

 $X = \mathbb{Z}_{\rho}^{n} \longrightarrow n$
 $X = \{x \in \mathbb{Z}_{\rho} \mid v(x) \text{ even}\} \longrightarrow 1$

(本部) (《注》 (注》) [注

- **1** For each depth $\lambda \in \mathbb{N}$:
 - Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
 - The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i \times \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.
- **2** Uniformity condition when walking up a path $\mathcal{P} \in \mathcal{S}_0$ [On next slide]

Examples: $X = \mathbb{Z}_p \longrightarrow 1$ $X = \mathbb{Z}_p^n \longrightarrow n$ $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \rightarrow 1$

<ロト < 団ト < 団ト < 団ト = 三目

- **1** For each depth $\lambda \in \mathbb{N}$:
 - Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
 - The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i \times \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.
- **2** Uniformity condition when walking up a path $\mathcal{P} \in \mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_p \longrightarrow 1$$

 $X = \mathbb{Z}_p^n \longrightarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \rightsquigarrow 1$

- **1** For each depth $\lambda \in \mathbb{N}$:
 - Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
 - The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i \times \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.
- **2** Uniformity condition when walking up a path $\mathcal{P} \in \mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_p \longrightarrow 1$$

 $X = \mathbb{Z}_p^n \longrightarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \rightsquigarrow 1$

- **1** For each depth $\lambda \in \mathbb{N}$:
 - Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
 - The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i \times \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.
- **2** Uniformity condition when walking up a path $\mathcal{P} \in \mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_p \longrightarrow 1$$

 $X = \mathbb{Z}_p^n \longrightarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \rightsquigarrow 1$

- **1** For each depth $\lambda \in \mathbb{N}$:
 - Cut each path $\mathcal{P} \in \mathcal{S}_0$ at depth λ
 - The remaining tree has to satisfy:
 - It consists of a finite tree \mathcal{F} with trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$ attached to it.
 - Each \mathcal{T}_i is of the form $\mathcal{T}'_i \times \mathsf{T}(\mathbb{Z}_p)$, with \mathcal{T}'_i of level $\leq d-1$.
- **2** Uniformity condition when walking up a path $\mathcal{P} \in \mathcal{S}_0$ [On next slide]

Examples:
$$X = \mathbb{Z}_p \qquad \rightsquigarrow 1$$

 $X = \mathbb{Z}_p^n \qquad \rightsquigarrow n$
 $X = \{x \in \mathbb{Z}_p \mid v(x) \text{ even}\} \rightsquigarrow 1$

Uniformity condition when walking up a path $\mathcal{P} \in \mathcal{S}_0$:

2 For each path $\mathcal{P} \in \mathcal{S}_0$:

- Let \mathcal{B}_{μ} be the side branch of \mathcal{P} at depth μ .
- There are $\lambda, \rho \in \mathbb{N}$ such that:
- Consider all \mathcal{B}_{μ} with $\mu \geq \lambda$, $\mu \equiv a \mod \rho$ for some fixed a.
- For these:
 - The finite tree at the beginning of \mathcal{B}_{μ} is the same for all μ

▲聞▶ ▲屋▶ ▲屋▶

10 / 13

I. Halupczok

The trees the 3% of level d = 1 appearing inside B₂, are funiformly (in p) of level d = 1°.

Uniformity condition when walking up a path $\mathcal{P}\in\mathcal{S}_0{:}$

2 For each path $\mathcal{P} \in \mathcal{S}_0$:

- Let \mathcal{B}_{μ} be the side branch of \mathcal{P} at depth μ .
- There are $\lambda, \rho \in \mathbb{N}$ such that:
- Consider all \mathcal{B}_{μ} with $\mu \geq \lambda$, $\mu \equiv a \mod \rho$ for some fixed a.
- For these:
 - The finite tree at the beginning of B_μ is the same for all μ

▲□ → ▲ □ → ▲ □ → …

10 / 13

I. Halupczok

• The trees the \mathcal{T}_l' of level d-1 appearing inside \mathcal{B}_μ are "uniformly (in μ) of level d-1"

Uniformity condition when walking up a path $\mathcal{P}\in\mathcal{S}_0\text{:}$

2 For each path $\mathcal{P} \in \mathcal{S}_0$:

- Let \mathcal{B}_{μ} be the side branch of \mathcal{P} at depth μ .
- There are $\lambda, \rho \in \mathbb{N}$ such that:
- Consider all \mathcal{B}_{μ} with $\mu \geq \lambda$, $\mu \equiv a \mod \rho$ for some fixed a.
- For these:
 - The finite tree at the beginning of \mathcal{B}_{μ} is the same for all μ

▲□ ▶ ▲ □ ▶ ▲ □ ▶

10 / 13

I. Halupczok

• The trees the \mathcal{T}_i' of level d-1 appearing inside \mathcal{B}_μ are "uniformly (in μ) of level d-1"

Uniformity condition when walking up a path $\mathcal{P}\in\mathcal{S}_0$:

2 For each path $\mathcal{P} \in \mathcal{S}_0$:

- Let \mathcal{B}_{μ} be the side branch of \mathcal{P} at depth μ .
- There are $\lambda, \rho \in \mathbb{N}$ such that:
- Consider all \mathcal{B}_{μ} with $\mu \geq \lambda$, $\mu \equiv a \mod \rho$ for some fixed a.
- For these:
 - The finite tree at the beginning of \mathcal{B}_{μ} is the same for all μ

▲□ ▶ ▲ □ ▶ ▲ □ ▶

10 / 13

I. Halupczok

• The trees the T_i' of level d-1 appearing inside \mathcal{B}_μ are "uniformly (in μ) of level d-1"

Uniformity condition when walking up a path $\mathcal{P}\in\mathcal{S}_0$:

2 For each path $\mathcal{P} \in \mathcal{S}_0$:

- Let \mathcal{B}_{μ} be the side branch of \mathcal{P} at depth μ .
- There are $\lambda, \rho \in \mathbb{N}$ such that:
- Consider all \mathcal{B}_{μ} with $\mu \geq \lambda$, $\mu \equiv a \mod \rho$ for some fixed a.

• For these:

 The finite tree at the beginning of B_μ is the same for all μ
 The trees the T_i' of level d - 1 appearing inside B_μ are "uniformly (in μ) of level d - 1"

▲聞▶ ▲屋▶ ▲屋▶

10 / 13

Uniformity condition when walking up a path $\mathcal{P} \in \mathcal{S}_0$:

2 For each path $\mathcal{P} \in \mathcal{S}_0$:

- Let \mathcal{B}_{μ} be the side branch of \mathcal{P} at depth μ .
- There are $\lambda, \rho \in \mathbb{N}$ such that:
- Consider all \mathcal{B}_{μ} with $\mu \geq \lambda$, $\mu \equiv a \mod \rho$ for some fixed a.
- For these:
 - The finite tree at the beginning of \mathcal{B}_{μ} is the same for all μ

10 / 13

I. Halupczok

• The trees the \mathcal{T}'_i of level d-1 appearing inside \mathcal{B}_μ are "uniformly (in μ) of level d-1"

Meaning of **o** for the definable set

What does "T(X) satisfies **()**" mean for X?

Lemma

 $X \subset \mathbb{Z}_p^n$. (Recall: X closed!) Then T(X) satisfies $\mathbb{1} \iff$ There is a finite $X_0 \subset X$ such that: Around each $\overline{x} \in X \setminus X_0$ there exists ball $B_{\overline{x}}$ such that $T_{B_{\overline{x}}}(X) \cong T' \times T(\mathbb{Z}_p)$, where T' of level $\leq d - 1$

11 / 13

I. Halupczok

- X_0 = set of points corresponding to paths S_0
- "⇒>": easy.
- "⇐─": use that X is compact.

Lemma

 $X \subset \mathbb{Z}_p^n$. (Recall: X closed!) Then $\mathsf{T}(X)$ satisfies lacksquare

here is a finite $X_0 \subset X$ such that: Around each $\bar{x} \in X \setminus X_0$ there exists ball $B_{\bar{x}}$ such that $T_{B_{\bar{x}}}(X) \cong T' \times T(\mathbb{Z}_p)$, where T' of level $\leq d-1$

11 / 13

I. Halupczok

- X_0 = set of points corresponding to paths S_0
- "⇒>": easy.
- "⇐=": use that X is compact.

Lemma

 $X \subset \mathbb{Z}_p^n$. (Recall: X closed!) Then T(X) satisfies $\mathbf{1} \iff$ There is a finite $X_0 \subset X$ such that:

Around each $\bar{x} \in X \setminus X_0$ there exists ball $B_{\bar{x}}$ such that $T_{B_{\bar{x}}}(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$, where \mathcal{T}' of level $\leq d-1$

I. Halupczok

- X_0 = set of points corresponding to paths S_0
- "⇒⇒": easy.
- "⇐=": use that X is compact.

Lemma

 $X \subset \mathbb{Z}_{p}^{n}$. (Recall: X closed!) Then T(X) satisfies $\mathbf{0} \iff$ There is a finite $X_{0} \subset X$ such that: Around each $\bar{x} \in X \setminus X_{0}$ there exists ball $B_{\bar{x}}$ such that $T_{B_{\bar{x}}}(X) \cong \mathcal{T}' \times T(\mathbb{Z}_{p})$, where \mathcal{T}' of level $\leq d - 1$

▲部 ▶ ▲ 注 ▶ ▲ 注 ▶ … 注

11 / 13

I. Halupczok

- X₀ = set of points corresponding to paths S₀
- "⇒⇒": easy.
- "⇐=": use that X is compact.

Lemma

 $X \subset \mathbb{Z}_p^n$. (Recall: X closed!) Then T(X) satisfies $\mathbf{0} \iff$ There is a finite $X_0 \subset X$ such that: Around each $\bar{x} \in X \setminus X_0$ there exists ball $B_{\bar{x}}$ such that $T_{B_{\bar{x}}}(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$, where \mathcal{T}' of level $\leq d - 1$

▲部 ▶ ▲ 注 ▶ ▲ 注 ▶ ― 注

11 / 13 I. Halupczok

- X₀ = set of points corresponding to paths S₀
- "⇒": easy.
- " \Leftarrow ": use that X is compact.

Lemma

$$X \subset \mathbb{Z}_{p}^{n}$$
. (Recall: X closed!) Then $T(X)$ satisfies $\mathbf{0} \iff$
There is a finite $X_{0} \subset X$ such that:
Around each $\bar{x} \in X \setminus X_{0}$ there exists ball $B_{\bar{x}}$
such that $T_{B_{\bar{x}}}(X) \cong \mathcal{T}' \times T(\mathbb{Z}_{p})$, where \mathcal{T}' of level $\leq d - 1$

((日) (王) (王) (王)

11 / 13 I. Halupczok

- X_0 = set of points corresponding to paths S_0
- " \Longrightarrow ": easy.
- " \Leftarrow ": use that X is compact.

Lemma

$$X \subset \mathbb{Z}_{p}^{n}$$
. (Recall: X closed!) Then $T(X)$ satisfies $\mathbf{0} \iff$
There is a finite $X_{0} \subset X$ such that:
Around each $\bar{x} \in X \setminus X_{0}$ there exists ball $B_{\bar{x}}$
such that $T_{B_{\bar{x}}}(X) \cong \mathcal{T}' \times T(\mathbb{Z}_{p})$, where \mathcal{T}' of level $\leq d - 1$

- 4 回 ト - 4 回 ト - - 回

11 / 13 I. Halupczok

- X_0 = set of points corresponding to paths S_0
- " \Longrightarrow ": easy.
- "=": use that X is compact.

Lemma

$$X \subset \mathbb{Z}_{p}^{n}$$
. (Recall: X closed!) Then $T(X)$ satisfies $\bullet \iff$
There is a finite $X_{0} \subset X$ such that:
Around each $\bar{x} \in X \setminus X_{0}$ there exists ball $B_{\bar{x}}$
such that $T_{B_{\bar{x}}}(X) \cong T' \times T(\mathbb{Z}_{p})$, where T' of level $\leq d - 1$

(4月) (日) (日) 日

11 / 13

I. Halupczok

- X_0 = set of points corresponding to paths S_0
- " \Longrightarrow ": easy.
- "=": use that X is compact.

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_{\rho} \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $\mathsf{T}(X) \cong \mathsf{T}(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}^2_p$ is smooth algebraic curve:
 - It suffices to find ball B around each (x, y) ∈ X such that T_B(X) ≅ T(ℤ_p)
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}^2_p$ is smooth algebraic curve:
 - It suffices to find ball B around each (x, y) ∈ X such that T_B(X) ≅ T(ℤ_p)
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, φ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_{p} \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}^2_p$ is smooth algebraic curve:
 - It suffices to find ball B around each (x, y) ∈ X such that T_B(X) ≅ T(ℤ_p)
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X\cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, φ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}^2_p$ is smooth algebraic curve:
 - It suffices to find ball B around each (x, y) ∈ X such that T_B(X) ≅ T(ℤ_p)
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, φ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}^2_p$ is smooth algebraic curve:
 - It suffices to find ball B around each (x, y) ∈ X such that T_B(X) ≅ T(ℤ_p)
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, φ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)
We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}_p^2$ is smooth algebraic curve:
 - It suffices to find ball *B* around each $(x, y) \in X$ such that $T_B(X) \cong T(\mathbb{Z}_p)$
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}_p^2$ is smooth algebraic curve:
 - It suffices to find ball B around each $(x, y) \in X$ such that $T_B(X) \cong T(\mathbb{Z}_p)$
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}_p^2$ is smooth algebraic curve:
 - It suffices to find ball B around each (x, y) ∈ X such that T_B(X) ≅ T(ℤ_p)
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}_p^2$ is smooth algebraic curve:
 - It suffices to find ball B around each $(x, y) \in X$ such that $T_B(X) \cong T(\mathbb{Z}_p)$
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}_p^2$ is smooth algebraic curve:
 - It suffices to find ball B around each $(x, y) \in X$ such that $T_B(X) \cong T(\mathbb{Z}_p)$
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}_p^2$ is smooth algebraic curve:
 - It suffices to find ball B around each $(x, y) \in X$ such that $T_B(X) \cong T(\mathbb{Z}_p)$
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}_p^2$ is smooth algebraic curve:
 - It suffices to find ball B around each $(x, y) \in X$ such that $T_B(X) \cong T(\mathbb{Z}_p)$
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves ①. (But ② is difficult.)

We prove that T(X) is of level $\leq \dim X$ in some special cases.

- $X = \{(x, \phi(x)) \mid x \in \mathbb{Z}_p\}$ with $v(\phi(x_1) \phi(x_2)) \ge v(x_1 x_2)$ (*)
 - Then $\mathbb{Z}_p \to X$, $x \mapsto (x, \phi(x))$ is isometry.
 - By isometry lemma, $T(X) \cong T(\mathbb{Z}_p)$
 - \Rightarrow T(X) is of level 1.
- $X \subset \mathbb{Z}_p^2$ is smooth algebraic curve:
 - It suffices to find ball B around each $(x, y) \in X$ such that $T_B(X) \cong T(\mathbb{Z}_p)$
 - Fix $(x, y) \in X$.
 - Implicit function theorem $\rightsquigarrow X \cap B$ is graph of function ϕ
 - After possibly exchanging coordinates, ϕ satisfies (*)
 - Then as above.
- Higher dimensions work similarly.
- If X has only isolated singularities (e.g. any algebraic curve), then this proves 1. (But 2 is difficult.)

Suppose the conjecture holds. Then definable sets X can be *stratified*, i.e. decomposed into nice subsets:

- X₀ := set corresponding to paths S₀ in T(X)
 X₀ ⊂ X is set of "0-dimensional singularities"
- $X \setminus X_0$ can be partitioned into $X \cap B$ for balls B, such that $T_B(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$ with \mathcal{T}' of level $\leq d-1$
- Apply conjecture to \mathcal{T}' ; the paths \mathcal{S}'_0 of \mathcal{T}' yield 1-dimensional subset of $X \cap B$

 $X_1 :=$ union of these subsets

 $X_1 \subset X \setminus X_0$ is set of "1-dimensional singularities"

- Inductively obtain $X = X_0 \cup ... \cup X_d$ This is a *stratification*:
 - X_i is locally isometric to \mathbb{Z}_n^i near each $\bar{x} \in X_i$
 - $X_i = X_0 \cup \cdots \cup X_i$
 - ② yields precise description of X_i near $\bar{x} \in X_i$.

イロト 人間ト イヨト イヨト

Suppose the conjecture holds. Then definable sets X can be *stratified*, i.e. decomposed into nice subsets:

- X₀ := set corresponding to paths S₀ in T(X)
 X₀ ⊂ X is set of "0-dimensional singularities"
- $X \setminus X_0$ can be partitioned into $X \cap B$ for balls B, such that $T_B(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$ with \mathcal{T}' of level $\leq d-1$
- Apply conjecture to \mathcal{T}' ; the paths \mathcal{S}'_0 of \mathcal{T}' yield 1-dimensional subset of $X \cap B$

 $X_1 :=$ union of these subsets

 $X_1 \subset X \setminus X_0$ is set of "1-dimensional singularities"

- Inductively obtain $X = X_0 \cup ... \cup X_d$ This is a *stratification*:
 - X_i is locally isometric to \mathbb{Z}_n^i near each $\bar{x} \in X_i$
 - $X_i = X_0 \cup \cdots \cup X_i$
 - ② yields precise description of X_i near $\bar{x} \in X_i$.

イロト イポト イヨト イヨト

Suppose the conjecture holds. Then definable sets X can be *stratified*, i.e. decomposed into nice subsets:

- $X_0 :=$ set corresponding to paths S_0 in T(X) $X_0 \subset X$ is set of "0-dimensional singularities"
- $X \setminus X_0$ can be partitioned into $X \cap B$ for balls B, such that $T_B(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$ with \mathcal{T}' of level $\leq d-1$
- Apply conjecture to T'; the paths S'₀ of T' yield 1-dimensional subset of X ∩ B X₁ := union of these subsets
 - $X_1 \subset X \setminus X_0$ is set of "1-dimensional singularities"
- Inductively obtain $X = X_0 \cup ... \cup X_d$ This is a *stratification*:
 - X_i is locally isometric to \mathbb{Z}_p^i near each $\bar{x} \in X_i$
 - $X_i = X_0 \cup \cdots \cup X_i$
 - • yields precise description of X_i near $\bar{x} \in X_i$.

Suppose the conjecture holds. Then definable sets X can be *stratified*, i.e. decomposed into nice subsets:

- $X_0 :=$ set corresponding to paths S_0 in T(X) $X_0 \subset X$ is set of "0-dimensional singularities"
- $X \setminus X_0$ can be partitioned into $X \cap B$ for balls B, such that $T_B(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$ with \mathcal{T}' of level $\leq d-1$
- Apply conjecture to \mathcal{T}' ; the paths \mathcal{S}'_0 of \mathcal{T}' yield 1-dimensional subset of $X \cap B$

$$X_1 :=$$
 union of these subsets

 $X_1 \subset X \setminus X_0$ is set of "1-dimensional singularities"

- Inductively obtain $X = X_0 \cup ... \cup X_d$ This is a *stratification*:
 - X_i is locally isometric to \mathbb{Z}_n^i near each $\bar{x} \in X_i$
 - $X_i = X_0 \cup \cdots \cup X_i$
 - ② yields precise description of X_i near $\bar{x} \in X_i$.

Suppose the conjecture holds. Then definable sets X can be *stratified*, i.e. decomposed into nice subsets:

- $X_0 :=$ set corresponding to paths S_0 in T(X) $X_0 \subset X$ is set of "0-dimensional singularities"
- $X \setminus X_0$ can be partitioned into $X \cap B$ for balls B, such that $T_B(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$ with \mathcal{T}' of level $\leq d-1$
- Apply conjecture to *T*'; the paths S₀' of *T*' yield 1-dimensional subset of X ∩ B X₁ := union of these subsets
 - $X_1 \subset X \setminus X_0$ is set of "1-dimensional singularities"
- Inductively obtain $X = X_0 \cup ... \cup X_d$ This is a *stratification*:
 - X_i is locally isometric to \mathbb{Z}_p^i near each $\bar{x} \in X_i$
 - $\bar{X}_i = X_0 \cup \cdots \cup X_i$
 - ② yields precise description of X_i near $\bar{x} \in \bar{X}_i$.

Suppose the conjecture holds. Then definable sets X can be *stratified*, i.e. decomposed into nice subsets:

- $X_0 :=$ set corresponding to paths S_0 in T(X) $X_0 \subset X$ is set of "0-dimensional singularities"
- $X \setminus X_0$ can be partitioned into $X \cap B$ for balls B, such that $T_B(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$ with \mathcal{T}' of level $\leq d-1$
- Apply conjecture to *T*'; the paths S₀' of *T*' yield 1-dimensional subset of X ∩ B X₁ := union of these subsets
 - $X_1 \subset X \setminus X_0$ is set of "1-dimensional singularities"
- Inductively obtain $X = X_0 \cup ... \cup X_d$ This is a *stratification*:
 - X_i is locally isometric to \mathbb{Z}_p^i near each $\bar{x} \in X_i$
 - $\bar{X}_i = X_0 \cup \cdots \cup X_i$
 - ② yields precise description of X_i near $\bar{x} \in \bar{X}_i$.

Suppose the conjecture holds. Then definable sets X can be *stratified*, i.e. decomposed into nice subsets:

- $X_0 :=$ set corresponding to paths S_0 in T(X) $X_0 \subset X$ is set of "0-dimensional singularities"
- $X \setminus X_0$ can be partitioned into $X \cap B$ for balls B, such that $T_B(X) \cong \mathcal{T}' \times T(\mathbb{Z}_p)$ with \mathcal{T}' of level $\leq d-1$
- Apply conjecture to \mathcal{T}' ; the paths \mathcal{S}'_0 of \mathcal{T}' yield 1-dimensional subset of $X \cap B$ $X_1 :=$ union of these subsets
 - $X_1 \subset X \setminus X_0$ is set of "1-dimensional singularities"
- Inductively obtain $X = X_0 \cup ... \cup X_d$ This is a *stratification*:
 - X_i is locally isometric to \mathbb{Z}_p^i near each $\bar{x} \in X_i$
 - $\bar{X}_i = X_0 \cup \cdots \cup X_i$
 - ② yields precise description of X_i near $\bar{x} \in \bar{X}_i$.

Suppose the conjecture holds. Then definable sets X can be *stratified*, i.e. decomposed into nice subsets:

- $X_0 :=$ set corresponding to paths S_0 in T(X) $X_0 \subset X$ is set of "0-dimensional singularities"
- $X \setminus X_0$ can be partitioned into $X \cap B$ for balls B, such that $\mathsf{T}_B(X) \cong \mathcal{T}' \times \mathsf{T}(\mathbb{Z}_p)$ with \mathcal{T}' of level $\leq d-1$
- Apply conjecture to \mathcal{T}' ; the paths \mathcal{S}'_0 of \mathcal{T}' yield 1-dimensional subset of $X \cap B$ $X_1 :=$ union of these subsets

 $X_1 \subset X \setminus X_0$ is set of "1-dimensional singularities"

- Inductively obtain $X = X_0 \cup ... \cup X_d$ This is a *stratification*:
 - X_i is locally isometric to \mathbb{Z}_p^i near each $\bar{x} \in X_i$
 - $\bar{X}_i = X_0 \cup \cdots \cup X_i$
 - ② yields precise description of X_i near $\bar{x} \in \bar{X}_i$.