Sonia L'Innocente

Some possible exponentiations over the universal enveloping algebra of $sl_2(\mathbb{C})$

Sonia L'Innocente

Department of Mathematics University of Camerino Italy Institute of Mathematics University of Mons-Hainaut Belgium

MODNET Conference in Barcelona

Final Conference of the Research Training Network in Model Theory

3-7 November 2008, Barcelona, Spain

Sonia L'Innocente

Seminar's aim

We want to illustrate the main results of the work:

Some possible exponentiations over the universal enveloping algebra of $sl_2(\mathbb{C})$ (S.L'I., A. Macintyre, F. Point).

where some methods from model theory of modules and some techniques of ultraproducts are applied.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Our Setting

Some results in this framework

2 Exponentiation over $U = U_{\mathbb{C}}$ Exponential maps and ultraproducts

3 / 28

Outline

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

1 Our Setting

Some results in this framework

2 Exponentiation over $U = U_{\mathbb{C}}$ Exponential maps and ultraproduct

Sonia L'Innocente (Camerino~Mons) Possible Exponentiations over enveloping

Outline

イロト イポト イヨト イヨト

Sonia L'Innocente

Our setting Some results in

Exponentia map over

Exponential maps and ultraproducts

Our setting

Let k be an algebraically closed field of characteristic 0. Consider the simple Lie algebra $sl_2(k)$ of

all 2 \times 2 traceless matrices over k

with the bracket operation [x, y] = xy - yx. Recall that a basis of $sl_2(k)$ is

$$x = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \quad y = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \quad h = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

So, [x, y] = h, [h, x] = 2x, [h, y] = -2y.

We focus on the universal enveloping algebra of $sl_2(k)$, denoted by U_k .

3

٠

Sonia L'Innocente

Our setting Some results in

Exponentia map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Our setting

Let k be an algebraically closed field of characteristic 0. Consider the simple Lie algebra $sl_2(k)$ of

all 2×2 traceless matrices over k

with the bracket operation [x, y] = xy - yx. Recall that a basis of $sl_2(k)$ is

$$x = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \quad y = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \quad h = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

So, [x, y] = h, [h, x] = 2x, [h, y] = -2y.

We focus on the universal enveloping algebra of $sl_2(k)$, denoted by U_k .

3

٠

Sonia L'Innocente

Our setting Some results in

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Definition

A universal enveloping algebra of $sl_2(k)$ over k is

an associative algebra (with a unit) U_k with a (Lie algebra) homomorphism $i : sl_2(k) \rightarrow U_k$ such that A is any associative k-algebra with the homomorphism $f : sl_2(k) \rightarrow A$, en there exists a unique homomorphism:

 $\Theta: U_k \to A$

such that the diagram

 $sl_2(k) \rightarrow U_k$

Sonia L'Innocente

Our setting Some results in

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Definition

A universal enveloping algebra of $sl_2(k)$ over k is

an associative algebra (with a unit) U_k with a (Lie algebra) homomorphism $i : sl_2(k) \rightarrow U_k$ such that

f A is any associative k-algebra with the homomorphism $f: sl_2(k) \rightarrow A$, hen there exists a unique homomorphism:

 $\Theta: U_k \to A$

such that the diagram

 $sl_2(k) \rightarrow U_k$ $\downarrow \swarrow$

commutes

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts Definition

A universal enveloping algebra of $sl_2(k)$ over k is

an associative algebra (with a unit) U_k with a (Lie algebra) homomorphism $i : sl_2(k) \rightarrow U_k$ such that if *A* is any associative *k*-algebra with the homomorphism $f : sl_2(k) \rightarrow A$,

then there exists a unique homomorphism:

 $\Theta: U_k \to A$

such that the diagram

 $sl_2(k) \rightarrow U_k$ $\downarrow \swarrow$

commutes

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Definition

A universal enveloping algebra of $sl_2(k)$ over k is

an associative algebra (with a unit) U_k with a (Lie algebra) homomorphism $i : sl_2(k) \rightarrow U_k$ such that if *A* is any associative *k*-algebra with the homomorphism $f : sl_2(k) \rightarrow A$, then there exists a unique homomorphism:

 $\Theta: U_k \to A$

such that the diagram

commutes.

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

The Poincaré-Birkhoff-Witt Theorem

The *k*-algebra U_k has as basis (over *k*)

 ${x^n y^l h^s : n, l, s \ge 0}$

where $\{x, y, h\}$ is the basis of $sl_2(k)$.

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts We will use these algebraic properties of U_k :

U_k has a ℤ-graded *k*-algebra. Let *U_{κ,m}* be the subalgebra of elements of grade *m*. We have

$$\begin{array}{rcl} U_k & = & \bigoplus_{m \in \mathbb{Z}} U_{k,\,m}\,; \\ & \text{for } m > 0, \ U_{k,\,m} & = & x^m U_{k,\,0} \, = \, U_{k,\,0} x^m\,; \\ & \text{for } m < 0, \ U_{k,\,m} & = & y^{|m|} U_{k,\,0} \, = \, U_{k,\,0} y^{|m|}\,. \end{array}$$

• A key role is played by the **Casimir operator** of *U_k*:

$$c = 2xy + 2yx + h^2$$

which generates the center of U_k

• By PBW basis of *U_k*, we can see that the 0-component of *U_k*

$$U_{k0} = k[c, h]$$

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts We will use these algebraic properties of U_k :

U_k has a ℤ-graded *k*-algebra. Let *U_{κ,m}* be the subalgebra of elements of grade *m*. We have

$$\begin{array}{rcl} U_k & = & \bigoplus_{m \in \mathbb{Z}} U_{k,\,m}\,; \\ \text{for } m > 0, \; U_{k,\,m} & = & x^m U_{k,\,0} \; = \; U_{k,\,0} x^m\,; \\ \text{for } m < 0, \; U_{k,\,m} \; = & y^{|m|} U_{k,\,0} \; = \; U_{k,\,0} y^{|m|}\,. \end{array}$$

• A key role is played by the **Casimir operator** of *U_k*:

$$c = 2xy + 2yx + h^2$$

which generates the center of U_k

 By PBW basis of U_k, we can see that the 0-component of U_k

$$U_{k0} = k[c, h]$$

Sonia L'Innocente

Our setting Some results in

Exponentia map over $U = U_{C}$

Exponential maps and ultraproducts

Simple finite dim. representations

Let λ be a positive integer. Consider the vector space k[X, Y].

Any simple $(\lambda + 1)$ -dim. $sl_2(k)$ -module V_{λ} can be described as the subspace of k[X, Y]of all homogenous polynomials in X and Y of degree λ . According to the following basis of monomials $X^{\lambda}, X^{\lambda-1}Y, \dots, XY^{\lambda-1}, Y^{\lambda}$, we have $V_{\lambda} = \bigoplus_{i=1}^{\lambda} kX^{\lambda-j}Y^{j}$.

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Simple finite dim. representations

Let λ be a positive integer. Consider the vector space k[X, Y].

Any simple $(\lambda + 1)$ -dim. $sl_2(k)$ -module V_{λ} can be described as the subspace of k[X, Y]of all homogenous polynomials in X and Y of degree λ .

According to the following basis of monomials

$$X^{\lambda}, X^{\lambda-1}Y, \dots, XY^{\lambda-1}, Y^{\lambda}$$

we have

$$V_\lambda = igoplus_{j=0}^\lambda k X^{\lambda-j} Y^j \,.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sonia L'Innocente

Our setting

Some results in this framework

Exponentia map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Simple finite dim. representations

Let λ be a positive integer. Consider the vector space k[X, Y].

Any simple $(\lambda + 1)$ -dim. $sl_2(k)$ -module V_{λ} can be described as the subspace of k[X, Y]of all homogenous polynomials in X and Y of degree λ .

According to the following basis of monomials

$$X^{\lambda}, X^{\lambda-1}Y, \ldots, XY^{\lambda-1}, Y^{\lambda}$$

we have

$$V_{\lambda} = \bigoplus_{j=0}^{\lambda} k X^{\lambda-j} Y^j.$$

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts A representation of $sl_2(k)$ is given by the map $f_{\lambda} : sl_2(k) \rightarrow End(V_{\lambda})$ defined as follows:

$$\begin{aligned} f_{\lambda}(x) &= X \frac{\partial}{\partial Y} \\ f_{\lambda}(y) &= Y \frac{\partial}{\partial X} , \\ f_{\lambda}(h) &= X \frac{\partial}{\partial X} - Y \frac{\partial}{\partial Y} . \end{aligned}$$

э

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

A classification by I.Herzog

On the language of left U_k -modules, a classification of simple representations of U_k is given by I.Herzog.

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

A classification by I.Herzog

On the language of left U_k -modules, a classification of simple representations of U_k is given by I.Herzog.

[Herzog]

The pseudo-finite dimensional representations of sl(2, k). Selecta Mathematica 7 (2001), 241-290

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

A classification by I.Herzog

On the language of left U_k -modules, a classification of simple representations of U_k is given by I.Herzog.

- 1. Let U'_k be the ring of definable scalars of all simple finite dimensional U_k -modules whose elements are pp-definable endomorphisms of each V_{λ} .
- Herzog proved that U'_k is von Neuman regular ring.

Sonia L'Innocente

Our setting

Some results in this framework

Exponentia map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

A classification by I.Herzog

On the language of left U_k -modules, a classification of simple representations of U_k can be given by I.Herzog.

- A representation *M* of *U_k* is called **pseudo-finite dimensional** (**PFD**) iff
 M satisfies all sentences (of the language of *U_k*-modules) true in every finite dimensional representation.
- He investigated these representations, viewed as modules over U'_k, by analyzing the Ziegler spectrum of U'_k.

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Some works inspired by Herzog's analysis

[ĽI., Prest]

Rings of definable scalars of Verma modules, 2007

[Herzog, L'I.]

The nonstandard quantum plane, 2008

[L'I., Macintyre]

Towards Decidability of the Theory of Pseudo-Finite Dimensional Representations of *sl*₂*k*; I, 2008.

Sonia L'Innocente

Our setting

Some results in this framework

Exponentia map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Some works inspired by Herzog's analysis

[L'I., Prest]

Rings of definable scalars of Verma modules, 2007

[Herzog, L'I.]

The nonstandard quantum plane, 2008

[L'I., Macintyre]

Towards Decidability of the Theory of Pseudo-Finite Dimensional Representations of *sl*₂*k*; I, 2008.

Sonia L'Innocente

Our setting

Some results in this framework

Exponentia map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Some works inspired by Herzog's analysis

[L'I., Prest]

Rings of definable scalars of Verma modules, 2007

[Herzog, L'I.]

The nonstandard quantum plane, 2008

[ĽI., Macintyre]

Towards Decidability of the Theory of Pseudo-Finite Dimensional Representations of *sl*₂*k*; I, 2008.

Sonia L'Innocente

Our setting

Some results in this framework

Exponentia map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Some works inspired by Herzog's analysis

[L'I., Prest]

Rings of definable scalars of Verma modules, 2007

[Herzog, L'I.]

The nonstandard quantum plane, 2008

[L'I., Macintyre]

Towards Decidability of the Theory of Pseudo-Finite Dimensional Representations of sl_2k ; I, 2008.

Outline

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

1 Our Setting

Some results in this framework

2 Exponentiation over $U = U_{\mathbb{C}}$ Exponential maps and ultraproducts

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Exponentiation

Restrict our attention on \mathbb{C} . Let $U = U_{\mathbb{C}}$.

Our aim We define some possible exponentiations over U. First, we describe the exponential map $\mathsf{EXP}_{\lambda}: U \longrightarrow GL_{\lambda+1}(\mathbb{C})$ for each $\lambda \in \omega - \{0\}$.

-

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Exponentiation

Restrict our attention on \mathbb{C} . Let $U = U_{\mathbb{C}}$.

Our aim We define some possible exponentiations over *U*. 1 First, we describe the exponential map $EXP_{\lambda}: U \longrightarrow GL_{\lambda+1}(\mathbb{C})$

for each $\lambda \in \omega - \{0\}$.

2 Then, we discuss the exponential map

 $\mathsf{EXP}: U \to \prod_{\mathcal{V}} \mathit{GL}_{\lambda+1}(\mathbb{C})$

where ${\cal V}$ be a non-principal ultrafilter on ω

-

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Our strategy

We will use:

- The matrix characterization of every simple U-modules V_{λ} by the map $\Theta_{\lambda} : U \to M_{\lambda+1}$ (where $M_{\lambda+1} = \text{End}(V_{\lambda})$).
 - The natural matrix exponential map defined over $M_{\lambda+1}(\mathbb{C})$

$$\exp: M_{\lambda+1}(\mathbb{C}) \longrightarrow GL_{\lambda+1}(\mathbb{C})$$

such that $\forall A \in M_{\lambda+1}(\mathbb{C})$

$$exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!} = I_{\lambda+1} + A + \frac{A^2}{2} + \frac{A^3}{3!} + \ldots)$$

where $I_{\lambda+1}$ denote the $(\lambda + 1) \times (\lambda + 1)$ identity matrix.

< ロ > < 同 > < 回 > < 回 > .

э

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Our strategy

We will use:

- The matrix characterization of every simple *U*-modules V_{λ} by the map $\Theta_{\lambda} : U \to M_{\lambda+1}$ (where $M_{\lambda+1} = \text{End}(V_{\lambda})$).
- The natural matrix exponential map defined over $M_{\lambda+1}(\mathbb{C})$

$$\exp: M_{\lambda+1}(\mathbb{C}) \longrightarrow GL_{\lambda+1}(\mathbb{C})$$

such that $\forall A \in M_{\lambda+1}(\mathbb{C})$,

$$exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!} = I_{\lambda+1} + A + \frac{A^2}{2} + \frac{A^3}{3!} + \ldots)$$

where $I_{\lambda+1}$ denote the $(\lambda + 1) \times (\lambda + 1)$ identity matrix.

э

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Definition: the map EXP $_{\lambda}$

Let $\lambda \in \omega - \{0\}$ (later λ will range in ω). We can define a **new exponential map** over *U*:

$$\mathsf{EXP}_{\lambda}: U \xrightarrow{\Theta_{\lambda}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\mathsf{exp}} GL_{\lambda+1}(\mathbb{C})$$

 $\mathsf{EXP}_{\lambda}(u) = \exp(\Theta_{\lambda}(u)), \qquad \forall u \in U.$

Proposition

We can prove that the map EXP_{λ} is surjective.

Question.

Which is the value of $\text{EXP}_{\lambda}(u)$ for every $u \in U$? What is its kernel?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Definition: the map EXP $_{\lambda}$

Let $\lambda \in \omega - \{0\}$ (later λ will range in ω). We can define a **new exponential map** over *U*:

$$\mathsf{EXP}_{\lambda}: U \xrightarrow{\Theta_{\lambda}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\mathsf{exp}} GL_{\lambda+1}(\mathbb{C})$$

 $\mathsf{EXP}_{\lambda}(u) = \exp(\Theta_{\lambda}(u)), \qquad \forall u \in U.$

Proposition

We can prove that the map EXP_{λ} is surjective.

Question.

Which is the value of $\text{EXP}_{\lambda}(u)$ for every $u \in U$? What is its kernel?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Definition: the map EXP $_{\lambda}$

Let $\lambda \in \omega - \{0\}$ (later λ will range in ω). We can define a **new exponential map** over *U*:

$$\mathsf{EXP}_{\lambda}: U \xrightarrow{\Theta_{\lambda}} M_{\lambda+1}(\mathbb{C}) \xrightarrow{\mathsf{exp}} GL_{\lambda+1}(\mathbb{C})$$

 $\mathsf{EXP}_{\lambda}(u) = \exp(\Theta_{\lambda}(u)), \qquad \forall u \in U.$

Proposition

We can prove that the map EXP_{λ} is surjective.

Question.

Which is the value of $\mathsf{EXP}_{\lambda}(u)$ for every $u \in U$? What is its kernel?

э

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts Because of the intrinsic characterization of *U*, we are not able to give immediately a satisfactory answer. But, we can easily calculate EXP_{λ} of *x*, *y*, *h*, *c* by the related values of Θ_{λ} :

э

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

1

Because of the intrinsic characterization of U, we are not able to give immediately a satisfactory answer. But, we can easily calculate EXP_{λ} of x, y, h, c by the related values of Θ_{λ} :

$$\Theta_{\lambda}(x) = \begin{pmatrix} 0 & 1 & 0 \dots & 0 \\ 0 & 0 & 2 \dots & 0 \\ \vdots & \vdots & & \lambda \\ 0 & 0 & 0 \dots & 0 \end{pmatrix}, \Theta_{\lambda}(y) = \begin{pmatrix} 0 & 0 & \dots & 0 \\ \lambda & 0 & \dots & 0 \\ 0 & \lambda - 1 & & 0 \\ \vdots & \vdots & & \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\Theta_{\lambda}(h) \,=\, {
m diag}\left(\lambda,\lambda-2,\ldots,-\lambda+2,-\lambda
ight).$$

Since Θ_{λ} is a homomorphism, we can easily calculate

$$\begin{array}{lll} \Theta_{\lambda}(c) &=& \Theta_{\lambda}(2x \cdot y + 2y \cdot x + h^2) = \\ &=& 2\Theta_{\lambda}(x) \cdot \Theta_{\lambda}(y) + 2\Theta_{\lambda}(y) \cdot \Theta_{\lambda}(x) + (\Theta_{\lambda}(h))^2 = \\ &=& \operatorname{diag}\left(\lambda^2 + 2\lambda, \dots, \lambda^2 + 2\lambda\right). \end{array}$$

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts Because of the intrinsic characterization of U, we are not able to give immediately a satisfactory answer. But, we can easily calculate EXP_{λ} of x, y, h, c by the related values of Θ_{λ} :

$$\begin{array}{lll} \mathsf{EXP}_{\lambda}(x) &=& \exp(\Theta_{\lambda}(x)) = \\ &=& \mathbf{1}_{\lambda+1} + \Theta_{\lambda}(x) + \frac{\Theta_{\lambda}(x)^2}{2} + \ldots + \frac{\Theta_{\lambda}(x)^{\lambda}}{\lambda!}; \end{array}$$

$$\begin{split} \mathsf{EXP}_{\lambda}(y) &= & \exp(\Theta_{\lambda}(y)) = \\ &= & \mathbf{1}_{\lambda+1} + \Theta_{\lambda}(y) + \frac{\Theta_{\lambda}(y)^2}{2} + \ldots + \frac{\Theta_{\lambda}(y)^{\lambda}}{\lambda!}; \end{split}$$

$$\begin{split} \mathsf{EXP}_{\lambda}(h) &= & \exp(\Theta_{\lambda}(h)) = \\ &= & \operatorname{diag}(e^{\lambda}, e^{\lambda-2}, \dots, e^{-\lambda+2}, e^{-\lambda}); \\ \mathsf{EXP}_{\lambda}(c) &= & \exp(\Theta_{\lambda}(c)) = \operatorname{diag}(e^{\lambda^{2}+2\lambda}, \dots, e^{\lambda^{2}+2\lambda}) \end{split}$$

э

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts We can prove that EXP_{λ} satisfies the similar properties of the matrix exponential exp.

Proposition

If $u, v \in U$:

(i) $\text{EXP}_{\lambda}(0_U) = I_{\lambda+1}$, where 0_U denotes the identity element (with respect to the addition) in *U*;

(ii)
$$\mathsf{EXP}_{\lambda}(u) \cdot \mathsf{EXP}_{\lambda}(-u) = I_{\lambda};$$

(iii) for *u* and *v* commuting, $EXP_{\lambda}(u+u) = EXP_{\lambda}(u) \cdot EXP_{\lambda}(v);$

(iv) for an invertible element v in U, $EXP_{\lambda}(vuv^{-1}) = \Theta_{\lambda}(v)EXP_{\lambda}(u)\Theta_{\lambda}(v)^{-1};$

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts We can prove that EXP_{λ} satisfies the similar properties of the matrix exponential exp.

Proposition

If $u, v \in U$:

(i) $\text{EXP}_{\lambda}(0_U) = I_{\lambda+1}$, where 0_U denotes the identity element (with respect to the addition) in *U*;

(ii)
$$\mathsf{EXP}_{\lambda}(u) \cdot \mathsf{EXP}_{\lambda}(-u) = I_{\lambda};$$

(iii) for *u* and *v* commuting, $EXP_{\lambda}(u+u) = EXP_{\lambda}(u) \cdot EXP_{\lambda}(v);$

(iv) for an invertible element v in U, $EXP_{\lambda}(vuv^{-1}) = \Theta_{\lambda}(v)EXP_{\lambda}(u)\Theta_{\lambda}(v)^{-1};$

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Remark

Any element $u_0 \in U_0$ belongs to the kernel of EXP_λ if and only if

$$igwedge _{0\leq j\leq \lambda} {m
ho}\left(\lambda^2 + {m 2}\lambda, \lambda - {m 2}j
ight) \in {m 2}\pi i {\mathbb Z}$$

We can get a partial answer to our question.

Proposition

 EXP_{λ} maps any element *u* of *U* onto $SL_{\lambda+1}(\mathbb{C})$ if the following condition is satisfied

 $\operatorname{tr}(\Theta_{\lambda}(u)) \in 2\pi i\mathbb{Z}.$

In particular, if $u \in \bigoplus_{m \neq 0} U_m$, then its image by EXP_{λ} lies

always in $SL_{\lambda+1}(\mathbb{C})$.

э

イロン イボン イヨン イヨン

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Remark

Any element $u_0 \in U_0$ belongs to the kernel of EXP_λ if and only if

$$igwedge _{0\leq j\leq\lambda}$$
p $\left(\lambda^{2}+2\lambda,\lambda-2j
ight) \in2\pi i\mathbb{Z}$

We can get a partial answer to our question.

Proposition

 EXP_{λ} maps any element *u* of *U* onto $SL_{\lambda+1}(\mathbb{C})$ if the following condition is satisfied

 $tr(\Theta_{\lambda}(u)) \in 2\pi i\mathbb{Z}.$

In particular, if $u \in \bigoplus_{m \neq 0} U_m$, then its image by EXP_{λ} lies

always in $SL_{\lambda+1}(\mathbb{C})$.

э

ヘロン 人間 とくほ とく ロン

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

A further aim

Let \mathcal{V} be a non-principal ultrafilter on ω and consider the ultraproducts $\prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C})$ and $\prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ as structures on the language of Lie algebras.

We will focus on the map EXP from *U* to $\prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ defined as follows:

$$\mathsf{EXP}:U o \prod_{\mathcal{V}} \mathit{GL}_{\lambda+1}(\mathbb{C})$$

 $\mathbf{u}
ightarrow [\mathsf{E} X \mathcal{P}_{\lambda}(\mathbf{u})]_{\mathcal{V}} \qquad orall u \in U$

by composing the injective map $[\Theta_{\lambda}] : U \to \prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C})$ with the map $[\exp]_{\mathcal{V}} : \prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C}) \to \prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C}).$

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

A further aim

Let \mathcal{V} be a non-principal ultrafilter on ω and consider the ultraproducts $\prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C})$ and $\prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ as structures on the language of Lie algebras.

We will focus on the map EXP from U to $\prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ defined as follows:

$$\mathsf{EXP}:U o \prod_{\mathcal{V}} \mathit{GL}_{\lambda+1}(\mathbb{C})$$

 $\mathbf{u}
ightarrow [\mathsf{E} X \mathcal{P}_{\lambda}(\mathbf{u})]_{\mathcal{V}} \qquad orall u \in U$

by composing the injective map $[\Theta_{\lambda}] : U \to \prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C})$, with the map $[exp]_{\mathcal{V}} : \prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C}) \to \prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$.

-

Sonia L'Innocente

Our setting

Some results in this framework

Exponentian map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts Note that *EXP* satisfies the properties stated for each EXP_{λ} . Moreover,

- $EXP(\oplus_{m\neq 0}U_m) \subset \prod_{\mathcal{V}} SL_{\lambda+1}(\mathbb{C});$
- $EXP(U_0) \subset \prod_{\mathcal{V}} Diag_{\lambda+1}(\mathbb{C}).$

э

Sonia L'Innocente

Our setting

Some results in this framework

Exponentian map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts We focus on the following query.

Question

What is the kernel of EXP?

Proposition

Let $u := p(c, h) \in U_0$, where $p[x_1, x_2] \in \mathbb{C}[x_1, x_2]$ is in the form $\frac{1}{2\pi \cdot i} \cdot q[x_1, x_2]$. Write $q(x_1, x_2) = \sum_{k=0}^{d} q_k(x_1) x_2^k$, with $q_k(x) \in \mathbb{Q}[x_1]$.

Then, $p \in \text{Ker}(\text{EXP})$ for all non-principal ultrafilter \mathcal{V} if and only if $q(x_1, x_2) \in \mathbb{Q}[x_1, x_2]$ and for each $0 \leq k \leq d$, $q_k(0) \in \mathbb{Z}$.

Sonia L'Innocente

Our setting

Some results in this framework

Exponentian map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts We focus on the following query.

Question

What is the kernel of EXP?

Proposition

Let $u := p(c, h) \in U_0$, where $p[x_1, x_2] \in \mathbb{C}[x_1, x_2]$ is in the form $\frac{1}{2\pi \cdot i} \cdot q[x_1, x_2]$. Write $q(x_1, x_2) = \sum_{k=0}^{d} q_k(x_1) x_2^k$, with $q_k(x) \in \mathbb{Q}[x_1]$.

Then, $p \in \text{Ker}(\text{EXP})$ for all non-principal ultrafilter \mathcal{V} if and only if $q(x_1, x_2) \in \mathbb{Q}[x_1, x_2]$ and for each $0 \le k \le d$, $q_k(0) \in \mathbb{Z}$.

-

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Further questions

We would like to put a topology on U in such a way that EXP is continuous.

The sesquilinear Hermitian forms $(\cdot, \cdot)_{\lambda}$ induce on the Lie algebra $\prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C})$ (over $\mathbb{C}^* = \prod_{\mathcal{V}} \mathbb{C}$) a *-Hermitian sesquilinear form (\cdot, \cdot) defined by:

 $[\mathbf{A}_{\lambda}]_{\mathcal{V}}, [\mathbf{B}_{\lambda}]_{\mathcal{V}}) := [(\mathbf{A}_{\lambda}, \mathbf{B}_{\lambda})]_{\mathcal{V}}.$

So, we have a \star -norm $\|\cdot\|$ on $\prod_{\mathcal{V}} M_{\lambda+1}(C)$,

 $\|[A_{\lambda+1}]\| := [\|A_{\lambda+1}\|_{\lambda+1}].$

which induces on *U* the following \star -norm (also denoted by $\|\cdot\|$): $\|u\| := [\|\Theta_{\lambda}(u)\|_{\lambda+1}]$

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Further questions

We would like to put a topology on U in such a way that EXP is continuous.

The sesquilinear Hermitian forms $(\cdot, \cdot)_{\lambda}$ induce on the Lie algebra $\prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C})$ (over $\mathbb{C}^* = \prod_{\mathcal{V}} \mathbb{C}$) a \star -Hermitian sesquilinear form (\cdot, \cdot) defined by:

 $([\boldsymbol{A}_{\lambda}]_{\mathcal{V}}, [\boldsymbol{B}_{\lambda}]_{\mathcal{V}}) := [(\boldsymbol{A}_{\lambda}, \boldsymbol{B}_{\lambda})]_{\mathcal{V}}.$

So, we have a \star -norm $\|\cdot\|$ on $\prod_{\mathcal{V}} M_{\lambda+1}(C)$,

 $\|[A_{\lambda+1}]\| := [\|A_{\lambda+1}\|_{\lambda+1}].$

which induces on *U* the following \star -norm (also denoted by $\|\cdot\|$): $\|u\| := [\|\Theta_{\lambda}(u)\|_{\lambda+1}]$

Sonia L'Innocente

Our setting

Some results in this framework

Exponentia map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Proposition

Consider the *-normed spaces $(U, \|\cdot\|)$ and $(\prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C}), \|\cdot\|_{\lambda+1})$. The map $EXP : U \to \prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ is continuous and maps bounded sets to bounded sets.

Proof

Let $\epsilon \in \prod_{\mathcal{V}} \mathbb{R}^{>0}$, let $\eta := 2^{-1} \cdot \epsilon \cdot e^{-\|u\|}$, and let $v \in O_{\eta}$. Then $\|EXP(u+v) - EXP(u)\| \le \eta e^{\|u\|} \cdot e^{\eta}$.

If the sequence $A_{\lambda+1} \in M_{\lambda+1}(\mathbb{C})$ is bounded, then the corresponding sequence $\|\exp(A_{\lambda+1})\|_{\lambda+1}$ is bounded.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

Proposition

Consider the *-normed spaces $(U, \|\cdot\|)$ and $(\prod_{\mathcal{V}} M_{\lambda+1}(\mathbb{C}), \|\cdot\|_{\lambda+1})$. The map $EXP : U \to \prod_{\mathcal{V}} GL_{\lambda+1}(\mathbb{C})$ is continuous and maps bounded sets to bounded sets.

Proof

Let $\epsilon \in \prod_{\mathcal{V}} \mathbb{R}^{>0}$, let $\eta := 2^{-1} \cdot \epsilon \cdot e^{-\|u\|}$, and let $v \in O_{\eta}$. Then $\|EXP(u+v) - EXP(u)\| \le \eta e^{\|u\|} \cdot e^{\eta}$.

If the sequence $A_{\lambda+1} \in M_{\lambda+1}(\mathbb{C})$ is bounded, then the corresponding sequence $\|\exp(A_{\lambda+1})\|_{\lambda+1}$ is bounded.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

We can extend the exponential map EXP to $U \otimes \mathbb{R}^*$ (where $\mathbb{R}^* = \prod_{\mathcal{V}} \mathbb{R}$.

A topological group *G* is *-path connected if $\forall h_0, h_1 \in G, \exists a$ continuous map $g : [0; 1]^* \to G$ (where $[0; 1]^* := \mathbb{R}^* \cap [0; 1]$) such that $g(0) = h_0$ and $g(1) = h_1$.

Proposition

The subgroups $\langle \mathsf{EXP}(U) \rangle$ and $\mathsf{EXP}(U_0)$ (respectively $\langle \mathsf{EXP}(U \otimes \mathbb{R}^*) \rangle$ and $\mathsf{EXP}(U_0 \otimes \mathbb{R}^*)$ are topological groups.

Moreover, $\langle \mathsf{EXP}(U \otimes \mathbb{R}^*) \rangle$ and $\mathsf{EXP}(U_0 \otimes \mathbb{R}^*)$ are \star -path connected.

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts We can extend the exponential map EXP to $U \otimes \mathbb{R}^*$ (where $\mathbb{R}^* = \prod_{\mathcal{V}} \mathbb{R}$.

A topological group *G* is \star -path connected if $\forall h_0, h_1 \in G, \exists a$ continuous map $g : [0; 1]^* \to G$ (where $[0; 1]^* := \mathbb{R}^* \cap [0; 1]$) such that $g(0) = h_0$ and $g(1) = h_1$.

Proposition

The subgroups $\langle \mathsf{EXP}(U) \rangle$ and $\mathsf{EXP}(U_0)$ (respectively $\langle \mathsf{EXP}(U \otimes \mathbb{R}^*) \rangle$ and $\mathsf{EXP}(U_0 \otimes \mathbb{R}^*)$ are topological groups.

Moreover, $\langle \mathsf{EXP}(U \otimes \mathbb{R}^*) \rangle$ and $\mathsf{EXP}(U_0 \otimes \mathbb{R}^*)$ are *-path connected.

Sonia L'Innocente

Our setting

Some results in this framework

Exponentia map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts We can extend the exponential map EXP to $U \otimes \mathbb{R}^*$ (where $\mathbb{R}^* = \prod_{\mathcal{V}} \mathbb{R}$.

A topological group *G* is \star -path connected if $\forall h_0, h_1 \in G, \exists a$ continuous map $g : [0; 1]^* \to G$ (where $[0; 1]^* := \mathbb{R}^* \cap [0; 1]$) such that $g(0) = h_0$ and $g(1) = h_1$.

Proposition

The subgroups $\langle \mathsf{EXP}(U) \rangle$ and $\mathsf{EXP}(U_0)$ (respectively $\langle \mathsf{EXP}(U \otimes \mathbb{R}^*) \rangle$ and $\mathsf{EXP}(U_0 \otimes \mathbb{R}^*)$ are topological groups.

Moreover, $\langle \mathsf{EXP}(U \otimes \mathbb{R}^*) \rangle$ and $\mathsf{EXP}(U_0 \otimes \mathbb{R}^*)$ are \star -path connected.

-

Sonia L'Innocente

Our setting

Some results in this framework

Exponentian map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

The asymptotic cone

Define the map $\phi : M_{\lambda+1}(\mathbb{C}) \to \omega$ which sends every $A \in M_{\lambda+1}(\mathbb{C})$ to the number of non-zero coefficients of A. Let us check that

1
$$\phi(A+B) \le \phi(A) + \phi(B)$$
,
2 $\phi(A \cdot B) \le \phi(A) \cdot \phi(B)$

 ϕ defines a norm on $M_{\lambda+1}(\mathbb{C})$, denoted by $\|\cdot\|_{c,\lambda+1}$.

Let $\prod_{\mathcal{V}}^{*}(M_{\lambda+1}(\mathbb{C}), \frac{\|\cdot\|_{c,\lambda+1}}{\lambda})$ be the set of elements $[a_{\lambda}] \in \prod_{\mathcal{V}}(M_{\lambda+1}(\mathbb{C}), \frac{\|\cdot\|_{c,\lambda+1}}{\lambda})$ such that for $N \in \omega$,

 $\{\lambda \in \omega : \|\boldsymbol{a}_{\lambda}\|_{\boldsymbol{c},\lambda} \leq \boldsymbol{N} \cdot \lambda\} \in \mathcal{V}.$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

The asymptotic cone

Let $X_{\mathcal{V}} := \prod_{\mathcal{V}}^{*}(M_{\lambda+1}(\mathbb{C}), \frac{\|\cdot\|_{c,\lambda+1}}{\lambda}) / \sim$, where the equivalence relation \sim is defined by

$$[a_{\lambda}]_{\mathcal{V}} \sim [b_{\lambda}]_{\mathcal{V}}$$
 if $\frac{\|a_{\lambda} - b_{\lambda}\|_{c,\lambda}}{\lambda} \to_{\mathcal{V}} 0.$

 $X_{\mathcal{V}}$ becomes a metric space $(X_{V_{\lambda}}(\mathbb{C}), d)$ with the distance

$$d(a,b) := st\left(\left[rac{\|a_\lambda - b_\lambda\|_{\mathcal{C},\lambda}}{\lambda}
ight]
ight) \quad orall a, \ b \in X_\mathcal{V}$$

where *st* denote the standard part of an element of \mathbb{R}^* whose absolute value is bounded by some natural number.

Proposition

U embeds in $(X_{\mathcal{V}}(\mathbb{C}), d)$.

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

The asymptotic cone

Let $X_{\mathcal{V}} := \prod_{\mathcal{V}}^{*}(M_{\lambda+1}(\mathbb{C}), \frac{\|\cdot\|_{c,\lambda+1}}{\lambda}) / \sim$, where the equivalence relation \sim is defined by

$$[a_{\lambda}]_{\mathcal{V}} \sim [b_{\lambda}]_{\mathcal{V}} \text{ if } rac{\|a_{\lambda} - b_{\lambda}\|_{c,\lambda}}{\lambda}
ightarrow_{\mathcal{V}} \mathbf{0}.$$

 $X_{\mathcal{V}}$ becomes a metric space $(X_{V_{\lambda}}(\mathbb{C}), d)$ with the distance

$$d(a,b) := st\left(\left[rac{\|m{a}_{\lambda} - m{b}_{\lambda}\|_{m{c},\lambda}}{\lambda}
ight]
ight) \quad orall m{a}, \ m{b} \in X_{\mathcal{V}}$$

where st denote the standard part of an element of \mathbb{R}^* whose absolute value is bounded by some natural number.

Proposition

U embeds in $(X_{\mathcal{V}}(\mathbb{C}), d)$.

Sonia L'Innocente

Our setting

Some results in this framework

Exponential map over $U = U_{\mathbb{C}}$

Exponential maps and ultraproducts

The asymptotic cone

Let $X_{\mathcal{V}} := \prod_{\mathcal{V}}^{*}(M_{\lambda+1}(\mathbb{C}), \frac{\|\cdot\|_{c,\lambda+1}}{\lambda}) / \sim$, where the equivalence relation \sim is defined by

$$[a_{\lambda}]_{\mathcal{V}} \sim [b_{\lambda}]_{\mathcal{V}} \text{ if } rac{\|a_{\lambda} - b_{\lambda}\|_{c,\lambda}}{\lambda}
ightarrow_{\mathcal{V}} \mathbf{0}.$$

 $X_{\mathcal{V}}$ becomes a metric space $(X_{V_{\lambda}}(\mathbb{C}), d)$ with the distance

$$d(a,b) := st\left(\left[rac{\|m{a}_\lambda - m{b}_\lambda\|_{m{c},\lambda}}{\lambda}
ight]
ight) \quad orall m{a}, \ m{b} \in X_\mathcal{V}$$

where *st* denote the standard part of an element of \mathbb{R}^* whose absolute value is bounded by some natural number.

Proposition

U embeds in $(X_{\mathcal{V}}(\mathbb{C}), d)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <