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We want to illustrate the main results of the work:

Some possible exponentiations over the
universal enveloping algebra of sl2(C)
(S.L’I., A. Macintyre, F. Point).

where some methods from model theory of modules and
some techniques of ultraproducts are applied.
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Our setting
Let k be an algebraically closed field of characteristic 0.
Consider the simple Lie algebra sl2(k) of

all 2× 2 traceless matrices over k

with the bracket operation [x , y ] = xy − yx .
Recall that a basis of sl2(k) is

x =

(
0 1
0 0

)
y =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
.

So, [x , y ] = h, [h, x ] = 2x , [h, y ] = −2y .

We focus on the universal enveloping algebra of sl2(k),
denoted by Uk .
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Definition
A universal enveloping algebra of sl2(k) over k is

an associative algebra (with a unit) Uk with
a (Lie algebra) homomorphism i : sl2(k) → Uk such that

if A is any associative k -algebra with the homomorphism
f : sl2(k) → A,

then there exists a unique homomorphism:

Θ : Uk → A

such that the diagram

sl2(k) → Uk

↓ ↙
A

commutes.
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The Poincaré-Birkhoff-Witt Theorem
The k -algebra Uk has as basis (over k )

{xny lhs : n, l , s ≥ 0}

where {x , y , h} is the basis of sl2(k).
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We will use these algebraic properties of Uk :
• Uk has a Z-graded k -algebra. Let Uκ,m be the

subalgebra of elements of grade m. We have

Uk =
⊕
m∈Z

Uk , m ;

for m > 0, Uk , m = xmUk , 0 = Uk , 0xm ;

for m < 0, Uk , m = y |m|Uk , 0 = Uk , 0y |m| .

• A key role is played by the Casimir operator of Uk :

c = 2xy + 2yx + h2

which generates the center of Uk

• By PBW basis of Uk , we can see that the 0-component
of Uk

Uk 0 = k [c, h]
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Simple finite dim. representations
Let λ be a positive integer.
Consider the vector space k [X , Y ].

Any simple (λ + 1)-dim. sl2(k)-module Vλ can be described
as the subspace of k [X , Y ]

of all homogenous polynomials in X and Y of degree λ.

According to the following basis of monomials

Xλ, Xλ−1Y , . . . , XY λ−1, Y λ ,

we have

Vλ =
λ⊕

j=0

kXλ−jY j .
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A representation of sl2(k) is given by the map
fλ : sl2(k) → End(Vλ) defined as follows:

fλ(x) = X
∂

∂Y

fλ(y) = Y
∂

∂X
,

fλ(h) = X
∂

∂X
− Y

∂

∂Y
.
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A classification by I.Herzog
On the language of left Uk -modules, a classification of
simple representations of Uk is given by I.Herzog.
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A classification by I.Herzog
On the language of left Uk -modules, a classification of
simple representations of Uk is given by I.Herzog.

[Herzog]
The pseudo-finite dimensional representations of sl(2, k).
Selecta Mathematica 7 (2001), 241-290

Sonia L’Innocente (Camerino∼Mons) Possible Exponentiations over enveloping algebras 11 / 28



Possible
Exponentia-
tions over
enveloping

algebras

Sonia
L’Innocente

Our setting
Some results in
this framework

Exponential
map over
U = UC
Exponential maps
and ultraproducts

A classification by I.Herzog
On the language of left Uk -modules, a classification of
simple representations of Uk is given by I.Herzog.

1. Let U ′
k be the ring of definable scalars of all simple

finite dimensional Uk -modules whose elements are
pp-definable endomorphisms of each Vλ.

• Herzog proved that U ′
k is von Neuman regular ring.

Sonia L’Innocente (Camerino∼Mons) Possible Exponentiations over enveloping algebras 11 / 28



Possible
Exponentia-
tions over
enveloping

algebras

Sonia
L’Innocente

Our setting
Some results in
this framework

Exponential
map over
U = UC
Exponential maps
and ultraproducts

A classification by I.Herzog
On the language of left Uk -modules, a classification of
simple representations of Uk can be given by I.Herzog.

2. A representation M of Uk is called pseudo-finite
dimensional ( PFD) iff
M satisfies all sentences (of the language of
Uk -modules) true in every finite dimensional
representation.

• He investigated these representations, viewed as
modules over U ′

k , by analyzing the Ziegler spectrum of
U ′

k .
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Some works inspired by Herzog’s analysis

[L’I., Prest]
Rings of definable scalars of Verma modules, 2007

[Herzog, L’I.]
The nonstandard quantum plane, 2008

[L’I., Macintyre]
Towards Decidability of the Theory of Pseudo-Finite
Dimensional Representations of sl2k ; I, 2008.
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Exponentiation
Restrict our attention on C. Let U = UC.

Our aim We define some possible exponentiations over U.
1 First, we describe the exponential map

EXPλ : U −→ GLλ+1(C)

for each λ ∈ ω − {0}.
2 Then, we discuss the exponential map

EXP : U →
∏
V

GLλ+1(C)

where V be a non-principal ultrafilter on ω

Sonia L’Innocente (Camerino∼Mons) Possible Exponentiations over enveloping algebras 15 / 28
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Our strategy
We will use:
• The matrix characterization of every simple U-modules

Vλ by the map Θλ : U → Mλ+1 (where
Mλ+1 = End(Vλ)).

• The natural matrix exponential map defined over
Mλ+1(C)

exp : Mλ+1(C) −→ GLλ+1(C)

such that ∀A ∈ Mλ+1(C),

exp(A) =
∞∑

n=0

An

n!
= Iλ+1 + A +

A2

2
+

A3

3!
+ . . .)

where Iλ+1 denote the (λ + 1)× (λ + 1) identity matrix.
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Definition: the map EXPλ

Let λ ∈ ω − {0} (later λ will range in ω).
We can define a new exponential map over U:

EXPλ : U Θλ−→ Mλ+1(C)
exp
−→ GLλ+1(C)

EXPλ(u) = exp(Θλ(u)), ∀u ∈ U.

Proposition
We can prove that the map EXPλ is surjective.

Question.
Which is the value of EXPλ(u) for every u ∈ U? What is its
kernel?

Sonia L’Innocente (Camerino∼Mons) Possible Exponentiations over enveloping algebras 17 / 28
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Because of the intrinsic characterization of U, we are not
able to give immediately a satisfactory answer.
But, we can easily calculate EXPλ of x , y , h, c by the
related values of Θλ:
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Because of the intrinsic characterization of U, we are not
able to give immediately a satisfactory answer.
But, we can easily calculate EXPλ of x , y , h, c by the
related values of Θλ:

Θλ(x) =


0 1 0 . . . 0
0 0 2 . . . 0
...

... λ
0 0 0 . . . 0

 ,Θλ(y) =


0 0 . . . 0
λ 0 . . . 0
0 λ− 1 0
...
0

...
0 1 0

 ,

Θλ(h) = diag (λ, λ− 2, . . . ,−λ + 2,−λ) .

Since Θλ is a homomorphism, we can easily calculate

Θλ(c) = Θλ(2x · y + 2y · x + h2) =

= 2Θλ(x) ·Θλ(y) + 2Θλ(y) ·Θλ(x) + (Θλ(h))2 =

= diag
(
λ2 + 2λ, . . . , λ2 + 2λ

)
.

Sonia L’Innocente (Camerino∼Mons) Possible Exponentiations over enveloping algebras 18 / 28
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Because of the intrinsic characterization of U, we are not
able to give immediately a satisfactory answer.
But, we can easily calculate EXPλ of x , y , h, c by the
related values of Θλ:

EXPλ(x) = exp(Θλ(x)) =

= 1λ+1 + Θλ(x) +
Θλ(x)2

2
+ . . . +

Θλ(x)λ

λ!
;

EXPλ(y) = exp(Θλ(y)) =

= 1λ+1 + Θλ(y) +
Θλ(y)2

2
+ . . . +

Θλ(y)λ

λ!
;

EXPλ(h) = exp(Θλ(h)) =

= diag(eλ, eλ−2, . . . , e−λ+2, e−λ);

EXPλ(c) = exp(Θλ(c)) = diag(eλ2+2λ, . . . , eλ2+2λ)
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We can prove that EXPλ satisfies the similar properties of
the matrix exponential exp.

Proposition
If u, v ∈ U:

(i) EXPλ (0U) = Iλ+1, where 0U denotes the identity
element (with respect to the addition) in U;

(ii) EXPλ (u) · EXPλ (−u) = Iλ;

(iii) for u and v commuting,
EXPλ (u + u) = EXPλ (u) · EXPλ (v);

(iv) for an invertible element v in U,
EXPλ (vuv−1) = Θλ(v)EXPλ (u)Θλ(v)−1;

Sonia L’Innocente (Camerino∼Mons) Possible Exponentiations over enveloping algebras 19 / 28
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Remark
Any element u0 ∈ U0 belongs to the kernel of EXPλ if and
only if ∧

0≤j≤λ

p
(
λ2 + 2λ, λ− 2j

)
∈ 2πiZ

We can get a partial answer to our question.

Proposition
EXPλ maps any element u of U onto SLλ+1(C) if the
following condition is satisfied

tr(Θλ(u)) ∈ 2πiZ.

In particular, if u ∈ ⊕m 6=0Um, then its image by EXPλ lies

always in SLλ+1(C).
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A further aim
Let V be a non-principal ultrafilter on ω and consider the
ultraproducts

∏
V Mλ+1(C) and

∏
V GLλ+1(C) as structures

on the language of Lie algebras.

We will focus on the map EXP from U to
∏

V GLλ+1(C)
defined as follows:

EXP : U →
∏
V

GLλ+1(C)

u → [EXPλ(u)]V ∀u ∈ U

by composing the injective map [Θλ] : U →
∏

V Mλ+1(C),
with the map [exp]V :

∏
V Mλ+1(C) →

∏
V GLλ+1(C).
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Note that EXP satisfies the properties stated for each EXPλ.
Moreover,
• EXP(⊕m 6=0Um) ⊂

∏
V SLλ+1(C);

• EXP(U0) ⊂
∏

V Diagλ+1(C).
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We focus on the following query.

Question
What is the kernel of EXP?

Proposition
Let u := p(c, h) ∈ U0, where p[x1, x2] ∈ C[x1, x2] is in the
form 1

2π·i · q[x1, x2]. Write q(x1, x2) =
∑d

k=0 qk (x1)xk
2 , with

qk (x) ∈ Q[x1].

Then, p ∈ Ker(EXP) for all non-principal ultrafilter V if and
only if q(x1, x2) ∈ Q[x1, x2] and for each 0 ≤ k ≤ d ,
qk (0) ∈ Z.
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Further questions
We would like to put a topology on U in such a way that
EXP is continuous.
The sesquilinear Hermitian forms (·, ·)λ induce on the Lie
algebra

∏
V Mλ+1(C) (over C∗ =

∏
V C) a ?-Hermitian

sesquilinear form (·, ·) defined by:

([Aλ]V , [Bλ]V) := [(Aλ, Bλ)]V .

So, we have a ?-norm ‖ · ‖ on
∏

V Mλ+1(C),

‖[Aλ+1]‖ := [‖Aλ+1‖λ+1].

which induces on U the following ?-norm (also denoted by
‖ · ‖):

‖u‖ := [‖Θλ(u)‖λ+1]
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Proposition
Consider the ?-normed spaces (U, ‖ · ‖) and
(
∏

V Mλ+1(C), ‖ · ‖λ+1). The map EXP : U →
∏

V GLλ+1(C)
is continuous and maps bounded sets to bounded sets.

Proof

Let ε ∈
∏

V R>0, let η := 2−1 · ε · e−‖u‖, and let v ∈ Oη. Then
‖EXP(u + v)− EXP(u)‖ ≤ ηe‖u‖.eη.

If the sequence Aλ+1 ∈ Mλ+1(C) is bounded, then the
corresponding sequence ‖exp(Aλ+1)‖λ+1 is bounded.
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We can extend the exponential map EXP to U ⊗ R∗ (where
R∗ =

∏
V R.

A topological group G is ?-path connected if ∀h0, h1 ∈ G, ∃ a
continuous map g : [0; 1]∗ → G (where [0; 1]∗ := R∗ ∩ [0; 1])
such that g(0) = h0 and g(1) = h1.

Proposition
The subgroups < EXP(U) > and EXP(U0) (respectively
< EXP(U ⊗ R∗) > and EXP(U0 ⊗ R∗) are topological
groups.

Moreover, < EXP(U ⊗ R∗) > and EXP(U0 ⊗ R∗) are ?-path
connected.
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The asymptotic cone
Define the map φ : Mλ+1(C) → ω which sends every
A ∈ Mλ+1(C) to the number of non-zero coefficients of A.
Let us check that

1 φ(A + B) ≤ φ(A) + φ(B),
2 φ(A · B) ≤ φ(A) · φ(B)

φ defines a norm on Mλ+1(C), denoted by ‖ · ‖c,λ+1.

Let
∏∗

V(Mλ+1(C),
‖·‖c,λ+1

λ ) be the set of elements
[aλ] ∈

∏
V(Mλ+1(C),

‖·‖c,λ+1
λ ) such that for N ∈ ω,

{λ ∈ ω : ‖aλ‖c,λ ≤ N · λ} ∈ V.
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The asymptotic cone

Let XV :=
∏∗

V(Mλ+1(C),
‖·‖c,λ+1

λ )/ ∼, where the equivalence
relation ∼ is defined by

[aλ]V ∼ [bλ]V if
‖aλ − bλ‖c,λ

λ
→V 0.

XV becomes a metric space (XVλ
(C), d) with the distance

d(a, b) := st
([

‖aλ − bλ‖c,λ

λ

])
∀a, b ∈ XV

where st denote the standard part of an element of R∗

whose absolute value is bounded by some natural number.

Proposition
U embeds in (XV(C), d).
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