Superstable groups acting on trees

Abderezak Ould Houcine

Camille Jordan Institute, University Lyon 1, France

Modnet Bercelona Conference, November 4, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(ロ) (部) (注) (注) (三) (の)

• A simplicial tree is a connected graph without circuits.

• A simplicial tree is a connected graph without circuits.

(日) (四) (문) (문) (문) (문)

• A group *G* acts on a simplicial tree *T* if it acts by automorphisms on *T*.

- A simplicial tree is a connected graph without circuits.
- A group *G* acts on a simplicial tree *T* if it acts by automorphisms on *T*.
- A real tree X is a geodesic metric space such that any two points are joined by an unique arc.

< □ > < @ > < 注 > < 注 > ... 注

- A simplicial tree is a connected graph without circuits.
- A group *G* acts on a simplicial tree *T* if it acts by automorphisms on *T*.
- A *real tree* X is a geodesic metric space such that any two points are joined by an unique arc. This equivalent to saying that X is a 0-hyperbolic geodesic space.

- A simplicial tree is a connected graph without circuits.
- A group *G* acts on a simplicial tree *T* if it acts by automorphisms on *T*.
- A real tree X is a geodesic metric space such that any two points are joined by an unique arc. This equivalent to saying that X is a 0-hyperbolic geodesic space.

• A group *G* acts on a real tree if it acts by isometries.

Let G be a group acting on a simplicial or a real tree T.

Let G be a group acting on a simplicial or a real tree T.

 An element g is said an *inversion* if ge = ē for some edge e (when T is simplicial).

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Let G be a group acting on a simplicial or a real tree T.

 An element g is said an *inversion* if ge = ē for some edge e (when T is simplicial).

< □ > < @ > < 注 > < 注 > ... 注

• An element g is said *elliptic* if gx = x for some x of T.

Let G be a group acting on a simplicial or a real tree T.

- An element g is said an *inversion* if ge = ē for some edge e (when T is simplicial).
- An element g is said *elliptic* if gx = x for some x of T.
- An element g is said *hyperbolic* if it is neither an inversion nor elliptic.

< □ > < @ > < 注 > < 注 > ... 注

Let G be a group acting on a simplicial or a real tree T.

- An element g is said an *inversion* if ge = ē for some edge e (when T is simplicial).
- An element g is said *elliptic* if gx = x for some x of T.
- An element g is said *hyperbolic* if it is neither an inversion nor elliptic.

<ロト <四ト <注入 <注下 <注下 <

• A group G acts *freely* if every nontrivial element of G is hyperbolic.

Motivation

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへぐ

(中) (문) (문) (문) (문)

A free group is stable.

A free group is stable.

Reformulation:

A free group is stable.

Reformulation: A group acting freely on a simplicial tree is stable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A free group is stable.

Reformulation: A group acting freely on a simplicial tree is stable.

Remark. A superstable group acting freely on a real (or simplicial) tree is abelian.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(日) (월) (문) (문) (문)

The action of G is *trivial* if there is no hyperbolic elements.

The action of G is *trivial* if there is no hyperbolic elements.

<ロ> (四) (四) (四) (四) (四) (四) (四)

Question

The action of G is *trivial* if there is no hyperbolic elements.

Question

What can be said about the model theory of groups acting nontrivially on simplicial trees?

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

The action of G is *trivial* if there is no hyperbolic elements.

Question

What can be said about the model theory of groups acting nontrivially on simplicial trees? Is it possible for such groups to be ω -stable or superstable?

◆□ → ◆□ → ◆□ → ◆□ → □ □ □

Bass-Serre theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Theorem 2 (Bass-Serre)

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Theorem 2 (Bass-Serre)

A group acts without inversions and nontrivially on a simplicial tree if and only if either G splits as a free product with amalgamation or G has an infinite cyclic quotient.

<ロト <四ト <注入 <注下 <注下 <

Free products

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What about the superstability of free products?

What about the superstability of free products?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Theorem 3 (Poizat, 1983)

What about the superstability of free products?

Theorem 3 (Poizat, 1983)

A nontrivial free product $G_1 * G_2$ is superstable if and only if $G_1 = G_2 = \mathbb{Z}_2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

ω -stable groups

(中) (문) (문) (문) (문)

An action of an ω -stable group on a simplical tree is trivial.

An action of an ω -stable group on a simplical tree is trivial.

Using Bass-Serre theorem:

An action of an ω -stable group on a simplical tree is trivial.

Using Bass-Serre theorem:

Corollary 1

A free product with amalgamtion or an HNN-extension is not ω -stable.

< □ > < @ > < 注 > < 注 > ... 注

Superstable groups

|▲□▶||▲□▶||▲□▶|||▲□||▶|||▲□||▶|||▲□▶|||

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Examples:

 $\bullet~\mathbb{Z}$ is superstable and acts freely on a simplicial tree.

- $\bullet~\mathbb{Z}$ is superstable and acts freely on a simplicial tree.
- If G is superstable then $G \oplus \mathbb{Z}$ is superstable and acts nontrivially on a simplicial tree.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $\bullet \ \mathbb{Z}$ is superstable and acts freely on a simplicial tree.
- If G is superstable then $G \oplus \mathbb{Z}$ is superstable and acts nontrivially on a simplicial tree.
- If G is superstable then G ⊕ (Z₂ * Z₂) is superstable and acts nontrivially on a simplicial tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $\bullet \ \mathbb{Z}$ is superstable and acts freely on a simplicial tree.
- If G is superstable then $G \oplus \mathbb{Z}$ is superstable and acts nontrivially on a simplicial tree.
- If G is superstable then G ⊕ (Z₂ * Z₂) is superstable and acts nontrivially on a simplicial tree. Moreover
 G ⊕ (Z₂ * Z₂) = (G ⊕ Z₂) *_G (G ⊕ Z₂).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Classifications of actions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Let G be a group acting on a Λ -tree T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition

Definition

• The *hyperbolic lenght* function is defined by:

$$\ell(g) = \inf\{d(x,gx)|x \in T\}.$$

Definition

• The *hyperbolic lenght* function is defined by:

$$\ell(g) = \inf\{d(x,gx)|x \in T\}.$$

(日) (四) (문) (문) (문)

• (Fact) g is hyperbolic if and only if $\ell(g) > 0$.

Classifications of actions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(1)(Abelian actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \Lambda$ is a homomorphism.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(1)(Abelian actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \Lambda$ is a homomorphism.

(2)(Dihedral actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \text{Isom}(\Lambda)$ is a homomorphism whose image contains a reflection and a nontrivial translation, and the absolute value signs denote hyperbolic length for the action of Isom(Λ).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

(1)(Abelian actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \Lambda$ is a homomorphism.

(2)(Dihedral actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \text{Isom}(\Lambda)$ is a homomorphism whose image contains a reflection and a nontrivial translation, and the absolute value signs denote hyperbolic length for the action of Isom(Λ).

(3)(Irreducible actions) G contains a free subgroup of rank 2 which acts freely, without inversions and properly discontinuously on T.

Superstable groups

(中) (문) (문) (문) (문)

Theorem 5

Let G be a superstable group acting nontrivially on a Λ -tree, where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$.

(中) (종) (종) (종) (종) (종)

Let G be a superstable group acting nontrivially on a Λ -tree, where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. If G is α -connected and $\Lambda = \mathbb{Z}$, or if the action is irreducible, then G interprets a simple group having a nontrivial action on a Λ -tree.

(ロ) (部) (注) (注) (注)

Let G be a superstable group acting nontrivially on a Λ -tree, where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. If G is α -connected and $\Lambda = \mathbb{Z}$, or if the action is irreducible, then G interprets a simple group having a nontrivial action on a Λ -tree.

Corollary 2

If G is superstable and splits as $G = G_1 *_A G_2$, with the index of A in G_1 different from 2, then G interprets a simple superstable non ω -stable group acting nontrivially on a simplicial tree.

Minimal Superstable groups

|▲□▶||▲□▶||▲□▶|||▲□||▶|||▲□||▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||▲□▶|||

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Definition

Let G be a group and \mathcal{B} be a family of definable subgroups of G.

Let G be a group and \mathcal{B} be a family of definable subgroups of G. We say that \mathcal{B} is a *Borel* family, if for any $B \in \mathcal{B}$, $N_G(B)/B$ is finite and B is generous, for any $g \in G$, $B^g \in \mathcal{B}$, and any two elements of \mathcal{B} are conjugate to each other.

< □ > < @ > < 注 > < 注 > ... 注

Minimal Superstable groups

Minimal Superstable groups

Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ -tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$.

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ -tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that U(H) < U(G), and having a nontrivial action on a Λ -tree, then H is nilpotent-by-finite.

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ -tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that U(H) < U(G), and having a nontrivial action on a Λ -tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \lhd H_2 \lhd G$ such that H_2 is of finite index in G, and one of the following cases holds:

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ -tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that U(H) < U(G), and having a nontrivial action on a Λ -tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \lhd H_2 \lhd G$ such that H_2 is of finite index in G, and one of the following cases holds:

(1) H_1 is connected, any action of H_1 on a Λ -tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ -tree.

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ -tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that U(H) < U(G), and having a nontrivial action on a Λ -tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \lhd H_2 \lhd G$ such that H_2 is of finite index in G, and one of the following cases holds:

(1) H_1 is connected, any action of H_1 on a Λ -tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ -tree. (2) H_2/H_1 is simple and acts nontrivially on a Λ -tree,

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ -tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that U(H) < U(G), and having a nontrivial action on a Λ -tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \lhd H_2 \lhd G$ such that H_2 is of finite index in G, and one of the following cases holds:

(1) H_1 is connected, any action of H_1 on a Λ -tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ -tree.

(2) H_2/H_1 is simple and acts nontrivially on a Λ -tree, H_2/H_1 has a Borel family of equationally-definable nilpotent subgoups such that there exists $m \in \mathbb{N}$ such that for every hyperbolic element g in H_2/H_1 , there is $1 \le n \le m$, such that g^n is in some $B \in \mathcal{B}$.

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ -tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that U(H) < U(G), and having a nontrivial action on a Λ -tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \lhd H_2 \lhd G$ such that H_2 is of finite index in G, and one of the following cases holds:

(1) H_1 is connected, any action of H_1 on a Λ -tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ -tree.

(2) H_2/H_1 is simple and acts nontrivially on a Λ -tree, H_2/H_1 has a Borel family of equationally-definable nilpotent subgoups such that there exists $m \in \mathbb{N}$ such that for every hyperbolic element g in H_2/H_1 , there is $1 \le n \le m$, such that g^n is in some $B \in \mathcal{B}$. If $\Lambda = \mathbb{Z}$ then $H_2/H_1 = G_1 *_A G_2$ with the biindex of A is 2 in both G_1 and G_2 .