Bounded orbits

Ludomir Newelski

Instytut Matematyczny Uniwersytetu Wrocławskiego

November 2008

Set-up

T is a countable complete theory

M is a model of *T G* is a group definable in *M* for simplicity: G = M. *G* acts on *S*(*M*), by left translation: for $g \in G, p \in S(M)$

$$g \cdot p = \{\varphi(g^{-1}x) : \varphi(x) \in p\}$$

Set-up

T is a countable complete theory M is a model of T

G is a group definable in *M* for simplicity: G = M. *G* acts on *S*(*M*), by left translation: for $g \in G, p \in S(M)$

$$g \cdot p = \{\varphi(g^{-1}x) : \varphi(x) \in p\}$$

$$g \cdot p = \{\varphi(g^{-1}x) : \varphi(x) \in p\}$$

$$g \cdot p = \{\varphi(g^{-1}x) : \varphi(x) \in p\}$$

$$g \cdot p = \{\varphi(g^{-1}x) : \varphi(x) \in p\}$$

$$g \cdot p = \{\varphi(g^{-1}x) : \varphi(x) \in p\}$$

If there is a bounded G-orbit in $S(\mathfrak{C})$, then G is definably amenable.

Explanation

If there is a bounded G-orbit in $S(\mathfrak{C})$, then G is definably amenable.

Explanation

If there is a bounded G-orbit in $S(\mathfrak{C})$, then G is definably amenable.

Explanation

If there is a bounded G-orbit in $S(\mathfrak{C})$, then G is definably amenable.

Explanation

If there is a bounded G-orbit in $S(\mathfrak{C})$, then G is definably amenable.

Explanation

If there is a bounded G-orbit in $S(\mathfrak{C})$, then G is definably amenable.

Explanation

Definably amenable means there is a left-invariant measure on the family of definable subsets of G (a left-invariant Keisler measure). Bounded means of cardinality much smaller than $||\mathfrak{C}||$. Is it really an explanation ?

What does bounded exactly mean ?

If there is a bounded G-orbit in $S(\mathfrak{C})$, then G is definably amenable.

Explanation

Assume $p \in S(\mathfrak{C})$ and Gp has bounded size.

Let $Gp = \{p_{\alpha} : \alpha < \kappa\}, p = p_0.$

Choose a small $M \prec \mathfrak{C}$ such that all the types $p_{\alpha} \upharpoonright_{M}, \alpha < \kappa$ are distinct.

Let $q_{\alpha} = p_{\alpha} \upharpoonright_{M} \in S(M), \ \alpha < \kappa.$

So every q_{α} extends uniquely to a type in the orbit Gp.

We may also assume $G^M \cdot q_0 = \{q_\alpha : \alpha < \kappa\}.$

Assume $p \in S(\mathfrak{C})$ and Gp has bounded size. Let $Gp = \{p_{\alpha} : \alpha < \kappa\}, p = p_0$.

Choose a small $M \prec \mathfrak{C}$ such that all the types $p_{\alpha} \upharpoonright_{M}, \alpha < \kappa$ are distinct.

Let $q_{\alpha} = p_{\alpha} \upharpoonright_{M} \in S(M), \ \alpha < \kappa.$

So every q_{α} extends uniquely to a type in the orbit Gp.

We may also assume $G^M \cdot q_0 = \{q_\alpha : \alpha < \kappa\}.$

Let $q_{\alpha} = p_{\alpha} \upharpoonright_{M} \in S(M), \ \alpha < \kappa.$

So every q_{α} extends uniquely to a type in the orbit Gp.

We may also assume $G^{m} \cdot q_0 = \{q_\alpha : \alpha < \kappa\}.$

Let $q_{\alpha} = p_{\alpha} \upharpoonright_{M} \in S(M), \ \alpha < \kappa$.

So every q_{α} extends uniquely to a type in the orbit Gp. We may also assume $G^{M} \cdot q_{0} = \{q_{\alpha} : \alpha < \kappa\}.$

Let $q_{\alpha} = p_{\alpha} \upharpoonright_{M} \in S(M), \ \alpha < \kappa$.

So every q_{α} extends uniquely to a type in the orbit Gp.

We may also assume $G^M \cdot q_0 = \{q_\alpha : \alpha < \kappa\}.$

Let $q_{\alpha} = p_{\alpha} \upharpoonright_{M} \in S(M), \ \alpha < \kappa.$

So every q_{α} extends uniquely to a type in the orbit Gp.

We may also assume $G^M \cdot q_0 = \{q_\alpha : \alpha < \kappa\}.$

Now assume $q = q_0 \in S(M)$ and $G^M q = \{q_\alpha : \alpha < \kappa\}$

Question

Does there exist $p \in S(\mathfrak{C})$ extending q_0 such that every type q_{α} extends uniquely to a type in Gp and also every type in Gp extends some q_{α} ?

(In particular, such a *Gp* would be a bounded orbit...) Call a type *p* as above good.

Bad type

Call a partial type $r(x) = r(x, \bar{a})$ of size κ , consistent with q_0 , bad if for some $g \in G$ the set

$$gr \wedge \bigvee_{0 < \alpha < \kappa} [q_{\alpha}]$$

Now assume
$$q = q_0 \in S(M)$$
 and $G^M q = \{q_\alpha : \alpha < \kappa\}$

Question

Does there exist $p \in S(\mathfrak{C})$ extending q_0 such that every type q_α extends uniquely to a type in Gp and also every type in Gp extends some q_α ?

(In particular, such a *Gp* would be a bounded orbit...) Call a type *p* as above good.

Bad type

Call a partial type $r(x) = r(x, \bar{a})$ of size κ , consistent with q_0 , bad if for some $g \in G$ the set

$$gr \wedge \bigvee_{0 < \alpha < \kappa} [q_{\alpha}]$$

Now assume
$$q = q_0 \in S(M)$$
 and $G^M q = \{q_\alpha : \alpha < \kappa\}$

Question

Does there exist $p \in S(\mathfrak{C})$ extending q_0 such that every type q_α extends uniquely to a type in Gp and also every type in Gp extends some q_α ?

(In particular, such a *Gp* would be a bounded orbit...) Call a type *p* as above good.

Bad type

Call a partial type $r(x) = r(x, \bar{a})$ of size κ , consistent with q_0 , bad if for some $g \in G$ the set

$$gr \wedge \bigvee_{0 < \alpha < \kappa} [q_{\alpha}]$$

Now assume
$$q = q_0 \in S(M)$$
 and $G^M q = \{q_\alpha : \alpha < \kappa\}$

Question

Does there exist $p \in S(\mathfrak{C})$ extending q_0 such that every type q_α extends uniquely to a type in Gp and also every type in Gp extends some q_α ?

(In particular, such a Gp would be a bounded orbit...) Call a type p as above good.

Bad type

Call a partial type $r(x) = r(x, \bar{a})$ of size κ , consistent with q_0 , bad if for some $g \in G$ the set

$$gr \wedge \bigvee_{0 < \alpha < \kappa} [q_{\alpha}]$$

Now assume
$$q = q_0 \in S(M)$$
 and $G^M q = \{q_\alpha : \alpha < \kappa\}$

Question

Does there exist $p \in S(\mathfrak{C})$ extending q_0 such that every type q_{α} extends uniquely to a type in Gp and also every type in Gp extends some q_{α} ?

(In particular, such a Gp would be a bounded orbit...) Call a type p as above good.

Bad type

Call a partial type $r(x) = r(x, \overline{a})$ of size κ , consistent with q_0 , bad if for some $g \in G$ the set

$$gr \wedge \bigvee_{0 < lpha < \kappa} [q_{lpha}]$$

Now assume
$$q = q_0 \in S(M)$$
 and $G^M q = \{q_\alpha : \alpha < \kappa\}$

Question

Does there exist $p \in S(\mathfrak{C})$ extending q_0 such that every type q_{α} extends uniquely to a type in Gp and also every type in Gp extends some q_{α} ?

(In particular, such a Gp would be a bounded orbit...) Call a type p as above good.

Bad type

Call a partial type $r(x) = r(x, \bar{a})$ of size κ , consistent with q_0 , bad if for some $g \in G$ the set

$$gr \wedge \bigvee_{0 < lpha < \kappa} [q_{lpha}]$$

Whether a given type $r(x, \bar{a})$ is bad, depends only on $tp(\bar{a}/M)$.

A type $p \in S(\mathfrak{C})$ containing q_0 is good iff p contains no bad type.

Hence:

A good type exists iff in $S(\mathfrak{C})$

 $(*) \bigcap_{\text{bad } r} \bigcup_{\varphi \in r} [\neg \varphi] \neq \emptyset$

Whether a given type $r(x, \bar{a})$ is bad, depends only on $tp(\bar{a}/M)$.

A type $p \in S(\mathfrak{C})$ containing q_0 is good iff p contains no bad type.

Hence:

A good type exists iff in $S(\mathfrak{C})$ (*) $\bigcap_{\mathsf{bad}} \bigcup_{r \varphi \in r} [\neg \varphi] \neq$ Whether a given type $r(x, \bar{a})$ is bad, depends only on $tp(\bar{a}/M)$.

A type $p \in S(\mathfrak{C})$ containing q_0 is good iff p contains no bad type.

Hence:

A good type exists iff in $S(\mathfrak{C})$

 $(*) \bigcap_{\text{bad } r} \bigcup_{\varphi \in r} [\neg \varphi] \neq \emptyset$

Given q and M as above, we can ask if there is a bounded orbit in $S(\mathfrak{C})$ related to q as in the question.

Does the answer not depend on \mathfrak{C} ? Assume $\mathfrak{C}' \succ \mathfrak{C}$ and (*) holds in \mathfrak{C} . Does (*) hold in \mathfrak{C}' ? Given q and M as above, we can ask if there is a bounded orbit in $S(\mathfrak{C})$ related to q as in the question. Does the answer not depend on \mathfrak{C} ? Assume $\mathfrak{C}' \succ \mathfrak{C}$ and (*) holds in \mathfrak{C} . Does (*) hold in \mathfrak{C}' ? Given q and M as above, we can ask if there is a bounded orbit in $S(\mathfrak{C})$ related to q as in the question. Does the answer not depend on \mathfrak{C} ? Assume $\mathfrak{C}' \succ \mathfrak{C}$ and (*) holds in \mathfrak{C} . Does (*) hold in \mathfrak{C}' ?

Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Let
$$\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$$

What is μ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model \mathfrak{C} be ?

Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Let
$$\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$$

What is μ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model \mathfrak{C} be ?

Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Let
$$\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$$

What is μ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model \mathfrak{C} be ?

Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Let
$$\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$$

What is μ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model \mathfrak{C} be ?
Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Let
$$\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$$

What is μ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model \mathfrak{C} be ?

Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Suppose X(𝔅) ≠ Ø and 𝔅' ≻ 𝔅. Is X(𝔅') ≠ Ø ?
Suppose X(𝔅) = Ø. What is the minimal κ = κ(Φ) such that for some A ⊆ 𝔅 of power κ, X(A) = Ø ?

Let $\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$ What is μ ? What is the Hanff number for existence of bounded orbits ? How large should a monster model \mathfrak{C} be ?

Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Let
$$\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$$

What is μ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model \mathfrak{C} be ?

Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Let
$$\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$$

What is μ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model \mathfrak{C} be ?

Assume $\Phi = \{\varphi_n(x, y) : n < \omega\}$ and s(y) is a type over \emptyset . For $A \subseteq \mathfrak{C}$ let

$$X(A) = \bigcap_{a \in s(A)} \bigcup_{n < \omega} [\varphi_n(x, a)] \subseteq S(\mathfrak{C})$$

In fact, $\subseteq S(A)$.

Questions

Let
$$\mu = \sup\{\kappa(\Phi) : \Phi, T \text{ countable}\}.$$

What is μ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model \mathfrak{C} be ?

If for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded, then G^{∞} exists.

Explanation

 G_A^{∞} is the smallest A-invariant subgroup of G, of bounded index. If for every A, $G_A^{\infty} = G_{\emptyset}^{\infty}$, we call this group the ∞ -component of G, or G^{∞} .

Absoluteness of existence of G^{\propto}

1. If for some A, we have that $G_A^{\infty} \neq G_{\emptyset}^{\infty}$, then this holds for some countable A.

2. Existence of G^{∞} is absolute both ways:

(a) it does not depend on the monster model,

If for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded, then G^{∞} exists.

Explanation

 G_A^{∞} is the smallest A-invariant subgroup of G, of bounded index. If for every A, $G_A^{\infty} = G_{\emptyset}^{\infty}$, we call this group the ∞ -component of G, or G^{∞} .

Absoluteness of existence of G^{\propto}

1. If for some A, we have that $G_A^{\infty} \neq G_{\emptyset}^{\infty}$, then this holds for some countable A.

- 2. Existence of G^{∞} is absolute both ways:
- (a) it does not depend on the monster model,
- (b) it does not depend on the set-theoretical universe.

If for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded, then G^{∞} exists.

Explanation

 G_A^{∞} is the smallest A-invariant subgroup of G, of bounded index. If for every A, $G_A^{\infty} = G_{\emptyset}^{\infty}$, we call this group the ∞ -component of G, or G^{∞} .

Absoluteness of existence of G^{\propto}

1. If for some A, we have that $G_A^{\infty} \neq G_{\emptyset}^{\infty}$, then this holds for some countable A.

2. Existence of G^{∞} is absolute both ways:

(a) it does not depend on the monster model,

If for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded, then G^{∞} exists.

Explanation

 G_A^{∞} is the smallest A-invariant subgroup of G, of bounded index. If for every A, $G_A^{\infty} = G_{\emptyset}^{\infty}$, we call this group the ∞ -component of G, or G^{∞} .

Absoluteness of existence of G^{∞}

1. If for some A, we have that $G_A^{\infty} \neq G_{\emptyset}^{\infty}$, then this holds for some countable A.

2. Existence of G^{∞} is absolute both ways:

(a) it does not depend on the monster model,

If for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded, then G^{∞} exists.

Explanation

 G_A^{∞} is the smallest A-invariant subgroup of G, of bounded index. If for every A, $G_A^{\infty} = G_{\emptyset}^{\infty}$, we call this group the ∞ -component of G, or G^{∞} .

Absoluteness of existence of G^{∞}

1. If for some A, we have that $G^{\infty}_{A} \neq G^{\infty}_{\emptyset}$, then this holds for some countable A.

2. Existence of G^{∞} is absolute both ways:

(a) it does not depend on the monster model,

If for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded, then G^{∞} exists.

Explanation

 G_A^{∞} is the smallest A-invariant subgroup of G, of bounded index. If for every A, $G_A^{\infty} = G_{\emptyset}^{\infty}$, we call this group the ∞ -component of G, or G^{∞} .

Absoluteness of existence of G^{∞}

1. If for some A, we have that $G_A^{\infty} \neq G_{\emptyset}^{\infty}$, then this holds for some countable A.

- 2. Existence of G^{∞} is absolute both ways:
- (a) it does not depend on the monster model,
- (b) it does not depend on the set-theoretical universe.

In the theorem, a vague assumption of existence of a bounded orbit implies an absolute conclusion:

existence of G^{∞}

Theorem (A local, absolute version)

Assume M is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

Theorem (A local, absolute version)

Assume M is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

Theorem (A local, absolute version)

Assume *M* is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

Theorem (A local, absolute version)

Assume M is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

Theorem (A local, absolute version)

Assume M is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

Theorem (A local, absolute version)

Assume M is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

Theorem (A local, absolute version)

Assume M is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that causes G^{∞} exist).

What is the minimal such κ then ?

If G^{∞} exists by this reason, how far do we have to seek for the relevant κ ?

Theorem (A local, absolute version)

Assume M is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

Theorem (A local, absolute version)

Assume M is κ^+ -saturated, $p \in S(M)$ and $|Gp| < 2^{\kappa}$. Then G^{∞} exists.

Another Hanff number

$S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{ p \in S(\mathfrak{C}) : p \text{ is almost periodic} \}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$.

5. $WGen = \{ p \in S(\mathfrak{C}) : p \text{ is weakly generic} \}.$

Properties

1. APer is non-empty and dense in WGen.

$S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

A type p ∈ S(𝔅) is almost periodic if the sub-flow cl(Gp) is minimal.
APer = {p ∈ S(𝔅) : p is almost periodic}.
A set U ⊆ G is (left) weakly generic if for some non-generic V ⊆ G, the set U ∪ V is (left) generic.
A type p ∈ S(𝔅) is weakly generic if φ(G) is weakly generic for every formula φ ∈ p.
WGen = {p ∈ S(𝔅) : p is weakly generic}.

Properties

1. APer is non-empty and dense in WGen.

 $S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{p \in S(\mathfrak{C}) : p \text{ is almost periodic}\}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$.

5. $WGen = \{ p \in S(\mathfrak{C}) : p \text{ is weakly generic} \}.$

Properties

1. APer is non-empty and dense in WGen.

 $S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{p \in S(\mathfrak{C}) : p \text{ is almost periodic}\}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$.

5. $WGen = \{ p \in S(\mathfrak{C}) : p \text{ is weakly generic} \}.$

Properties

1. APer is non-empty and dense in WGen.

 $S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{p \in S(\mathfrak{C}) : p \text{ is almost periodic}\}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$. 5. $WGen = \{p \in S(\mathfrak{C}) : p \text{ is weakly generic}\}.$

Properties

1. APer is non-empty and dense in WGen.

 $S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{p \in S(\mathfrak{C}) : p \text{ is almost periodic}\}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$.

5. $WGen = \{ p \in S(\mathfrak{C}) : p \text{ is weakly generic} \}.$

Properties

1. APer is non-empty and dense in WGen.

 $S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{p \in S(\mathfrak{C}) : p \text{ is almost periodic}\}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$ the set $U \sqcup V$ is (left) generic

 $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$.

5. $WGen = \{ p \in S(\mathfrak{C}) : p \text{ is weakly generic} \}.$

Properties

1. APer is non-empty and dense in WGen.

 $S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{p \in S(\mathfrak{C}) : p \text{ is almost periodic}\}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$.

5. $WGen = \{ p \in S(\mathfrak{C}) : p \text{ is weakly generic} \}.$

Properties

1. APer is non-empty and dense in WGen.

 $S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{p \in S(\mathfrak{C}) : p \text{ is almost periodic}\}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$.

5. $WGen = \{ p \in S(\mathfrak{C}) : p \text{ is weakly generic} \}.$

Properties

1. APer is non-empty and dense in WGen.

 $S(\mathfrak{C})$ is a $G^{\mathfrak{C}}$ -flow, that is, $G^{\mathfrak{C}}$ acts on $S(\mathfrak{C})$ by homeomorphisms.

Definitions

1. A type $p \in S(\mathfrak{C})$ is almost periodic if the sub-flow cl(Gp) is minimal.

2. $APer = \{p \in S(\mathfrak{C}) : p \text{ is almost periodic}\}.$

3. A set $U \subseteq G$ is (left) weakly generic if for some non-generic $V \subseteq G$ the set $U \sqcup V$ is (left) generic

 $V \subseteq G$, the set $U \cup V$ is (left) generic.

4. A type $p \in S(\mathfrak{C})$ is weakly generic if $\varphi(G)$ is weakly generic for every formula $\varphi \in p$.

5. $WGen = \{ p \in S(\mathfrak{C}) : p \text{ is weakly generic} \}.$

Properties

1. APer is non-empty and dense in WGen.

Assume for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded. Then for some almost periodic type $q \in S(\mathfrak{C})$, the minimal flow cl(Gq) is bounded.

Proof.

Since Gp is bounded, also cl(Gp) is bounded.

 $|\operatorname{cl}(Gp)| \le 2^{2^{|Gp|}}$

Assume for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded. Then for some almost periodic type $q \in S(\mathfrak{C})$, the minimal flow cl(Gq) is bounded.

Proof.

Since Gp is bounded, also cl(Gp) is bounded.

 $|\operatorname{cl}(Gp)| \leq 2^{2^{|Gp|}}$

Assume for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded. Then for some almost periodic type $q \in S(\mathfrak{C})$, the minimal flow cl(Gq) is bounded.

Proof.

Since Gp is bounded, also cl(Gp) is bounded.

 $|\operatorname{cl}(Gp)| \le 2^{2^{|Gp|}}$

Assume for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded. Then for some almost periodic type $q \in S(\mathfrak{C})$, the minimal flow cl(Gq) is bounded.

Proof.

Since Gp is bounded, also cl(Gp) is bounded.

 $|\operatorname{cl}(Gp)| \leq 2^{2^{|Gp|}}$

Assume for some $p \in S(\mathfrak{C})$, the orbit Gp is bounded. Then for some almost periodic type $q \in S(\mathfrak{C})$, the minimal flow cl(Gq) is bounded.

Proof.

Since Gp is bounded, also cl(Gp) is bounded.

$$|\operatorname{cl}(\mathit{Gp})| \leq 2^{2^{|\mathit{Gp}|}}$$

Bounded WGen

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_{\varphi} b\iff \varphi(x,a) riangle \varphi(x,b)$ is not weakly generic

Since *WGen* is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded.Then $|WGen| \le 2^{2^{\aleph_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically.

2. The boundedness of WGen is absolute set-theoretically, too.
Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_{arphi}b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since *WGen* is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded.Then $|WGen| \le 2^{2^{\aleph_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically..

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_{arphi}b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since WGen is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded.Then $|WGen| \le 2^{2^{\aleph_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically.

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_arphi b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since *WGen* is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded.Then $|WGen| \le 2^{2^{\aleph_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically.

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

$a\sim_{arphi} b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since *WGen* is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded.Then $|WGen| \le 2^{2^{\aleph_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically..

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_{arphi} b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since WGen is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded.Then $|WGen| \le 2^{2^{N_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically.

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_{arphi} b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since WGen is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded.Then $|WGen| \le 2^{2^{N_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically..

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_{arphi} b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since WGen is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded. Then $|WGen| \le 2^{2^{\aleph_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically.

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_{arphi} b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since WGen is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded. Then $|WGen| \le 2^{2^{\aleph_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically.

Hence, if there is a bounded orbit in $S(\mathfrak{C})$, then there is a bounded orbit consisting of weakly generic types. Now consider the case, where *WGen* is bounded.

Definition

Let $\varphi(x, y)$ be a formula. Define an equivalence relation \sim_{φ} :

 $a\sim_{arphi} b\iff arphi(x,a) riangle arphi(x,b)$ is not weakly generic

Since WGen is bounded, \sim_{φ} is a bounded invariant equivalence relation, with $\leq 2^{\aleph_0}$ classes.

Absolute bound on WGen

1.Assume *WGen* is bounded.Then $|WGen| \le 2^{2^{\aleph_0}}$, and this does not depend on the monster model, i.e. it is absolute model-theoretically.

There is a (semi)-example, where *WGen* is bounded, of size $2^{2^{\aleph_0}}$.

Definition

Let $p \in WGen$. We say that p is countably stationary if for some countable $A \subset \mathfrak{C}$, p is the only weakly generic type extending $p \upharpoonright_A$.

_emma

Assume $|WGen| \le 2^{\aleph_0}$ and $2^{\aleph_0} < 2^{\aleph_1}$. Then there is a type $p \in WGen$, that is countably stationary.

Proof.

If not, build a tree of weakly generic types of height \aleph_1 , getting 2^{\aleph_1} -many of types in *WGen*.

There is a (semi)-example, where *WGen* is bounded, of size $2^{2^{\aleph_0}}$.

Definition

Let $p \in WGen$. We say that p is countably stationary if for some countable $A \subset \mathfrak{C}$, p is the only weakly generic type extending $p \upharpoonright_A$.

emma

Assume $|WGen| \le 2^{\aleph_0}$ and $2^{\aleph_0} < 2^{\aleph_1}$. Then there is a type $p \in WGen$, that is countably stationary.

Proof.

If not, build a tree of weakly generic types of height \aleph_1 , getting 2^{\aleph_1} -many of types in *WGen*.

There is a (semi)-example, where *WGen* is bounded, of size $2^{2^{\aleph_0}}$.

Definition

Let $p \in WGen$. We say that p is countably stationary if for some countable $A \subset \mathfrak{C}$, p is the only weakly generic type extending $p \upharpoonright_A$.

Lemma

Assume $|WGen| \le 2^{\aleph_0}$ and $2^{\aleph_0} < 2^{\aleph_1}$. Then there is a type $p \in WGen$, that is countably stationary.

Proof.

If not, build a tree of weakly generic types of height \aleph_1 , getting 2^{\aleph_1} -many of types in *WGen*.

There is a (semi)-example, where *WGen* is bounded, of size $2^{2^{\aleph_0}}$.

Definition

Let $p \in WGen$. We say that p is countably stationary if for some countable $A \subset \mathfrak{C}$, p is the only weakly generic type extending $p \upharpoonright_A$.

Lemma

Assume $|WGen| \le 2^{\aleph_0}$ and $2^{\aleph_0} < 2^{\aleph_1}$. Then there is a type $p \in WGen$, that is countably stationary.

Proof.

If not, build a tree of weakly generic types of height \aleph_1 , getting 2^{\aleph_1} -many of types in *WGen*.

We say that *WGen* is absolutely bounded by 2^{\aleph_0} if this bound persists in any forcing extension of the set-theoretical universe underlying our considerations.

Example

Assume T has NIP and G has fsg. Then WGen consists of generic types and is absolutely bounded by 2^{\aleph_0} .

Look into the papers on NIP and groups by Hrushovski, Pillay, Peterzil [HPP].

Theorem

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then there is a countably stationary type in WGen.

We say that *WGen* is absolutely bounded by 2^{\aleph_0} if this bound persists in any forcing extension of the set-theoretical universe underlying our considerations.

Example

Assume T has NIP and G has fsg. Then WGen consists of generic types and is absolutely bounded by 2^{\aleph_0} .

Look into the papers on NIP and groups by Hrushovski, Pillay, Peterzil [HPP].

Theorem

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then there is a countably stationary type in WGen.

We say that *WGen* is absolutely bounded by 2^{\aleph_0} if this bound persists in any forcing extension of the set-theoretical universe underlying our considerations.

Example

Assume T has NIP and G has fsg. Then WGen consists of generic types and is absolutely bounded by 2^{\aleph_0} .

Look into the papers on NIP and groups by Hrushovski, Pillay, Peterzil [HPP].

Theorem

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then there is a countably stationary type in WGen.

We say that *WGen* is absolutely bounded by 2^{\aleph_0} if this bound persists in any forcing extension of the set-theoretical universe underlying our considerations.

Example

Assume T has NIP and G has fsg. Then WGen consists of generic types and is absolutely bounded by 2^{\aleph_0} .

Look into the papers on NIP and groups by Hrushovski, Pillay, Peterzil [HPP].

Theorem

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then there is a countably stationary type in WGen.

< □ > < □ >

There is a countable weakly generic type $p = \{\varphi_n(x, a_n) : n < \omega\}$ that extends uniquely to a type in *WGen*.

The type p is determined by the tuple $\bar{a} = \langle a_n \rangle_{n < \omega}$ of the parameters and the function $f : \omega \to L$, mapping n to φ_{n} . Also just the type $q(\bar{y}) = \operatorname{tp}(\bar{a}) \in S_{\omega}(\emptyset)$ matters. So the conclusion says:

(*)($\exists q(\bar{y}), f$)(the type p determined by q and f is weakly generic and for every formula $\psi(x, b)$, at most one of $p \cup \{\psi(x, b)\}$, $p \cup \{\neg \psi(x, b)\}$ is weakly generic).

There is a countable weakly generic type $p = \{\varphi_n(x, a_n) : n < \omega\}$ that extends uniquely to a type in *WGen*.

The type p is determined by the tuple $\bar{a} = \langle a_n \rangle_{n < \omega}$ of the parameters and the function $f : \omega \to L$, mapping n to φ_{n} . Also just the type $q(\bar{y}) = \operatorname{tp}(\bar{a}) \in S_{\omega}(\emptyset)$ matters. So the conclusion says:

(*)($\exists q(\bar{y}), f$)(the type p determined by q and f is weakly generic and for every formula $\psi(x, b)$, at most one of $p \cup \{\psi(x, b)\}$, $p \cup \{\neg \psi(x, b)\}$ is weakly generic).

There is a countable weakly generic type $p = \{\varphi_n(x, a_n) : n < \omega\}$ that extends uniquely to a type in *WGen*.

The type p is determined by the tuple $\bar{a} = \langle a_n \rangle_{n < \omega}$ of the parameters and the function $f : \omega \to L$, mapping n to φ_n . Also just the type $q(\bar{y}) = \operatorname{tp}(\bar{a}) \in S_{\omega}(\emptyset)$ matters. So the conclusion says:

(*)($\exists q(\bar{y}), f$)(the type p determined by q and f is weakly generic and for every formula $\psi(x, b)$, at most one of $p \cup \{\psi(x, b)\}$, $p \cup \{\neg \psi(x, b)\}$ is weakly generic).

There is a countable weakly generic type $p = \{\varphi_n(x, a_n) : n < \omega\}$ that extends uniquely to a type in *WGen*.

The type p is determined by the tuple $\bar{a} = \langle a_n \rangle_{n < \omega}$ of the parameters and the function $f : \omega \to L$, mapping n to φ_n . Also just the type $q(\bar{y}) = \operatorname{tp}(\bar{a}) \in S_{\omega}(\emptyset)$ matters. So the conclusion says:

(*)($\exists q(\bar{y}), f$)(the type p determined by q and f is weakly generic and for every formula $\psi(x, b)$, at most one of $p \cup \{\psi(x, b)\}$, $p \cup \{\neg \psi(x, b)\}$ is weakly generic).

There is a countable weakly generic type $p = \{\varphi_n(x, a_n) : n < \omega\}$ that extends uniquely to a type in *WGen*.

The type p is determined by the tuple $\bar{a} = \langle a_n \rangle_{n < \omega}$ of the parameters and the function $f : \omega \to L$, mapping n to φ_n . Also just the type $q(\bar{y}) = \operatorname{tp}(\bar{a}) \in S_{\omega}(\emptyset)$ matters. So the conclusion says:

(*)($\exists q(\bar{y}), f$)(the type p determined by q and f is weakly generic and for every formula $\psi(x, b)$, at most one of $p \cup \{\psi(x, b)\}$, $p \cup \{\neg \psi(x, b)\}$ is weakly generic).

There is a countable weakly generic type $p = \{\varphi_n(x, a_n) : n < \omega\}$ that extends uniquely to a type in *WGen*.

The type p is determined by the tuple $\bar{a} = \langle a_n \rangle_{n < \omega}$ of the parameters and the function $f : \omega \to L$, mapping n to φ_n . Also just the type $q(\bar{y}) = \operatorname{tp}(\bar{a}) \in S_{\omega}(\emptyset)$ matters. So the conclusion says:

 $(*)(\exists q(\bar{y}), f)$ (the type p determined by q and f is weakly generic and for every formula $\psi(x, b)$, at most one of $p \cup \{\psi(x, b)\}$, $p \cup \{\neg \psi(x, b)\}$ is weakly generic).

There is a countable weakly generic type $p = \{\varphi_n(x, a_n) : n < \omega\}$ that extends uniquely to a type in *WGen*.

The type p is determined by the tuple $\bar{a} = \langle a_n \rangle_{n < \omega}$ of the parameters and the function $f : \omega \to L$, mapping n to φ_n . Also just the type $q(\bar{y}) = \operatorname{tp}(\bar{a}) \in S_{\omega}(\emptyset)$ matters. So the conclusion says:

 $(*)(\exists q(\bar{y}), f)$ (the type p determined by q and f is weakly generic and for every formula $\psi(x, b)$, at most one of $p \cup \{\psi(x, b)\}$, $p \cup \{\neg \psi(x, b)\}$ is weakly generic).

By Shoenfield absoluteness lemma, (*) is absolute between various models of *ZFC*.

In our situation we can extend the set-theoretical universe V (by means of forcing) to a universe V', where $2^{\aleph_0} < 2^{\aleph_1}$ holds. By the lemma, in V' (*) holds. By absoluteness, (*) holds also in V. By Shoenfield absoluteness lemma, (*) is absolute between various models of ZFC. In our situation we can extend the set-theoretical universe V (by means of forcing) to a universe V', where $2^{\aleph_0} < 2^{\aleph_1}$ holds. By the lemma, in V' (*) holds. By absoluteness, (*) holds also in V. By Shoenfield absoluteness lemma, (*) is absolute between various models of ZFC. In our situation we can extend the set-theoretical universe V (by means of forcing) to a universe V', where $2^{\aleph_0} < 2^{\aleph_1}$ holds. By the lemma, in V' (*) holds. By absoluteness, (*) holds also in V.

Assume *T* has *NIP* and *G* has *fsg*. Then there is a countably stationary weak generic type in *WGen*.

Example

Consider the group S^1 in an o-minimal expansion of the reals. Here every type in *WGen* is generic and countably stationary. But *WGen* is not a Polish space here, so we can not find a common countable set A such that A separates the types in *WGen*.

Assume T has NIP and G has fsg. Then there is a countably stationary weak generic type in WGen.

Example

Consider the group S^1 in an o-minimal expansion of the reals. Here every type in *WGen* is generic and countably stationary. But *WGen* is not a Polish space here, so we can not find a common countable set *A* such that *A* separates the types in *WGen*.

Assume T has NIP and G has fsg. Then there is a countably stationary weak generic type in WGen.

Example

Consider the group S^1 in an o-minimal expansion of the reals. Here every type in *WGen* is generic and countably stationary. But *WGen* is not a Polish space here, so we can not find a common countable set A such that A separates the types in *WGen*

Assume T has NIP and G has fsg. Then there is a countably stationary weak generic type in WGen.

Example

Consider the group S^1 in an o-minimal expansion of the reals. Here every type in *WGen* is generic and countably stationary. But *WGen* is not a Polish space here, so we can not find a common countable set A such that A separates the types in *WGen*.

Assume WGen is bounded. Then $G^{\infty} = G^{00} = \text{Stab}(p)$ for any $p \in WGen$.

Assume WGen is bounded. Then $G^{\infty} = G^{00} = \text{Stab}(p)$ for any $p \in WGen$.

Assume WGen is bounded. Then $G^{\infty} = G^{00} = \text{Stab}(p)$ for any $p \in WGen$.

Assume WGen is bounded. Then $G^{\infty} = G^{00} = \text{Stab}(p)$ for any $p \in WGen$.

Bounded WGen and measure

Fix a type $p \in WGen$.

Lifting Haar measure to Keisler measure

1.Let $U \subseteq_{\mathsf{def}} \mathfrak{C}$. Let $\varphi(U)$ be the set

 $\{g/G^{00}: U \text{ belongs to the unique type in } Gp \text{ in the coset } g/G^{00}\}$

2. Let $Mes(\mathfrak{C}) = \{ U \subseteq_{def} (\mathfrak{C}) : \varphi(U) \text{ is measurable} \}$. This is an algebra of sets.

3. For $U \in Mes(\mathfrak{C})$ let $\nu(U) = \mu(\varphi(U))$.

4. ν is a finitely additive left invariant measure on $Mes(\mathfrak{C})$.

Theorem

Assume $p \in WGen$ is countably stationary. Then $Mes(\mathfrak{C})$ consists of all definable sets. In particular, on G there is a left-invariant Keisler measure.
Fix a type $p \in WGen$.

Lifting Haar measure to Keisler measure

1.Let $U \subseteq_{\mathsf{def}} \mathfrak{C}$. Let $\varphi(U)$ be the set

 $\{g/G^{00}: U \text{ belongs to the unique type in } Gp \text{ in the coset } g/G^{00}\}$

2. Let $Mes(\mathfrak{C}) = \{ U \subseteq_{def} (\mathfrak{C}) : \varphi(U) \text{ is measurable} \}$. This is an algebra of sets.

3. For $U \in Mes(\mathfrak{C})$ let $\nu(U) = \mu(\varphi(U))$.

4. ν is a finitely additive left invariant measure on $Mes(\mathfrak{C})$.

Theorem

Fix a type $p \in WGen$.

Lifting Haar measure to Keisler measure

1.Let $U \subseteq_{\mathsf{def}} \mathfrak{C}$. Let $\varphi(U)$ be the set

 $\{g/G^{00}: U \text{ belongs to the unique type in } Gp \text{ in the coset } g/G^{00}\}$

2. Let $Mes(\mathfrak{C}) = \{ U \subseteq_{def} (\mathfrak{C}) : \varphi(U) \text{ is measurable} \}$. This is an algebra of sets.

3. For $U \in Mes(\mathfrak{C})$ let $\nu(U) = \mu(\varphi(U))$.

4. ν is a finitely additive left invariant measure on $Mes(\mathfrak{C})$.

Theorem

Fix a type $p \in WGen$.

Lifting Haar measure to Keisler measure

1.Let $U \subseteq_{\mathsf{def}} \mathfrak{C}$. Let $\varphi(U)$ be the set

 $\{g/G^{00}: U \text{ belongs to the unique type in } Gp \text{ in the coset } g/G^{00}\}$

2. Let $Mes(\mathfrak{C}) = \{ U \subseteq_{def} (\mathfrak{C}) : \varphi(U) \text{ is measurable} \}$. This is an algebra of sets.

3. For $U \in Mes(\mathfrak{C})$ let $\nu(U) = \mu(\varphi(U))$.

4. ν is a finitely additive left invariant measure on $Mes(\mathfrak{C})$.

Theorem

Fix a type $p \in WGen$.

Lifting Haar measure to Keisler measure

1.Let $U \subseteq_{\mathsf{def}} \mathfrak{C}$. Let $\varphi(U)$ be the set

 $\{g/G^{00}: U \text{ belongs to the unique type in } Gp \text{ in the coset } g/G^{00}\}$

2. Let $Mes(\mathfrak{C}) = \{ U \subseteq_{def} (\mathfrak{C}) : \varphi(U) \text{ is measurable} \}$. This is an algebra of sets.

3. For $U \in Mes(\mathfrak{C})$ let $\nu(U) = \mu(\varphi(U))$.

4. ν is a finitely additive left invariant measure on $Mes(\mathfrak{C})$.

Theorem

Fix a type $p \in WGen$.

Lifting Haar measure to Keisler measure

1.Let $U \subseteq_{\mathsf{def}} \mathfrak{C}$. Let $\varphi(U)$ be the set

 $\{g/G^{00}: U \text{ belongs to the unique type in } Gp \text{ in the coset } g/G^{00}\}$

2. Let $Mes(\mathfrak{C}) = \{ U \subseteq_{def} (\mathfrak{C}) : \varphi(U) \text{ is measurable} \}$. This is an algebra of sets.

3. For $U \in Mes(\mathfrak{C})$ let $\nu(U) = \mu(\varphi(U))$.

4. ν is a finitely additive left invariant measure on $Mes(\mathfrak{C})$.

Theorem

Fix a type $p \in WGen$.

Lifting Haar measure to Keisler measure

1.Let $U \subseteq_{\mathsf{def}} \mathfrak{C}$. Let $\varphi(U)$ be the set

 $\{g/G^{00}: U \text{ belongs to the unique type in } Gp \text{ in the coset } g/G^{00}\}$

2. Let $Mes(\mathfrak{C}) = \{ U \subseteq_{def} (\mathfrak{C}) : \varphi(U) \text{ is measurable} \}$. This is an algebra of sets.

3. For
$$U \in Mes(\mathfrak{C})$$
 let $\nu(U) = \mu(\varphi(U))$.

4. ν is a finitely additive left invariant measure on $Mes(\mathfrak{C})$.

Theorem

Fix a type $p \in WGen$.

Lifting Haar measure to Keisler measure

1.Let $U \subseteq_{\mathsf{def}} \mathfrak{C}$. Let $\varphi(U)$ be the set

 $\{g/G^{00}: U \text{ belongs to the unique type in } Gp \text{ in the coset } g/G^{00}\}$

- 2. Let $Mes(\mathfrak{C}) = \{ U \subseteq_{def} (\mathfrak{C}) : \varphi(U) \text{ is measurable} \}$. This is an algebra of sets.
- 3. For $U \in Mes(\mathfrak{C})$ let $\nu(U) = \mu(\varphi(U))$.
- 4. ν is a finitely additive left invariant measure on $Mes(\mathfrak{C})$.

Theorem

Assume $p \in WGen$ is countably stationary. Then $Mes(\mathfrak{C})$ consists of all definable sets. In particular, on G there is a left-invariant Keisler measure.

Image: A image: A

Using countable stationarity of p one shows that for every $U \subseteq_{def} \mathfrak{C}$, the set $\varphi(U)$ is analytic (that is, Σ_1^1).

Analytic sets are measurable with respect to Haar measure in a Polish group.

Corollary

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then G is definably amenable.

This corollary applies in particular to groups with fsg, under *NIP*-assumption.

In this special case Hrushovski and Pillay proved moreover uniqueness of left invariant Keisler measure.

Using countable stationarity of p one shows that for every $U \subseteq_{def} \mathfrak{C}$, the set $\varphi(U)$ is analytic (that is, Σ_1^1). Analytic sets are measurable with respect to Haar measure in a Polish group.

Corollary

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then G is definably amenable.

This corollary applies in particular to groups with fsg, under *NIP*-assumption.

In this special case Hrushovski and Pillay proved moreover uniqueness of left invariant Keisler measure.

Using countable stationarity of p one shows that for every $U \subseteq_{def} \mathfrak{C}$, the set $\varphi(U)$ is analytic (that is, Σ_1^1). Analytic sets are measurable with respect to Haar measure in a Polish group.

Corollary

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then G is definably amenable.

This corollary applies in particular to groups with fsg, under *NIP*-assumption.

In this special case Hrushovski and Pillay proved moreover uniqueness of left invariant Keisler measure.

Using countable stationarity of p one shows that for every $U \subseteq_{def} \mathfrak{C}$, the set $\varphi(U)$ is analytic (that is, Σ_1^1). Analytic sets are measurable with respect to Haar measure in a Polish group.

Corollary

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then G is definably amenable.

This corollary applies in particular to groups with fsg, under *NIP*-assumption.

In this special case Hrushovski and Pillay proved moreover uniqueness of left invariant Keisler measure. In general we obviously do not have uniqueness.

Using countable stationarity of p one shows that for every $U \subseteq_{def} \mathfrak{C}$, the set $\varphi(U)$ is analytic (that is, Σ_1^1). Analytic sets are measurable with respect to Haar measure in a Polish group.

Corollary

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then G is definably amenable.

This corollary applies in particular to groups with fsg, under *NIP*-assumption.

In this special case Hrushovski and Pillay proved moreover uniqueness of left invariant Keisler measure.

Using countable stationarity of p one shows that for every $U \subseteq_{def} \mathfrak{C}$, the set $\varphi(U)$ is analytic (that is, Σ_1^1). Analytic sets are measurable with respect to Haar measure in a Polish group.

Corollary

Assume WGen is absolutely bounded by 2^{\aleph_0} . Then G is definably amenable.

This corollary applies in particular to groups with fsg, under *NIP*-assumption.

In this special case Hrushovski and Pillay proved moreover uniqueness of left invariant Keisler measure.

In the additive group of the reals we have exactly two left-invariant Keisler measures, corresponding to the two weak generic types there.

We proved the conjecture of Petrykowski under a stronger assumption that not only is there a bounded orbit, but that the set *WGen* is absolutely bounded by 2^{\aleph_0} . The conjecture is open.

Further research:

- Model-theoretic absoluteness of Ellis semigroup.
- Relations between the subgroups of the Ellis semigroup and the group G/G^{00} .

In the additive group of the reals we have exactly two left-invariant Keisler measures, corresponding to the two weak generic types there.

We proved the conjecture of Petrykowski under a stronger assumption that not only is there a bounded orbit, but that the set *WGen* is absolutely bounded by 2^{\aleph_0} . The conjecture is open.

Further research:

- Model-theoretic absoluteness of Ellis semigroup.
- Relations between the subgroups of the Ellis semigroup and the group G/G^{00} .

In the additive group of the reals we have exactly two left-invariant Keisler measures, corresponding to the two weak generic types there.

We proved the conjecture of Petrykowski under a stronger assumption that not only is there a bounded orbit, but that the set *WGen* is absolutely bounded by 2^{\aleph_0} . The conjecture is open.

Further research:

- Model-theoretic absoluteness of Ellis semigroup.
- Relations between the subgroups of the Ellis semigroup and the group G/G^{00} .

In the additive group of the reals we have exactly two left-invariant Keisler measures, corresponding to the two weak generic types there.

We proved the conjecture of Petrykowski under a stronger assumption that not only is there a bounded orbit, but that the set *WGen* is absolutely bounded by 2^{\aleph_0} . The conjecture is open.

Further research:

- Model-theoretic absoluteness of Ellis semigroup.
- Relations between the subgroups of the Ellis semigroup and the group G/G^{00} .