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Set-up

T is a countable complete theory
M is a model of T
G is a group definable in M
for simplicity: G = M.
G acts on S(M), by left translation:
for g ∈ G , p ∈ S(M)

g · p = {ϕ(g−1x) : ϕ(x) ∈ p}

We work in a monster model C

So:
GC acts on S(C).
Often we skip C in GC.
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Motivating conjecture

A conjecture of Marcin Petrykowski

If there is a bounded G -orbit in S(C), then G is definably
amenable.

Explanation

Definably amenable means there is a left-invariant measure on the
family of definable subsets of G (a left-invariant Keisler measure).
Bounded means of cardinality much smaller than ‖C‖.
Is it really an explanation ?
What does bounded exactly mean ?
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Bounded orbit

Assume p ∈ S(C) and Gp has bounded size.
Let Gp = {pα : α < κ}, p = p0.
Choose a small M ≺ C such that all the types pα �M , α < κ are
distinct.
Let qα = pα �M∈ S(M), α < κ.
So every qα extends uniquely to a type in the orbit Gp.
We may also assume GM · q0 = {qα : α < κ}.
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Upside down

Now assume q = q0 ∈ S(M) and GMq = {qα : α < κ}

Question

Does there exist p ∈ S(C) extending q0 such that every type qα
extends uniquely to a type in Gp and also every type in Gp extends
some qα ?

(In particular, such a Gp would be a bounded orbit...) Call a type
p as above good.

Bad type

Call a partial type r(x) = r(x , ā) of size κ, consistent with q0, bad
if for some g ∈ G the set

gr ∧
∨

0<α<κ

[qα]

is contradictory and also the set gr ∧ r is contradictory.
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Upside down

Whether a given type r(x , ā) is bad, depends only on tp(ā/M).

A type p ∈ S(C) containing q0 is good iff p contains no bad type.

Hence:

A good type exists iff in S(C)

(∗)
⋂

bad r

⋃
ϕ∈r

[¬ϕ] 6= ∅
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Absoluteness issue

Given q and M as above, we can ask if there is a bounded orbit in
S(C) related to q as in the question.
Does the answer not depend on C ?
Assume C′ � C and (∗) holds in C. Does (∗) hold in C′ ?
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A (simplified) generalized set-up

Assume Φ = {ϕn(x , y) : n < ω} and s(y) is a type over ∅.
For A ⊆ C let

X (A) =
⋂

a∈s(A)

⋃
n<ω

[ϕn(x , a)] ⊆ S(C)

In fact, ⊆ S(A).

Questions

1. Suppose X (C) 6= ∅ and C′ � C. Is X (C′) 6= ∅ ?
2. Suppose X (C) = ∅. What is the minimal κ = κ(Φ) such that
for some A ⊆ C of power κ, X (A) = ∅ ?

Let µ = sup{κ(Φ) : Φ,T countable}.
What is µ ?
What is the Hanff number for existence of bounded orbits ?
How large should a monster model C be ?
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A partial result on the motivating conjecture

Theorem (M.Petrykowski)

If for some p ∈ S(C), the orbit Gp is bounded, then G∞ exists.

Explanation

G∞A is the smallest A-invariant subgroup of G , of bounded index.
If for every A, G∞A = G∞∅ , we call this group the ∞-component of
G , or G∞.

Absoluteness of existence of G∞

1. If for some A, we have that G∞A 6= G∞∅ , then this holds for some
countable A.
2. Existence of G∞ is absolute both ways:
(a) it does not depend on the monster model,
(b) it does not depend on the set-theoretical universe.
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A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



A local version

In the theorem, a vague assumption of existence of a bounded
orbit implies an absolute conclusion:
existence of G∞.

Theorem (A local, absolute version)

Assume M is κ+-saturated, p ∈ S(M) and |Gp| < 2κ. Then G∞

exists.

Another Hanff number

Assume the assumption of the theorem holds for some κ (that
causes G∞ exist).
What is the minimal such κ then ?
If G∞ exists by this reason, how far do we have to seek for the
relevant κ ?

Newelski Bounded orbits



Some topological dynamics

S(C) is a GC-flow, that is, GC acts on S(C) by homeomorphisms.

Definitions

1. A type p ∈ S(C) is almost periodic if the sub-flow cl(Gp) is
minimal.
2. APer = {p ∈ S(C) : p is almost periodic}.
3. A set U ⊆ G is (left) weakly generic if for some non-generic
V ⊆ G , the set U ∪ V is (left) generic.
4. A type p ∈ S(C) is weakly generic if ϕ(G ) is weakly generic for
every formula ϕ ∈ p.
5. WGen = {p ∈ S(C) : p is weakly generic}.

Properties

1. APer is non-empty and dense in WGen.
2. If a generic type exists, then every weakly generic type is
generic.
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Bounded orbits again

Bounded minimal flow

Assume for some p ∈ S(C), the orbit Gp is bounded. Then for
some almost periodic type q ∈ S(C), the minimal flow cl(Gq) is
bounded.

Proof.

Since Gp is bounded, also cl(Gp) is bounded.

| cl(Gp)| ≤ 22|Gp|

But cl(Gp) is a sub-flow, hence it contains a minimal sub-flow,
that is bounded, too.
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Bounded WGen

Hence, if there is a bounded orbit in S(C), then there is a bounded
orbit consisting of weakly generic types. Now consider the case,
where WGen is bounded.

Definition

Let ϕ(x , y) be a formula.Define an equivalence relation ∼ϕ:

a ∼ϕ b ⇐⇒ ϕ(x , a)4ϕ(x , b) is not weakly generic

Since WGen is bounded, ∼ϕ is a bounded invariant equivalence
relation, with ≤ 2ℵ0 classes.

Absolute bound on WGen

1.Assume WGen is bounded.Then |WGen| ≤ 22ℵ0 , and this does
not depend on the monster model, i.e. it is absolute
model-theoretically..
2. The boundedness of WGen is absolute set-theoretically, too.
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The case of very bounded WGen

Example

There is a (semi)-example, where WGen is bounded, of size 22ℵ0 .

Definition

Let p ∈WGen. We say that p is countably stationary if for some
countable A ⊂ C, p is the only weakly generic type extending p �A.

Lemma

Assume |WGen| ≤ 2ℵ0 and 2ℵ0 < 2ℵ1 . Then there is a type
p ∈WGen, that is countably stationary.

Proof.

If not, build a tree of weakly generic types of height ℵ1, getting
2ℵ1-many of types in WGen.

Newelski Bounded orbits



The case of very bounded WGen

Example

There is a (semi)-example, where WGen is bounded, of size 22ℵ0 .

Definition

Let p ∈WGen. We say that p is countably stationary if for some
countable A ⊂ C, p is the only weakly generic type extending p �A.

Lemma

Assume |WGen| ≤ 2ℵ0 and 2ℵ0 < 2ℵ1 . Then there is a type
p ∈WGen, that is countably stationary.

Proof.

If not, build a tree of weakly generic types of height ℵ1, getting
2ℵ1-many of types in WGen.

Newelski Bounded orbits



The case of very bounded WGen

Example

There is a (semi)-example, where WGen is bounded, of size 22ℵ0 .

Definition

Let p ∈WGen. We say that p is countably stationary if for some
countable A ⊂ C, p is the only weakly generic type extending p �A.

Lemma

Assume |WGen| ≤ 2ℵ0 and 2ℵ0 < 2ℵ1 . Then there is a type
p ∈WGen, that is countably stationary.

Proof.

If not, build a tree of weakly generic types of height ℵ1, getting
2ℵ1-many of types in WGen.

Newelski Bounded orbits



The case of very bounded WGen

Example

There is a (semi)-example, where WGen is bounded, of size 22ℵ0 .

Definition

Let p ∈WGen. We say that p is countably stationary if for some
countable A ⊂ C, p is the only weakly generic type extending p �A.

Lemma

Assume |WGen| ≤ 2ℵ0 and 2ℵ0 < 2ℵ1 . Then there is a type
p ∈WGen, that is countably stationary.

Proof.

If not, build a tree of weakly generic types of height ℵ1, getting
2ℵ1-many of types in WGen.

Newelski Bounded orbits



The case of absolutely very bounded WGen

Definition

We say that WGen is absolutely bounded by 2ℵ0 if this bound
persists in any forcing extension of the set-theoretical universe
underlying our considerations.

Example

Assume T has NIP and G has fsg. Then WGen consists of generic
types and is absolutely bounded by 2ℵ0 .

Look into the papers on NIP and groups by Hrushovski, Pillay,
Peterzil [HPP].

Theorem

Assume WGen is absolutely bounded by 2ℵ0 . Then there is a
countably stationary type in WGen.
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Proof

The conclusion of the theorem says that

There is a countable weakly generic type p = {ϕn(x , an) : n < ω}
that extends uniquely to a type in WGen.

The type p is determined by the tuple ā = 〈an〉n<ω of the
parameters and the function f : ω → L, mapping n to ϕn.. Also
just the type q(ȳ) = tp(ā) ∈ Sω(∅) matters. So the conclusion
says:

(∗)(∃q(ȳ), f )( the type p determined by q and f is weakly generic
and for every formula ψ(x , b), at most one of p ∪ {ψ(x , b)},
p ∪ {¬ψ(x , b)} is weakly generic).

The fact, that ϕ(x , a) is weak generic is a Borel property of tp(a)
(more exactly: Fσ), hence (∗) is a Σ1

2-sentence of a Polish space.
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parameters and the function f : ω → L, mapping n to ϕn.. Also
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parameters and the function f : ω → L, mapping n to ϕn.. Also
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Proof concluded

By Shoenfield absoluteness lemma, (∗) is absolute between various
models of ZFC .
In our situation we can extend the set-theoretical universe V (by
means of forcing) to a universe V ′, where 2ℵ0 < 2ℵ1 holds.
By the lemma, in V ′ (∗) holds. By absoluteness, (∗) holds also in
V .
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Corollary and example

Corollary

Assume T has NIP and G has fsg . Then there is a countably
stationary weak generic type in WGen.

Example

Consider the group S1 in an o-minimal expansion of the reals.
Here every type in WGen is generic and countably stationary.
But WGen is not a Polish space here, so we can not find a
common countable set A such that A separates the types in WGen.

Newelski Bounded orbits



Corollary and example

Corollary

Assume T has NIP and G has fsg . Then there is a countably
stationary weak generic type in WGen.

Example

Consider the group S1 in an o-minimal expansion of the reals.
Here every type in WGen is generic and countably stationary.
But WGen is not a Polish space here, so we can not find a
common countable set A such that A separates the types in WGen.

Newelski Bounded orbits



Corollary and example

Corollary

Assume T has NIP and G has fsg . Then there is a countably
stationary weak generic type in WGen.

Example

Consider the group S1 in an o-minimal expansion of the reals.
Here every type in WGen is generic and countably stationary.
But WGen is not a Polish space here, so we can not find a
common countable set A such that A separates the types in WGen.

Newelski Bounded orbits



Corollary and example

Corollary

Assume T has NIP and G has fsg . Then there is a countably
stationary weak generic type in WGen.

Example

Consider the group S1 in an o-minimal expansion of the reals.
Here every type in WGen is generic and countably stationary.
But WGen is not a Polish space here, so we can not find a
common countable set A such that A separates the types in WGen.

Newelski Bounded orbits



Bounded WGen and measure

Lemma

Assume WGen is bounded. Then G∞ = G 00 = Stab(p) for any
p ∈WGen.

1. G/G 00 is a compact topological group (with logic topology),
with Haar measure µ, also it is a Polish space.
2. Let p ∈WGen. There is a bijection Gp ↔ G/G 00. Every coset
of G 00 contains exactly one type from Gp.
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Bounded WGen and measure

Fix a type p ∈WGen.

Lifting Haar measure to Keisler measure

1.Let U ⊆def C. Let ϕ(U) be the set

{g/G 00 : U belongs to the unique type in Gp in the coset g/G 00}

2. Let Mes(C) = {U ⊆def (C) : ϕ(U) is measurable}. This is an
algebra of sets.
3. For U ∈ Mes(C) let ν(U) = µ(ϕ(U)).
4. ν is a finitely additive left invariant measure on Mes(C).

Theorem

Assume p ∈WGen is countably stationary. Then Mes(C) consists
of all definable sets. In particular, on G there is a left-invariant
Keisler measure.
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Definably amenable groups

Proof.

Using countable stationarity of p one shows that for every
U ⊆def C, the set ϕ(U) is analytic (that is, Σ1

1).
Analytic sets are measurable with respect to Haar measure in a
Polish group.

Corollary

Assume WGen is absolutely bounded by 2ℵ0 . Then G is definably
amenable.

This corollary applies in particular to groups with fsg, under
NIP-assumption.
In this special case Hrushovski and Pillay proved moreover
uniqueness of left invariant Keisler measure.
In general we obviously do not have uniqueness.
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Final comments

Example

In the additive group of the reals we have exactly two left-invariant
Keisler measures, corresponding to the two weak generic types
there.

We proved the conjecture of Petrykowski under a stronger
assumption that not only is there a bounded orbit, but that the set
WGen is absolutely bounded by 2ℵ0 . The conjecture is open.

Further research:

Model-theoretic absoluteness of Ellis semigroup.

Relations between the subgroups of the Ellis semigroup and
the group G/G 00.

There are some preliminary results here.
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