Raising to generic powers

Jonathan Kirby

University of Oxford

Modnet conference, Barcelona, 2008

Jonathan Kirby (Oxford)

Raising to generic powers

Barcelona '08 1 / 17

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Abstract

We prove unconditionally a Schanuel property for raising to a generic real power, leading to the hope that the real field with a generic power function can be proved to be decidable. This is joint work with A.J. Wilkie and Martin Bays.

Outline

2 Schanuel Properties

Decidability of $\ensuremath{\mathbb{R}}$

Theorem (Tarski 1949)

The theory of the real field $\langle \mathbb{R}; +, \cdot \rangle$ is decidable.

Proof uses:

- model completeness
- A decision procedure for 3-sentences

Tarski asked: is $\mathbb{R}_{exp} = \langle \mathbb{R}; +, \cdot, exp \rangle$ decidable?

Decidability of ${\mathbb R}$

Theorem (Tarski 1949)

The theory of the real field $\langle \mathbb{R}; +, \cdot \rangle$ is decidable.

Proof uses:

- model completeness
- A decision procedure for ∃-sentences

Tarski asked: is $\mathbb{R}_{exp} = \langle \mathbb{R}; +, \cdot, exp \rangle$ decidable?

Decidability of $\ensuremath{\mathbb{R}}$

Theorem (Tarski 1949)

The theory of the real field $\langle \mathbb{R}; +, \cdot \rangle$ is decidable.

Proof uses:

- model completeness
- A decision procedure for ∃-sentences

Tarski asked: is $\mathbb{R}_{exp} = \langle \mathbb{R}; +, \cdot, exp \rangle$ decidable?

Decidability of ${\mathbb R}$

Theorem (Tarski 1949)

The theory of the real field $\langle \mathbb{R}; +, \cdot \rangle$ is decidable.

Proof uses:

- model completeness
- A decision procedure for ∃-sentences

Tarski asked: is $\mathbb{R}_{exp} = \langle \mathbb{R}; +, \cdot, exp \rangle$ decidable?

• • • • • • • • • • • • •

Decidability of $\ensuremath{\mathbb{R}}$

Theorem (Tarski 1949)

The theory of the real field $\langle \mathbb{R}; +, \cdot \rangle$ is decidable.

Proof uses:

- model completeness
- A decision procedure for ∃-sentences

Tarski asked: is $\mathbb{R}_{exp} = \langle \mathbb{R}; +, \cdot, exp \rangle$ decidable?

イロト イポト イヨト イヨ

Decidability of \mathbb{R}_{exp}

Theorem (Wilkie 1996)

 \mathbb{R}_{exp} is model-complete and o-minimal

Theorem (Macintyre, Wilkie 1996)

Assuming Schanuel's Conjecture, there is a decision procedure for ∃-sentences.

Corollary Conditionally, Reven is decidab

• • • • • • • • • • • • •

Decidability of \mathbb{R}_{exp}

Theorem (Wilkie 1996)

 \mathbb{R}_{exp} is model-complete and o-minimal

Theorem (Macintyre, Wilkie 1996)

Assuming Schanuel's Conjecture, there is a decision procedure for \exists -sentences.

Corollary Conditionally, \mathbb{R}_{exp} is decidable.

イロト イポト イヨト イヨ

Decidability of \mathbb{R}_{exp}

Theorem (Wilkie 1996)

 \mathbb{R}_{exp} is model-complete and o-minimal

Theorem (Macintyre, Wilkie 1996)

Assuming Schanuel's Conjecture, there is a decision procedure for \exists -sentences.

Corollary

Conditionally, \mathbb{R}_{exp} is decidable.

イロト イポト イヨト イヨ

Question (Jones, et al.)

Can we unconditionally prove decidability for $\langle \mathbb{R}; +, \cdot, f \rangle$ for some (interesting) analytic function *f*?

Raising to a power $\lambda \in \mathbb{R}$

For y > 0, $y^{\lambda} = \exp(\lambda \log y)$ $\mathbb{R}_{\lambda} = \langle \mathbb{R}; +, \cdot, (-)^{\lambda} \rangle$ is o-minimal and model complete (Wilkie / Miller)

Work in progress – Jones, Servi

- Schanuel Property for $(-)^{\lambda} \implies$ decidability of \mathbb{R}_{λ}
- (if λ is a recursive real otherwise decidability modulo λ)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Question (Jones, et al.)

Can we unconditionally prove decidability for $\langle \mathbb{R}; +, \cdot, f \rangle$ for some (interesting) analytic function *f*?

Raising to a power $\lambda \in \mathbb{R}$

For y > 0, $y^{\lambda} = \exp(\lambda \log y)$ $\mathbb{R}_{\lambda} = \langle \mathbb{R}; +, \cdot, (-)^{\lambda} \rangle$ is o-minimal and model complete (Wilkie / Miller)

Work in progress – Jones, Servi

- Schanuel Property for $(-)^{\lambda} \Longrightarrow$ decidability of \mathbb{R}_{λ}
- (if λ is a recursive real otherwise decidability modulo λ)

・ロト ・ 四ト ・ ヨト ・ ヨト

Question (Jones, et al.)

Can we unconditionally prove decidability for $\langle \mathbb{R}; +, \cdot, f \rangle$ for some (interesting) analytic function *f*?

Raising to a power $\lambda \in \mathbb{R}$

For y > 0, $y^{\lambda} = \exp(\lambda \log y)$ $\mathbb{R}_{\lambda} = \langle \mathbb{R}; +, \cdot, (-)^{\lambda} \rangle$ is o-minimal and model complete (Wilkie / Miller)

Work in progress - Jones, Servi

- Schanuel Property for $(-)^{\lambda} \implies$ decidability of \mathbb{R}_{λ}
- (if λ is a recursive real otherwise decidability modulo λ)

イロト イヨト イヨト イヨト

Question (Jones, et al.)

Can we unconditionally prove decidability for $\langle \mathbb{R}; +, \cdot, f \rangle$ for some (interesting) analytic function *f*?

Raising to a power $\lambda \in \mathbb{R}$

For y > 0, $y^{\lambda} = \exp(\lambda \log y)$ $\mathbb{R}_{\lambda} = \langle \mathbb{R}; +, \cdot, (-)^{\lambda} \rangle$ is o-minimal and model complete (Wilkie / Miller)

Work in progress – Jones, Servi

• Schanuel Property for $(-)^{\lambda} \implies$ decidability of \mathbb{R}_{λ}

• (if λ is a recursive real – otherwise decidability modulo λ)

Question (Jones, et al.)

Can we unconditionally prove decidability for $\langle \mathbb{R}; +, \cdot, f \rangle$ for some (interesting) analytic function *f*?

Raising to a power $\lambda \in \mathbb{R}$

For y > 0, $y^{\lambda} = \exp(\lambda \log y)$ $\mathbb{R}_{\lambda} = \langle \mathbb{R}; +, \cdot, (-)^{\lambda} \rangle$ is o-minimal and model complete (Wilkie / Miller)

Work in progress – Jones, Servi

- Schanuel Property for $(-)^{\lambda} \implies$ decidability of \mathbb{R}_{λ}
- (if λ is a recursive real otherwise decidability modulo λ)

Motivation – Decidability

3 Proofs

Jonathan Kirby (Oxford)

Raising to generic powers

Theorem (Bays, Kirby, Wilkie)

Let $\lambda \in \mathbb{R}$ be exponentially transcendental, let $\overline{y} \in (\mathbb{R}_{>0})^n$, and suppose \overline{y} is multiplicatively independent. Then

td $\mathbb{Q}(\bar{y}, \bar{y}^{\lambda}, \lambda)/\mathbb{Q}(\lambda) \ge n$.

- λ is exponentially transcendental iff it does not lie in the prime model of \mathbb{R}_{exp} .
- Co-countably many reals are exponentially transcendental.
- No known exponentially transcendental reals!
- Cantor's argument gives a recursive exponentially transcendental real.

Theorem (Bays, Kirby, Wilkie)

Let $\lambda \in \mathbb{R}$ be exponentially transcendental, let $\overline{y} \in (\mathbb{R}_{>0})^n$, and suppose \overline{y} is multiplicatively independent. Then

td $\mathbb{Q}(\bar{y}, \bar{y}^{\lambda}, \lambda)/\mathbb{Q}(\lambda) \ge n$.

- λ is exponentially transcendental iff it does not lie in the prime model of \mathbb{R}_{exp} .
- Co-countably many reals are exponentially transcendental.
- No known exponentially transcendental reals!
- Cantor's argument gives a recursive exponentially transcendental real.

Theorem (Bays, Kirby, Wilkie)

Let $\lambda \in \mathbb{R}$ be exponentially transcendental, let $\overline{y} \in (\mathbb{R}_{>0})^n$, and suppose \overline{y} is multiplicatively independent. Then

td $\mathbb{Q}(\bar{y}, \bar{y}^{\lambda}, \lambda)/\mathbb{Q}(\lambda) \ge n$.

- λ is exponentially transcendental iff it does not lie in the prime model of R_{exp}.
- Co-countably many reals are exponentially transcendental.
- No known exponentially transcendental reals!
- Cantor's argument gives a recursive exponentially transcendental real.

Theorem (Bays, Kirby, Wilkie)

Let $\lambda \in \mathbb{R}$ be exponentially transcendental, let $\overline{y} \in (\mathbb{R}_{>0})^n$, and suppose \overline{y} is multiplicatively independent. Then

td $\mathbb{Q}(\bar{y}, \bar{y}^{\lambda}, \lambda)/\mathbb{Q}(\lambda) \ge n$.

- λ is exponentially transcendental iff it does not lie in the prime model of R_{exp}.
- Co-countably many reals are exponentially transcendental.
- No known exponentially transcendental reals!
- Cantor's argument gives a recursive exponentially transcendental real.

Theorem (Bays, Kirby, Wilkie)

Let $\lambda \in \mathbb{R}$ be exponentially transcendental, let $\overline{y} \in (\mathbb{R}_{>0})^n$, and suppose \overline{y} is multiplicatively independent. Then

td $\mathbb{Q}(\bar{y}, \bar{y}^{\lambda}, \lambda)/\mathbb{Q}(\lambda) \ge n$.

- λ is exponentially transcendental iff it does not lie in the prime model of R_{exp}.
- Co-countably many reals are exponentially transcendental.
- No known exponentially transcendental reals!
- Cantor's argument gives a recursive exponentially transcendental real.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $\langle F; +, \cdot, exp \rangle$ be any exponential field.

Definition

 $x \in F$ is exponentially algebraic in F iff for some $n \in \mathbb{N}$ there are:

- $\bar{x} = (x_1, \ldots, x_n) \in F^n$
- $f_1,\ldots,f_n\in\mathbb{Z}[\bar{X},e^{\bar{X}}]$

such that

•
$$x = x_1$$

• $f_i(\bar{x}, e^{\bar{x}}) = 0$ for each $i = 1, ..., n$
• $\begin{vmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial X_1} & \cdots & \frac{\partial f_n}{\partial X_n} \end{vmatrix} (\bar{x}) \neq 0$

Exponentially Transcendental in $F \iff$ not exponentially algebraic in F

Let $\langle F; +, \cdot, exp \rangle$ be any exponential field.

Definition

 $x \in F$ is exponentially algebraic in F iff for some $n \in \mathbb{N}$ there are:

•
$$\bar{x} = (x_1, \ldots, x_n) \in F^r$$

• $f_1,\ldots,f_n\in\mathbb{Z}[\bar{X},e^{\bar{X}}]$

such that

•
$$x = x_1$$

• $f_i(\bar{x}, e^{\bar{x}}) = 0$ for each $i = 1, ..., n$
• $\begin{vmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial X_1} & \cdots & \frac{\partial f_n}{\partial X_n} \end{vmatrix}$ $(\bar{x}) \neq 0$

Exponentially Transcendental in $F \iff$ not exponentially algebraic in F

Let $\langle F; +, \cdot, exp \rangle$ be any exponential field.

Definition

 $x \in F$ is exponentially algebraic in F iff for some $n \in \mathbb{N}$ there are:

•
$$\bar{x} = (x_1, \dots, x_n) \in F^n$$

• $f_1, \dots, f_n \in \mathbb{Z}[\bar{X}, e^{\bar{X}}]$

•
$$x = x_1$$

• $f_i(\bar{x}, e^{\bar{x}}) = 0$ for each $i = 1, ..., r$
• $\begin{vmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial X_1} & \cdots & \frac{\partial f_n}{\partial X_n} \end{vmatrix}$ $(\bar{x}) \neq 0$

Exponentially Transcendental in $F \iff$ not exponentially algebraic in F

Let $\langle F; +, \cdot, exp \rangle$ be any exponential field.

Definition

 $x \in F$ is exponentially algebraic in F iff for some $n \in \mathbb{N}$ there are:

• $X = X_1$

•
$$f_i(\bar{x}, e^{\bar{x}}) = 0$$
 for each $i = 1, ..., r$
• $\begin{vmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial X_1} & \cdots & \frac{\partial f_n}{\partial X_n} \end{vmatrix}$ $(\bar{x}) \neq 0$

Exponentially Transcendental in $F \iff$ not exponentially algebraic in F

Let $\langle F; +, \cdot, exp \rangle$ be any exponential field.

Definition

 $x \in F$ is exponentially algebraic in F iff for some $n \in \mathbb{N}$ there are:

•
$$\bar{x} = (x_1, \dots, x_n) \in F^n$$

• $f_1, \dots, f_n \in \mathbb{Z}[\bar{X}, e^{\bar{X}}]$

such that

•
$$x = x_1$$

•
$$f_i(\bar{x}, e^{\bar{x}}) = 0$$
 for each $i = 1, ..., n$

Exponentially Transcendental in $F \iff$ not exponentially algebraic in F

Let $\langle F; +, \cdot, exp \rangle$ be any exponential field.

Definition

 $x \in F$ is exponentially algebraic in F iff for some $n \in \mathbb{N}$ there are:

•
$$\bar{x} = (x_1, \dots, x_n) \in F^n$$

• $f_1, \dots, f_n \in \mathbb{Z}[\bar{X}, e^{\bar{X}}]$

such that

•
$$x = x_1$$

• $f_i(\bar{x}, e^{\bar{x}}) = 0$ for each $i = 1, ..., r_n$
• $\begin{vmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial X_1} & \cdots & \frac{\partial f_n}{\partial X_n} \end{vmatrix}$ $(\bar{x}) \neq 0$

Exponentially Transcendental in $F \iff$ not exponentially algebraic in F

Let $\langle F; +, \cdot, exp \rangle$ be any exponential field.

Definition

 $x \in F$ is exponentially algebraic in F iff for some $n \in \mathbb{N}$ there are:

•
$$\bar{x} = (x_1, \dots, x_n) \in F^n$$

• $f_1, \dots, f_n \in \mathbb{Z}[\bar{X}, e^{\bar{X}}]$

such that

•
$$x = x_1$$

• $f_i(\bar{x}, e^{\bar{x}}) = 0$ for each $i = 1, ..., n$
• $\begin{vmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial X_1} & \cdots & \frac{\partial f_n}{\partial X_n} \end{vmatrix}$ $(\bar{x}) \neq 0$

Exponentially Transcendental in $F \iff$ not exponentially algebraic in F

A generalization

First Theorem

Let $\lambda \in \mathbb{R}$ be exponentially transcendental, let $\bar{y} \in (\mathbb{R}_{>0})^n$, and suppose \bar{y} is multiplicatively independent. Then

 $\operatorname{td}(\mathbb{Q}(\bar{y}, \bar{y}^{\lambda}, \lambda)/\mathbb{Q}(\lambda)) \ge n.$

Theorem (BKW)

F any exponential field, $\lambda \in F$ exponentially transcendental, $\bar{\mathbf{x}} \in F^n$ such that $\exp(\bar{\mathbf{x}})$ is multiplicatively independent. Then

 $\operatorname{td}(\mathbb{Q}(\exp(\bar{x}),\exp(\lambda\bar{x}),\lambda)/\mathbb{Q}(\lambda)) \ge n.$

A generalization

First Theorem

Let $\lambda \in \mathbb{R}$ be exponentially transcendental, let $\bar{y} \in (\mathbb{R}_{>0})^n$, and suppose \bar{y} is multiplicatively independent. Then

 $\operatorname{td}(\mathbb{Q}(\bar{y}, \bar{y}^{\lambda}, \lambda)/\mathbb{Q}(\lambda)) \ge n.$

Theorem (BKW)

F any exponential field, $\lambda \in F$ exponentially transcendental, $\bar{x} \in F^n$ such that $\exp(\bar{x})$ is multiplicatively independent. Then

 $\operatorname{td}(\mathbb{Q}(\exp(\bar{x}),\exp(\lambda\bar{x}),\lambda)/\mathbb{Q}(\lambda)) \geqslant n.$

< 口 > < 同 > < 回 > < 回 > < 回 > <

Several powers

For $A \subseteq F$, can define ecl A, the exponential algebraic closure of A.

Theorem (Kirby)

ecl is a pregeometry on any exponential field. Thus we have a notion of independence.

Theorem (BKW – question of Zilber)

Let $\lambda_1, \ldots, \lambda_m$ be ecl-independent in F, let $\overline{z} \in F^n$, and write ker for the kernel of exp.

 $\mathsf{td}(\mathbb{Q}(\mathsf{exp}(\bar{z}),\bar{\lambda})/\mathbb{Q}(\bar{\lambda})) + \mathsf{Idim}_{\mathbb{Q}(\bar{\lambda})}(\bar{z}/\mathrm{ker}) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z}/\mathrm{ker}) \ge 0$

Several powers

For $A \subseteq F$, can define ecl *A*, the exponential algebraic closure of *A*.

Theorem (Kirby)

ecl is a pregeometry on any exponential field. Thus we have a notion of independence.

Theorem (BKW – question of Zilber)

Let $\lambda_1, \ldots, \lambda_m$ be ecl-independent in F, let $\overline{z} \in F^n$, and write ker for the kernel of exp.

 $\mathsf{td}(\mathbb{Q}(\mathsf{exp}(\bar{z}),\bar{\lambda})/\mathbb{Q}(\bar{\lambda})) + \mathsf{Idim}_{\mathbb{Q}(\bar{\lambda})}(\bar{z}/\mathrm{ker}) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z}/\mathrm{ker}) \geqslant 0$

・ロト ・ 四ト ・ ヨト ・ ヨト

Several powers

For $A \subseteq F$, can define ecl *A*, the exponential algebraic closure of *A*.

Theorem (Kirby)

ecl is a pregeometry on any exponential field. Thus we have a notion of independence.

Theorem (BKW – question of Zilber)

Let $\lambda_1, \ldots, \lambda_m$ be ecl-independent in F, let $\overline{z} \in F^n$, and write ker for the kernel of exp.

$$\operatorname{\mathsf{rd}}(\mathbb{Q}(\operatorname{\mathsf{exp}}(ar{z}),ar{\lambda})/\mathbb{Q}(ar{\lambda})) + \operatorname{\mathsf{Idim}}_{\mathbb{Q}(ar{\lambda})}(ar{z}/\operatorname{ker}) - \operatorname{\mathsf{Idim}}_{\mathbb{Q}}(ar{z}/\operatorname{ker}) \geqslant 0$$

3

イロト イ団ト イヨト イヨト

Outline

Motivation – Decidability

2 Schanuel Properties

Step 1

Take $\lambda \in \mathbb{R}$ exponentially transcendental, $B \cup \{\lambda\}$ an ecl-basis for \mathbb{R} , C = ecl(B). Then for any $\overline{z} \in \mathbb{R}^n$,

 $\mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C})-\mathsf{Idim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C}) \geqslant 1$

- For each $a \in \mathbb{R}$, there is a *C*-definable function $\theta : \mathbb{R} \to \mathbb{R}$ with $\theta(\lambda) = a$.
- 2 If θ, ψ are two such, o-minimality implies $\{x \in \mathbb{R} \mid \theta(x) = \psi(x)\}$ contains an interval around λ .
- 3 Similarly, θ is differentiable near λ .
- Define $\partial : \mathbb{R} \to \mathbb{R}$ by $a \mapsto \frac{d\theta}{dx}(\lambda)$, where $\theta(\lambda) = a$.
- $\bigcirc \partial$ is a well-defined derivation on \mathbb{R} , vanishing on *C*.
- $\ \, {}_{\bigcirc} \ \, \partial e^{z_i} = e^{z_i} \partial z_i, \text{ each } i, \text{ and } \partial e^{\lambda} = e^{\lambda} \partial \lambda.$

Step 1

Take $\lambda \in \mathbb{R}$ exponentially transcendental, $B \cup \{\lambda\}$ an ecl-basis for \mathbb{R} , C = ecl(B). Then for any $\overline{z} \in \mathbb{R}^n$,

 $\mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C})-\mathsf{Idim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C}) \geqslant 1$

• For each $a \in \mathbb{R}$, there is a *C*-definable function $\theta : \mathbb{R} \to \mathbb{R}$ with $\theta(\lambda) = a$.

- 2 If θ, ψ are two such, o-minimality implies $\{x \in \mathbb{R} \mid \theta(x) = \psi(x)\}$ contains an interval around λ .
- 3 Similarly, θ is differentiable near λ .
- Define $\partial : \mathbb{R} \to \mathbb{R}$ by $a \mapsto \frac{d\theta}{dx}(\lambda)$, where $\theta(\lambda) = a$.
- **(**) ∂ is a well-defined derivation on \mathbb{R} , vanishing on *C*.
- $\ \, {}_{\bigcirc} \ \, \partial e^{z_i} = e^{z_i} \partial z_i, \text{ each } i, \text{ and } \partial e^{\lambda} = e^{\lambda} \partial \lambda.$

Step 1

Take $\lambda \in \mathbb{R}$ exponentially transcendental, $B \cup \{\lambda\}$ an ecl-basis for \mathbb{R} , C = ecl(B). Then for any $\overline{z} \in \mathbb{R}^n$,

 $\mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C}) - \mathsf{ldim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C}) \geqslant 1$

- For each $a \in \mathbb{R}$, there is a *C*-definable function $\theta : \mathbb{R} \to \mathbb{R}$ with $\theta(\lambda) = a$.
- 2 If θ , ψ are two such, o-minimality implies { $x \in \mathbb{R} | \theta(x) = \psi(x)$ } contains an interval around λ .
- 3 Similarly, θ is differentiable near λ .
- Define $\partial : \mathbb{R} \to \mathbb{R}$ by $a \mapsto \frac{d\theta}{dx}(\lambda)$, where $\theta(\lambda) = a$.
- **I** ∂ is a well-defined derivation on \mathbb{R} , vanishing on *C*.
- $\ \, {}_{\bigcirc} \ \, \partial e^{z_i} = e^{z_i} \partial z_i, \text{ each } i, \text{ and } \partial e^{\lambda} = e^{\lambda} \partial \lambda.$

Step 1

Take $\lambda \in \mathbb{R}$ exponentially transcendental, $B \cup \{\lambda\}$ an ecl-basis for \mathbb{R} , C = ecl(B). Then for any $\overline{z} \in \mathbb{R}^n$,

 $\mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C}) - \mathsf{ldim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C}) \geqslant 1$

- For each $a \in \mathbb{R}$, there is a *C*-definable function $\theta : \mathbb{R} \to \mathbb{R}$ with $\theta(\lambda) = a$.
- ② If θ , ψ are two such, o-minimality implies { $x \in \mathbb{R} | \theta(x) = \psi(x)$ } contains an interval around λ .
- Similarly, θ is differentiable near λ .
- Define $\partial : \mathbb{R} \to \mathbb{R}$ by $a \mapsto \frac{d\theta}{dx}(\lambda)$, where $\theta(\lambda) = a$.
- $\bigcirc \partial$ is a well-defined derivation on \mathbb{R} , vanishing on *C*.
- $\ \, {}_{\bigcirc} \ \, \partial e^{z_i} = e^{z_i} \partial z_i, \text{ each } i, \text{ and } \partial e^{\lambda} = e^{\lambda} \partial \lambda.$

Step 1

Take $\lambda \in \mathbb{R}$ exponentially transcendental, $B \cup \{\lambda\}$ an ecl-basis for \mathbb{R} , C = ecl(B). Then for any $\overline{z} \in \mathbb{R}^n$,

 $\mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C}) - \mathsf{ldim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C}) \geqslant 1$

- For each $a \in \mathbb{R}$, there is a *C*-definable function $\theta : \mathbb{R} \to \mathbb{R}$ with $\theta(\lambda) = a$.
- ② If θ , ψ are two such, o-minimality implies { $x \in \mathbb{R} | \theta(x) = \psi(x)$ } contains an interval around λ .
- Similarly, θ is differentiable near λ .
- Define $\partial : \mathbb{R} \to \mathbb{R}$ by $a \mapsto \frac{d\theta}{dx}(\lambda)$, where $\theta(\lambda) = a$.
- **I** ∂ is a well-defined derivation on \mathbb{R} , vanishing on *C*.
- Result follows from Ax's differential field version of Schanuel's Conjecture.

Step 1

Take $\lambda \in \mathbb{R}$ exponentially transcendental, $B \cup \{\lambda\}$ an ecl-basis for \mathbb{R} , C = ecl(B). Then for any $\overline{z} \in \mathbb{R}^n$,

 $\mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C}) - \mathsf{ldim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C}) \geqslant 1$

- For each $a \in \mathbb{R}$, there is a *C*-definable function $\theta : \mathbb{R} \to \mathbb{R}$ with $\theta(\lambda) = a$.
- ② If θ , ψ are two such, o-minimality implies { $x \in \mathbb{R} | \theta(x) = \psi(x)$ } contains an interval around λ .
- Similarly, θ is differentiable near λ .
- Define $\partial : \mathbb{R} \to \mathbb{R}$ by $a \mapsto \frac{d\theta}{dx}(\lambda)$, where $\theta(\lambda) = a$.
- **(**) ∂ is a well-defined derivation on \mathbb{R} , vanishing on *C*.
- $\bigcirc \ \partial e^{z_i} = e^{z_i} \partial z_i$, each *i*, and $\partial e^{\lambda} = e^{\lambda} \partial \lambda$.

Step 1

Take $\lambda \in \mathbb{R}$ exponentially transcendental, $B \cup \{\lambda\}$ an ecl-basis for \mathbb{R} , C = ecl(B). Then for any $\overline{z} \in \mathbb{R}^n$,

 $\mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C}) - \mathsf{ldim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C}) \geqslant 1$

- For each $a \in \mathbb{R}$, there is a *C*-definable function $\theta : \mathbb{R} \to \mathbb{R}$ with $\theta(\lambda) = a$.
- ② If θ , ψ are two such, o-minimality implies { $x \in \mathbb{R} | \theta(x) = \psi(x)$ } contains an interval around λ .
- Similarly, θ is differentiable near λ .
- Define $\partial : \mathbb{R} \to \mathbb{R}$ by $a \mapsto \frac{d\theta}{dx}(\lambda)$, where $\theta(\lambda) = a$.
- **(**) ∂ is a well-defined derivation on \mathbb{R} , vanishing on *C*.
- $\partial e^{z_i} = e^{z_i} \partial z_i$, each *i*, and $\partial e^{\lambda} = e^{\lambda} \partial \lambda$.
- Result follows from Ax's differential field version of Schanuel's Conjecture.

Step 1

Take $\lambda \in \mathbb{R}$ exponentially transcendental, $B \cup \{\lambda\}$ an ecl-basis for \mathbb{R} , C = ecl(B). Then for any $\overline{z} \in \mathbb{R}^n$,

 $\mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C})-\mathsf{ldim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C}) \geqslant 1$

- For each $a \in \mathbb{R}$, there is a *C*-definable function $\theta : \mathbb{R} \to \mathbb{R}$ with $\theta(\lambda) = a$.
- ② If θ , ψ are two such, o-minimality implies { $x \in \mathbb{R} | \theta(x) = \psi(x)$ } contains an interval around λ .
- Similarly, θ is differentiable near λ .
- Define $\partial : \mathbb{R} \to \mathbb{R}$ by $a \mapsto \frac{d\theta}{dx}(\lambda)$, where $\theta(\lambda) = a$.
- **(**) ∂ is a well-defined derivation on \mathbb{R} , vanishing on *C*.
- $\partial e^{z_i} = e^{z_i} \partial z_i$, each *i*, and $\partial e^{\lambda} = e^{\lambda} \partial \lambda$.
- Result follows from Ax's differential field version of Schanuel's Conjecture.

$\operatorname{\mathsf{td}}(\exp(ar{z})/\lambda) + \operatorname{\mathsf{ldim}}_{\mathbb{Q}(\lambda)}(ar{z}) - \operatorname{\mathsf{ldim}}_{\mathbb{Q}}(ar{z}) \geqslant \mathsf{0}$

Proof

We have:

- $1 \hspace{0.1in} \leqslant \hspace{0.1in} \mathsf{td}(\bar{z},\lambda,\mathsf{exp}(\bar{z}),\mathsf{exp}(\lambda)/\mathcal{C}) \mathsf{ldim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C})$
 - $= \operatorname{td}(\lambda/C) + \operatorname{td}(\overline{z}/C, \lambda) + \operatorname{td}(\exp(\overline{z})/C, \lambda, \overline{z})$ $+ \operatorname{td}(\exp(\lambda)/C, \lambda, \overline{z}, \exp(\overline{z})) - \operatorname{Idim}_{\mathbb{O}}(\lambda/C, \overline{z}) - \operatorname{Idim}_{\mathbb{O}}(\overline{z})$
- $0 \quad \leqslant \quad \mathsf{td}(\bar{z}/\mathcal{C},\lambda) + \mathsf{td}(\exp(\bar{z})/\lambda) + \mathsf{td}(\exp(\lambda)/\mathcal{C},\exp(\bar{z}))$

 $-\operatorname{\mathsf{Idim}}_{\mathbb{Q}}(\lambda/C,ar{z})-\operatorname{\mathsf{Idim}}_{\mathbb{Q}}(ar{z}/C)$

Also $\operatorname{td}(\exp(\lambda)/C, \exp(\bar{z})) \leq \operatorname{Idim}_{\mathbb{Q}}(\lambda/C, \bar{z})$ and $\operatorname{td}(\bar{z}/C, \lambda) \leq \operatorname{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}/C)$

3

< 日 > < 同 > < 回 > < 回 > < □ > <

$\mathsf{td}(\mathsf{exp}(ar{z})/\lambda) + \mathsf{ldim}_{\mathbb{Q}(\lambda)}(ar{z}) - \mathsf{ldim}_{\mathbb{Q}}(ar{z}) \geqslant \mathsf{0}$

Proof

We have:

- $\mathsf{1} \hspace{0.1 in} \leqslant \hspace{0.1 in} \mathsf{td}(\bar{z},\lambda, \mathsf{exp}(\bar{z}), \mathsf{exp}(\lambda)/\mathcal{C}) \mathsf{ldim}_{\mathbb{Q}}(\bar{z},\lambda/\mathcal{C})$
 - $= \operatorname{td}(\lambda/C) + \operatorname{td}(\bar{z}/C, \lambda) + \operatorname{td}(\exp(\bar{z})/C, \lambda, \bar{z})$ $+ \operatorname{td}(\exp(\lambda)/C, \lambda, \bar{z}, \exp(\bar{z})) - \operatorname{Idim}_{\mathbb{Q}}(\lambda/C, \bar{z}) - \operatorname{Idim}_{\mathbb{Q}}(\bar{z}/C)$
- $0 \hspace{0.1in} \leqslant \hspace{0.1in} \operatorname{td}(\bar{z}/\mathcal{C},\lambda) + \operatorname{td}(\exp(\bar{z})/\lambda) + \operatorname{td}(\exp(\lambda)/\mathcal{C},\exp(\bar{z}))$

 $-\operatorname{\mathsf{Idim}}_{\mathbb{Q}}(\lambda/\mathcal{C},ar{z})-\operatorname{\mathsf{Idim}}_{\mathbb{Q}}(ar{z}/\mathcal{C})$

$$\begin{array}{ll} \text{Also} & \quad \operatorname{td}(\exp(\lambda)/C,\exp(\bar{z})) \leqslant \operatorname{Idim}_{\mathbb{Q}}(\lambda/C,\bar{z}) \\ \text{and} & \quad \operatorname{td}(\bar{z}/C,\lambda) \leqslant \operatorname{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}/C) \end{array}$$

-

イロト 不得 トイヨト イヨト

$\operatorname{\mathsf{td}}(\exp(\bar{z})/\lambda) + \operatorname{\mathsf{ldim}}_{\mathbb{Q}(\lambda)}(\bar{z}) - \operatorname{\mathsf{ldim}}_{\mathbb{Q}}(\bar{z}) \geqslant 0$

Proof continued

Putting these together we get

 $\mathsf{td}(\mathsf{exp}(\bar{z})/\lambda) + \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}/C) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z}/C) \geqslant 0$

But $\mathbb{Q}(\lambda)$ is linearly disjoint from *C* over \mathbb{Q} , so

 $\mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}/\mathcal{C}) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z}/\mathcal{C}) \leqslant \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z})$

which gives the result.

Step 3

A similar argument shows for any \bar{x} :

Jonathan Kirby (Oxford)

$\operatorname{\mathsf{td}}(\exp(\bar{z})/\lambda) + \operatorname{\mathsf{ldim}}_{\mathbb{Q}(\lambda)}(\bar{z}) - \operatorname{\mathsf{ldim}}_{\mathbb{Q}}(\bar{z}) \geqslant 0$

Proof continued

Putting these together we get

$$\mathsf{td}(\mathsf{exp}(\bar{z})/\lambda) + \mathsf{ldim}_{\mathbb{Q}(\lambda)}(\bar{z}/\mathcal{C}) - \mathsf{ldim}_{\mathbb{Q}}(\bar{z}/\mathcal{C}) \geqslant 0$$

But $\mathbb{Q}(\lambda)$ is linearly disjoint from *C* over \mathbb{Q} , so

 $\mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}/\mathcal{C}) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z}/\mathcal{C}) \leqslant \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z})$

which gives the result.

Step 3

A similar argument shows for any \bar{x} :

$$\mathsf{Idim}_{\mathbb{Q}}(\lambda \bar{x}/\bar{x}) \geqslant \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{x})$$

Jonathan Kirby (Oxford)

$\operatorname{\mathsf{td}}(\exp(\bar{z})/\lambda) + \operatorname{\mathsf{ldim}}_{\mathbb{Q}(\lambda)}(\bar{z}) - \operatorname{\mathsf{ldim}}_{\mathbb{Q}}(\bar{z}) \geqslant 0$

Proof continued

Putting these together we get

$$\mathsf{td}(\mathsf{exp}(\bar{z})/\lambda) + \mathsf{ldim}_{\mathbb{Q}(\lambda)}(\bar{z}/\mathcal{C}) - \mathsf{ldim}_{\mathbb{Q}}(\bar{z}/\mathcal{C}) \geqslant 0$$

But $\mathbb{Q}(\lambda)$ is linearly disjoint from *C* over \mathbb{Q} , so

 $\mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}/\mathcal{C}) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z}/\mathcal{C}) \leqslant \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{z}) - \mathsf{Idim}_{\mathbb{Q}}(\bar{z})$

which gives the result.

Step 3

A similar argument shows for any \bar{x} :

$$\mathsf{Idim}_{\mathbb{Q}}(\lambdaar{x}/ar{x}) \geqslant \mathsf{Idim}_{\mathbb{Q}(\lambda)}(ar{x})$$

Jonathan Kirby (Oxford)

For $\bar{y} \in \mathbb{R}^{n}_{>0}$ multiplicatively independent,

 $\operatorname{td}(\bar{y},\bar{y}^{\lambda}/\lambda) \geqslant n$

Proof.

Step 2: ∀z̄ td(exp(z̄)/λ) + ldim_{Q(λ)}(z̄) - ldim_Q(z̄) ≥ 0.
 Take x̄ = log ȳ z̄ = (x̄, λx̄)

Then

 $\begin{aligned} \mathsf{td}(\bar{y}, \bar{y}^{\lambda}/\lambda) &\geq \mathsf{Idim}_{\mathbb{Q}}(\bar{x}, \lambda \bar{x}) - \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{x}, \lambda \bar{x}) \\ &\geq \mathsf{Idim}_{\mathbb{Q}}(\bar{x}) + \mathsf{Idim}_{\mathbb{Q}}(\lambda \bar{x}/\bar{x}) - \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{x}) \\ &\geq n \end{aligned}$

as \bar{x} is Q-linearly independent and by step 3.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

For $\bar{y} \in \mathbb{R}^{n}_{>0}$ multiplicatively independent,

 $\operatorname{td}(\bar{y},\bar{y}^{\lambda}/\lambda) \geqslant n$

Proof.

- Step 2: $\forall \overline{z} \quad td(exp(\overline{z})/\lambda) + Idim_{\mathbb{Q}(\lambda)}(\overline{z}) Idim_{\mathbb{Q}}(\overline{z}) \ge 0$
- Take $\bar{x} = \log \bar{y}$ $\bar{z} = (\bar{x}, \lambda \bar{x})$

• Then

$$\begin{array}{lll} \operatorname{td}(\bar{y},\bar{y}^{\lambda}/\lambda) & \geqslant & \operatorname{Idim}_{\mathbb{Q}}(\bar{x},\lambda\bar{x}) - \operatorname{Idim}_{\mathbb{Q}(\lambda)}(\bar{x},\lambda\bar{x}) \\ & \geqslant & \operatorname{Idim}_{\mathbb{Q}}(\bar{x}) + \operatorname{Idim}_{\mathbb{Q}}(\lambda\bar{x}/\bar{x}) - \operatorname{Idim}_{\mathbb{Q}(\lambda)}(\bar{x}) \\ & \geqslant & n \end{array}$$

as \bar{x} is Q-linearly independent and by step 3.

For $\bar{y} \in \mathbb{R}^{n}_{>0}$ multiplicatively independent,

$$\operatorname{\mathsf{td}}(\bar{\pmb{y}},\bar{\pmb{y}}^\lambda/\lambda) \geqslant n$$

Proof.

• Step 2: $\forall \overline{z} \quad td(exp(\overline{z})/\lambda) + Idim_{\mathbb{Q}(\lambda)}(\overline{z}) - Idim_{\mathbb{Q}}(\overline{z}) \ge 0$ • Take $\overline{x} = \log \overline{y} \qquad \overline{z} = (\overline{x}, \lambda \overline{x})$

Then

$$\begin{aligned} \mathsf{td}(\bar{y}, \bar{y}^{\lambda}/\lambda) & \geqslant \quad \mathsf{Idim}_{\mathbb{Q}}(\bar{x}, \lambda \bar{x}) - \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{x}, \lambda \bar{x}) \\ & \geqslant \quad \mathsf{Idim}_{\mathbb{Q}}(\bar{x}) + \mathsf{Idim}_{\mathbb{Q}}(\lambda \bar{x}/\bar{x}) - \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{x}) \\ & \geqslant \quad n \end{aligned}$$

as \bar{x} is Q-linearly independent and by step 3.

For $\bar{y} \in \mathbb{R}^n_{>0}$ multiplicatively independent,

 $\operatorname{td}(\bar{y},\bar{y}^{\lambda}/\lambda) \geqslant n$

Proof.

- Step 2: $\forall \overline{z} \quad td(exp(\overline{z})/\lambda) + Idim_{\mathbb{Q}(\lambda)}(\overline{z}) Idim_{\mathbb{Q}}(\overline{z}) \ge 0$
- Take $\bar{x} = \log \bar{y}$ $\bar{z} = (\bar{x}, \lambda \bar{x})$

Then

 $\begin{aligned} \mathsf{td}(\bar{y}, \bar{y}^{\lambda}/\lambda) & \geqslant \quad \mathsf{Idim}_{\mathbb{Q}}(\bar{x}, \lambda \bar{x}) - \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{x}, \lambda \bar{x}) \\ & \geqslant \quad \mathsf{Idim}_{\mathbb{Q}}(\bar{x}) + \mathsf{Idim}_{\mathbb{Q}}(\lambda \bar{x}/\bar{x}) - \mathsf{Idim}_{\mathbb{Q}(\lambda)}(\bar{x}) \\ & \geqslant \quad n \end{aligned}$

as \bar{x} is Q-linearly independent and by step 3.

For $\bar{y} \in \mathbb{R}^n_{>0}$ multiplicatively independent,

$$\operatorname{\mathsf{td}}(\bar{\pmb{y}},\bar{\pmb{y}}^\lambda/\lambda) \geqslant n$$

Proof.

- Step 2: $\forall \overline{z} \quad td(exp(\overline{z})/\lambda) + Idim_{\mathbb{Q}(\lambda)}(\overline{z}) Idim_{\mathbb{Q}}(\overline{z}) \ge 0$
- Take $\bar{x} = \log \bar{y}$ $\bar{z} = (\bar{x}, \lambda \bar{x})$

Then

$$\begin{array}{lll} \operatorname{td}(\bar{y},\bar{y}^{\lambda}/\lambda) & \geqslant & \operatorname{Idim}_{\mathbb{Q}}(\bar{x},\lambda\bar{x}) - \operatorname{Idim}_{\mathbb{Q}(\lambda)}(\bar{x},\lambda\bar{x}) \\ & \geqslant & \operatorname{Idim}_{\mathbb{Q}}(\bar{x}) + \operatorname{Idim}_{\mathbb{Q}}(\lambda\bar{x}/\bar{x}) - \operatorname{Idim}_{\mathbb{Q}(\lambda)}(\bar{x}) \\ & \geqslant & n \end{array}$$

as \bar{x} is \mathbb{Q} -linearly independent and by step 3.