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Groups acting on trees

o A simplicial tree is a connected graph without circuits.

@ A group G acts on a simplicial tree T if it acts by
automorphisms on T.

@ A real tree X is a geodesic metric space such that any two
points are joined by an unique arc. This equivalent to saying
that X is a 0-hyperbolic geodesic space.

@ A group G acts on a real tree if it acts by isometries.
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Groups acting on trees

Definition (Classification of elements)

Let G be a group acting on a simplicial or a real tree T.

@ An element g is said an inversion if ge = € for some edge e
(when T is simplicial).

@ An element g is said elliptic if gx = x for some x of T.

@ An element g is said hyperbolic if it is neither an inversion nor
elliptic.

@ A group G acts freely if every nontrivial element of G is
hyperbolic.
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Theorem 1 (Sela)
A free group is stable. [

Reformulation:A group acting freely on a simplicial tree is stable.

Remark. A superstable group acting freely on a real (or simplicial)
tree is abelian.
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Definition

The action of G is trivial if there is no hyperbolic elements. O

What can be said about the model theory of groups acting
nontrivially on simplicial trees? Is it possible for such groups to be
w-stable or superstable?
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Theorem 2 (Bass-Serre)

A group acts without inversions and nontrivially on a simplicial
tree if and only if either G splits as a free product with
amalgamation or G has an infinite cyclic quotient. Ol
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What about the superstability of free products?

Theorem 3 (Poizat, 1983)

A nontrivial free product Gy * Gy is superstable if and only if
G1 = Gy = Z». L]
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Theorem 4

An action of an w-stable group on a simplical tree is trivial. [

Using Bass-Serre theorem:

A free product with amalgamtion or an HNN-extension is not
w-stable. n
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Examples:

@ Z is superstable and acts freely on a simplicial tree.

o If G is superstable then G @ Z is superstable and acts
nontrivially on a simplicial tree.

e If G is superstable then G @ (Z; x Z3) is superstable and acts
nontrivially on a simplicial tree. Moreover
Go (Zg *Zg) = (G @Zg) *G (G @Zz).
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Classifications of actions

Let A=7Z or AN=R. Let G be a group acting on a A-tree T. We
suppose that if T is simplicial then the action is without
inversions.

Definition

@ The hyperbolic lenght function is defined by:
U(g) = inf{d(x,gx)|x € T}.

o (Fact) g is hyperbolic if and only if ¢(g) > 0.




Classifications of actions



Classifications of actions

One of the following cases holds:



Classifications of actions

One of the following cases holds:

(1)(Abelian actions) the hyperbolic length function is given by
U(g) = |p(g)| for g € G, where p: G — A is a homomorphism.



Classifications of actions

One of the following cases holds:

(1)(Abelian actions) the hyperbolic length function is given by
U(g) = |p(g)| for g € G, where p: G — A is a homomorphism.

(2)(Dihedral actions) the hyperbolic length function is given by
U(g) =|p(g)| for g € G, where p: G — Isom(A) is a
homomorphism whose image contains a reflection and a nontrivial
translation, and the absolute value signs denote hyperbolic length
for the action of Isom(A).



Classifications of actions

One of the following cases holds:

(1)(Abelian actions) the hyperbolic length function is given by
U(g) = |p(g)| for g € G, where p: G — A is a homomorphism.

(2)(Dihedral actions) the hyperbolic length function is given by
U(g) =|p(g)| for g € G, where p: G — Isom(A) is a
homomorphism whose image contains a reflection and a nontrivial
translation, and the absolute value signs denote hyperbolic length
for the action of Isom(A).

(3)(Irreducible actions) G contains a free subgroup of rank 2 which
acts freely, without inversions and properly discontinuously on T.
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Superstable groups

Theorem 5

Let G be a superstable group acting nontrivially on a N-tree, where
N=7Z orN=R. If G is a-connected and \ = Z, or if the action is
irreducible, then G interprets a simple group having a nontrivial

action on a N-tree. []

Corollary 2

| \

If G is superstable and splits as G = Gy %4 Gy, with the index of A
in Gy different from 2, then G interprets a simple superstable non
w-stable group acting nontrivially on a simplicial tree. [
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Definition

Let G be a group and B be a family of definable subgroups of G.
We say that B is a Borel family, if for any B € B, Ng(B)/B is
finite and B is generous, for any g € G, B8 € B, and any two
elements of BB are conjugate to each other.
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Theorem 6

Let G be a superstable group of finite Lascar rank acting
nontrivially on a N-tree where N = 7Z or A = R. Suppose that, if
H is a definable subgroup such that U(H) < U(G), and having a
nontrivial action on a A-tree, then H is nilpotent-by-finite. Then
there are definable subgroups Hy <t H, <t G such that H, is of finite
index in G, and one of the following cases holds:

(1) Hi is connected, any action of Hy on a A-tree is trivial, Hy/H;
is soluble and has a nontrivial action on a N\-tree.

(2) Ha2/Hi is simple and acts nontrivially on a A-tree, H,/H; has
a Borel family of equationally-definable nilpotent subgoups such
that there exists m € N such that for every hyperbolic element g in
Hp/Hs, there is 1 < n < m, such that g" is in some B € B. If

N =7 then Hy/H; = G x4 Gy with the biindex of A is 2 in both
Gl and GQ.




