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Key points

* Upper bounds for the number of rational
points of height ≤ T on certain non-algebraic
sets X ⊂ Rn.

* Guiding idea: A“transcendental” set has “few”
rational points “in a suitable sense”.

* Connection with transcendence theory.

* Connection with Manin-Mumford conjecture
and other results in diophantine geometry.
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II Higher dimensions – Main result
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IV Manin-Mumford conjecture

V Andre-Oort-Manin-Mumford type results
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Notation

X(Q, T ) = {x ∈ X : x ∈ Qn, H(x) ≤ T}

where X ⊂ Rn and height H(x) is defined by

H(a1/b1, . . . , an/bn) = max(|ai|, |bi|)

for

ai, bi ∈ Z, bi 6= 0,gcd(ai, bi) = 1, i = 1, . . . , n.

(Not projective height.)

The counting or density function of X, for
T ≥ e to avoid trivialities:

N(X,T ) = #X(Q, T ).

Seek upper bound estimates for N(X,T ).

Constants c(. . .) may differ at each occurence.
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I. Curves

Bombieri+JP (1989): results for integer points

on the homothetic dilation

tX = {(tx1, . . . , txn) : (x1, . . . , xn) ∈ X}.

(where t ≥ 1) of a graph

X : y = f(x), x ∈ I = [a, b].

Upper bounds for #
(
tX ∩ Z2

)
, as t→∞, for

* f smooth and convex (won’t discuss)

* f real analytic

* upper bounds for

#
(
X(Z) ∩ [0, T ]2

)
when f is algebraic (mention briefly)
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Transcendental analytic curves

Consider X : y = f(x), x ∈ I = [a, b] where
function f is real-analytic and non-algebraic.

Theorem. We have, for every ε > 0,

#
(
tX ∩ Z2

)
≤ c(f, ε)tε

Note: t ≥ 1 need not be an integer.

Theorem. (JP, 1991) For every ε > 0,

N(X,T ) ≤ c(f, ε)T ε

If e.g. f(x) = ex then (Hermite-Lindemann)
the only algebraic point of X is (0,1).

At other extreme, constructions going back to
Weierstrass give: entire transcendental f with
f(Q) ⊂ Q. (van der Poorten...)

Little control of height in such constructions.
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Key to method

X(Q, T ) is contained in few (i.e. ≤ c(X, ε)T ε)

intersections of X with plane algebraic curves

of suitable degree.

Lemma. Let X : y = f(x) be C∞ on [0,1] and

ε > 0. There is a d = d(ε): for every T ≥ 1,

X(Q, T ) ⊂
⋃
V

X ∩ V

with the union over Of,ε(T
ε) plane algebraic

curves V of degree d (possibly reducible).
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Proof of Lemma. Consider points

Pi = (xi, yi) ∈ X, i = 1, . . . , E.

They lie on a plane algebraic curve of degree

d iff the matrix

( 1 xi yi x2i xiyi y2i . . . xdi . . . ydi ) ,

i = 1, . . . , E, has rank < D = (d+ 1)(d+ 2)/2.

If not, have D points with

∆ = det (φj(xi)) 6= 0

where the φj(x) are the D functions of the form

xµf(x)ν,0 ≤ µ, ν ≤ d.

If Pi ∈ X(Q, T ), the entries in a row have a

common denominator ≤ T2d. So

T2dD|∆| ≥ 1.
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Mean value statement: if φj are functions

with D−1 continuous derivatives on an interval

containing xi then

∆

V (xi)
=

1

0!1! . . . (D − 1)!
det (φ

(i−1)
j (ζij)).

for some suitable intermediate points ζij ∈ [0,1],

V (xi) the Vandermonde determinant.

In our case: φj(x) = xµf(x)ν,0 ≤ µ, ν ≤ d.

If the xi ∈ I, `(I) ≤ r,

T−dD ≤ |∆| ≤ C(f, d)rD(D−1)/2.

I.5



Conclusion: if

`(I) ≤ C′(f, d)T−2dD/(D(D−1)),

the points of X(Q, T ) in I all lie on one curve

of degree d. The interval [0,1] is covered by

C′′(f, d)T2dD/(D(D−1))

such intervals, and since D = (d+1)(d+2)/2,

the exponent

2dD

D(D − 1)

goes to zero as d→∞.

Remark. For given ε do not need C∞: need

CD, D <<>> 1/ε2, and c(X, ε) depends on the

size of the derivatives of f up to order D − 1.
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(Theorem. For ε > 0, X(Q, T ) ≤ c(f, ε)T ε.)

Proof of Theorem.

Choose d = d(ε) : X(Q, T ) is contained in

c(f, ε)T ε algebraic curves V of degree d.

X is transcendental: X ∩ V is finite for any V

of degree d. Uniform bound

#X ∩ V ≤ C(d)

for any curve V of degree d by compactness.

Then

N(X,T ) ≤ C(d)c(f, ε)T ε.
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Cannot be much improved.

If ε(t) : [1,∞) → R is positive, monotonically

decreasing to 0, have X : y = f(x), x ∈ [0,1]

transcendental real-analytic, and a (lacunary)

sequence Tj such that

N(X,Tj) ≥ T
ε(Tj)
j .

E.g. with ε(t) = (log t)−1/2, gives an example

X : y = f(x), x ∈ [0,1]

satisfying no estimate

N(X,T ) ≤ C(logT )c.

Cf. results of Surroca: better estimates do

hold on a sequence of Ti →∞.
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Algebraic curves

Theorem. (EB+JP 1989, JP 1996) Suppose
f ∈ Z[x, y] is absolutely irreducible of degree d,
X = {(x, y) : f(x, y) = 0}. Then

#
(
X(Z) ∩ [0, T ]2

)
≤ c(d)T1/d (logT )2d+3 .

Exponent 1/d is best possible : y = xd.

Improvements: JP, Walkowiak (by Heath-Brown
method) – application to Hilbert irreducibility.

Heath-Brown (2002): a p-adic version of method
for rational points on projective varieties in all
dimensions, in particular

Theorem. (Heath-Brown, 2002) For X ⊂ P2

irreducible, degree d

X(Q, T ) ≤ c(d, ε)T2/d+ε.

Exponent 2/d best possible: y = xd.
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Point of estimate: uniformity

Siegel/Faltings: finiteness of X(Z) (or X(Q))

for g > 0 but not good uniformity as curve

varies with fixed degree.

These uniform bounds are crude but useful,

especially in higher dimensional problems, e.g.

Waring type problems (e.g. Browning, Greaves,

Hooley, Skinner-Wooley, Vaughan-Wooley), and

Hilbert irreducibility (e.g. work of Schinzel-

Zannier, Walkowiak). Heath-Brown’s results

have also been useful in further work (HB,

Browning, Salberger,...)

Breaking 1/d,2/d uniformly when genus g > 0:

Helfgott-Venkatesh, Ellenberg-Venkatesh.

Bombieri-Zannier: E(Q).

Schmidt conjecture: c(d, ε)T ε for g > 0.
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II. Higher dimensions

Seek to generalize

N(X,T ) ≤ c(X, ε)T ε

to suitable “transcendental analytic” X ⊂ Rn.

Consider e.g. surface X ⊂ R3

X : z = f(x, y), (x, y) ∈ [0,1]2.

Straightforward: X(Q, T ) contained in

OX,ε(T
ε)

intersections of X with algebraic hypersurfaces
V of degree d(ε), where the implied constant
depends on sizes of derivatives of f(x, y) up to
order D <<>> dn.

(Determinant ∆, expand entries in Taylor srs.)

Repeat the argument for these intersections:
semi-analytic curves X ∩ V ?
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Leads to: (bounded) semi-analytic sets in

Rn.

Then projections: (bounded) subanalytic sets

in Rn.

These are contained in the globally sub-analytic

sets in Rn.

This class has “good” properties: dimension

theory, stratification, cell decomposition, and

strong finiteness properties —sets have just

finitely many connected components — (get

e.g. uniform bounds for intersections with an

algebraic curve)

Globally subanalytic sets: an example of an

o-minimal structure over R.
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O-minimal structures over R

Definition. A pre-structure is a sequence
S = (Sn : n ≥ 1), each Sn is a collection of
subsets of Rn.

A pre-structure S is called a structure (over
R) if, for all n,m ≥ 1,
(1) Sn is a boolean algebra
(2) Sn contains every semialgebraic subset
(3) if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m

(4) if m ≥ n,A ∈ Sm then π(A) ∈ Sn, where
π : Rm → Rn is projection on first n coords

A structure is called o-minimal if

(5) The boundary of every set in S1 is finite.

First 4 axioms: S admits various constructions,
condition 5 is the “minimality” condition.

X ⊂ Rn is definable in S if X ∈ Sn.
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Examples.

Semi-algebraic sets: Tarski-Seidenberg

Ran, the globally subanalytic sets: Gabrielov

Rexp: the sets definable using y = ex: Wilkie

Ran,exp: generated by Ran and Rexp together:

van den Dries-Macintyre-Marker

Richer examples. No “largest” o-minimal struc-

ture: Rolin, Speissegger, Wilkie

II.4



Some problems:

* Curves X∩V are not presented as graphs with

uniformly bounded derivatives (indeed they may

be singular).

(The hypersurfaces V that occur vary with T .)

This can be fixed.

* Surface X may contain semi-algebraic sets

of positive dimension, e.g. lines. These may

contain >> T δ rational points up to height T

for some δ > 0.

This cannot be fixed!
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The “algebraic part”

Definition. The algebraic part Xalg of a set
X is the union of all connected semialgebraic
subsets of positive dimension.

Seek: for suitably “nice” X ⊂ Rn, and ε > 0,

N(X −Xalg, T ) ≤ c(X, ε)T ε.

Crude analogue of the special set V special of
V in diophantine geometry .

V special =Zariski closure of
⋃

of images in V

of non-constant rational maps of Pm, Abelian
varieties.

Bombieri-Lang Conjecture: (V − V sp)(Q) is
finite. Curves: Mordell Conjecture (Faltings’s
Theorem). In higher dimensions, it is open.

“Geometry governs arithmetic”
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Xalg can be complicated

Example 1. For 1 ≤ w, x, y, z ≤ 2 say

X1 : logw logx = log y log z,

For r ∈ Q× have surfaces w = yr, z = xr, and

w = zr, y = xr. These are dense in the 3-fold.

Xalg
1 is not definable.

Example 2. For 2 < x, y < 3 say

X2 : z = xy

Each rational y gives a rational curve in X2,

Xalg
2 is not definable.

Example 3. For 2 < x, y < 3 say

X3 : z = 2x+y

Here Xalg
3 = X3.
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Theorem v1. (Wilkie+JP, 2006) Let X be a

set definable in an o-minimal structure over R.

Let ε > 0. Then

N(X −Xalg, T ) ≤ c(X, ε)T ε.

The o-minimal setting: general and natural.

Controlled oscillation and compactness bounds

for intersections are both consequences of the

o-minimality.

Estimate cannot be much improved in general:

already in Ran when n = 1.

Later: Wilkie conjectures a substantial improve-

ment for X definable in Rexp.
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Strategy

Given X ⊂ Rn of dimension k and ε:

* can assume X ⊂ (0,1)n using x 7→ ±1/x.

* by a parameterization realize X as union of
images of cubes (0,1)k with bounded deriva-
tives up to order b(ε/k)

(For bounded subanalytic sets: uniformization
theorem)

* then for suitable degree d, X(Q, T ) contained
in << T ε/k intersections X∩V , with deg(V ) = d

* repeat for these X ∩ V so

* need uniform parameterization of these
X ∩ V to get a uniform estimate, i.e.

Need a version of Theorem for families
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Definable families of sets

A definable family means the collection of

fibres of a projection of a definable set Z ⊂
Rn × Rm to Rm, considered as sets in Rn.

Theorem v2. Let Z ⊂ Rn×Rm be a definable

family. Let ε > 0. Then there is a constant

c(Z, ε) such that, for any fibre X of Z,

N(X −Xalg, T ) ≤ c(Z, ε)T ε.
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In general Xalg is not semi-algebraic (or even

definable). But perhaps: given ε > 0, there is

a semialgebraic Xε ⊂ Xalg such that

N(X −Xε, T ) ≤ c(X, ε)T ε?

No. Example: {(x, y) : 0 < x < 1,0 < y < ex}.

But one can find a definable Xε.

Theorem v3. Let Z be a definable family, ε >

0. There is a definable family W = W (Z, ε) and

a constant c(Z, ε) with the following property.

Let X be a fibre of Z. Then the corresponding

fibre Xε of W has Xε ⊂ Xalg and

N(X −Xε, T ) ≤ c(Z, ε)T ε.

This version: can make a non-trivial statement

in certain cases where (X −Xalg)(Q) = ∅, e.g.

X2 : z = xy.
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Parameterization

What we need:

Let Z ⊂ (0,1)n × Rm be a definable family of

fibre dimension k, and b ∈ N.

There exists J ∈ Z such that, for every fibre X

of Z, there exist maps

θi : (0,1)k → (0,1)n, i = 1, . . . , J,

J⋃
i=1

θi
(
(0,1)k

)
= X

and

sup
z∈(0,1)k

|∂µθ(z)| ≤ 1

for every partial derivative ∂µ, µ = (µ1, . . . , µk) ∈
Nk with |µ| =

∑
µi ≤ b.
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Just such a result existed for semialgebraic sets.

Theorem. (Yomdin 1987, Gromov 1987) Let

Y = V ∩ [0,1]n where V is closed algebraic

set of degree d and dimension k. For each b,

there is an integer N(n, b, d) such that Y can be

parameterized by at most N maps ψ : [0,1]k →
Y , all of whose partial derivatives up to order

b have absolute value bounded by 1.

Gromov’s is a refined version of Yomdin’s.

Analogous result can be proved in the o-minimal

setting, uniform parameterization for families

of definable sets.

(Maps θ : (0,1)k → (0,1)n will also come in

families.)
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Key to parameterization

Proposition. Suppose b ≥ 2 and f : (0,1)→ R
is a Cb, definable function. Suppose

|f(j)(x)| ≤ 1, x ∈ (0,1), j = 0, . . . , b− 1.

Suppose further that |f(b)| is weakly decreas-
ing. Put g(x) = f(x2). Then, for suitable C,

|g(j)(x)| ≤ C, x ∈ (0,1), j = 0, . . . , b.

Proof. For g: clear for j = 0, . . . , b − 1, by
chain rule.

For bth derivative: Observe: |f(b)(x)| ≤ 4/x
(otherwise |f(b−1)(x/2)| > (x/2)(4/x)−1 = 1).

Then by chain rule:

g(b)(x) =
b−1∑
i=0

ρib(x)f
(i)(x2) + 2bxbf(b)(x2)

is bounded as b ≥ 2.
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Sketch proof of Theorem

Given Z of fibre dimension k and ε.

Can assume k < n.

Obtain a b-parameterization with b so large
that, for every fibre X, X(Q, T ) is contained
in ≤ c(Z, ε)T ε/k algebraic sets in Rn of dimen-
sion k.

(Intersection of cylinders on hypersurfaces in
each choice of k+ 1 coordinates.)

Consider intersections X ∩ V . Any point that
is regular of dimension k in X and V and X∩V
is in a semi-algebraic disk, so in Xalg.

So proceed with: the points not regular of di-
mension k in those intersections. These form
a family of fibre dimension ≤ k − 1.

Finally: 0-dimensional family of intersections,
bounded number of connected components.
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Extension of result to:

algebraic points of bounded degree

Definition. Let k ≥ 1 For X ⊂ Rn, x =

(x1, . . . , xn) define

Nk(X,T ) =

#{x ∈ X : max
i

[Q(xi) : Q] ≤ k,max
i
H(xi) ≤ T}

where H(xi) is the absolute height.

Definition. Let k ≥ 1. Define Hpoly
k (α) = ∞

if [Q(α) : Q] > k. Otherwise

Hpoly
k (α) = min{(H(ξ), ξ = (ξ0, . . . , ξk) ∈ Qk+1−{0} :∑

ξjα
j = 0}.

If [Q(α) : Q] = k then Hpoly
k (α) ≤ 2kH(α)k.
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Theorem. (JP 2008) Let X ⊂ Rn be defin-
able, k ≥ 1, ε > 0. Then

Nk(X,T ) = OX,k,ε(T
ε).

In fact prove this: using Hpoly
k instead of H,

stronger, and for families of X.

Sketch: have projection

Y = {(x, ξ) ∈ Rn × Rn(k+1) : . . .} → X

so Y is definable and also Z where

Z = {ξ ∈ Rn(k+1) : . . .} ← Y

is a semi-algebraic finite map. Has semi-algebraic
inverse, so get semialgebraic map

Z → X.

Problem: Y, Z are completely fibred by semi-
algebraic subsets, so Zalg = Z and existing
Theorem is trivial.
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III. Wilkie’s conjecture

In general (in Ran) cannot much improve

N(X −Xalg, T ) ≤ c(X, ε)T ε.

Conjecture. (Wilkie) Supopose X is definable

in Rexp. Then

N(X −Xalg, T ) ≤ c(X)(logT )C.

Should get “version 2” over a number field F ,

with exponent of logT independent of F ,

and also (version 3)

Nk(X −Xalg, T ) ≤ c(X)(logT )C.
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Theorem. (JP 2007) Wilkie’s conjecture holds

for a pfaff curve. v2: JP 200?

“Pfaff curve” = graph of a pfaffian function

of one variable on a connected (possibly non-

compact) subset of its domain.

Example. For W : y = xα, α real irrational,

x ∈ (0,∞) and [F : Q] <∞,

NF (W,T ) <<F (logT )20.

Implies: “Forty-Two exponentials”. Cannot

have 21 algebraic points (xi, yi) with xi mul-

tiplicatively independent. (“Six exponentials”:

same is true with 21→ 3).

Point: Wilkie v2 entails estimates of the same

quality to ones yielding transcendence results.
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Theorem. (JP 2008) Wilkie’s conjecture v2

for

X = {(x, y, z) ∈ (0,∞)3 : log z = logx log y},

more precisely,

N(X −Xalg, T ) <<F,ε (logT )44+ε.

I.e. bound for points (x, y) ∈ (0,∞)2 where

x, y, exp(logx log y)

simultaneously in a given F with height ≤ T ,

not in Xalg.

Xalg = {(x,1,1)} ∪ {(1, y,1)} ∪ {(x, eq, xq)} ∪
{(eq, y, yq)}, q ∈ Q

Both results use: Gabrielov-Vorobjov bounds

for # connected components of pfaffian sets.

Transcendence methods?
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IV. The Manin-Mumford conjecture

Analogue for subvarieties of Abelian varieties
of Lang conjecture for V ⊂ Gnm = (C∗)n and
points whose coordinates are roots of unity
(torsion points).

Let A be an Abelian variety of dimension g.
For n ∈ Z, n2g n-torsion points, denoted A[n].
Their union is the torsion subgroup Ator of A.

Thm: Manin-Mumford conjecture (over Q).
Let V ⊂ A, both /Q. Then V ∩Ator is contained
in a finite union of cosets of abelian subvari-
eties of A contained in V .

Originally proved by Raynaud, 1983 (and /C)

Several proofs exist of MM or combinations
(with Mordell (Mordell-Lang), Bogomolov) and
quantitative versions.

New proof, with Umberto Zannier (2008).
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An abelian variety A of dimension g is complex-
analyticially isomorphic to a complex torus

Cg/Λ,
with Λ a lattice. Have uniformization

π : Cg → A.

Take real coordinates on Cg using a basis of
Λ. Then torsion points of A correspond to
rational points in R2g (order=denominator).
Have

X = π−1(V )

semi-analytic and Zg-periodic.

Apply PW to X ∩ [0,1)2g = X to conclude:

N(X − Xalg, T ) <<X ,ε T
ε.

Since X is periodic show: Xalg is a union of
hyperplanes – indeed subtori corresponding to
abelian subvarieties.

So in this situation Xalg ↔ V special.
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Key ingredient: lower bound for degree of a

torsion point.

Masser: if A, V are defined over a numberfield,

and P is a torsion point of order T then

d(P ) >>A T
δ

for some δ > 0 (depends only on g).

Combine with

N(X − Xalg, T ) <<X ,ε T
ε

for some ε < δ.

MM for A, V over numberfield follows.

Should also prove Gm case.
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Relative Manin-Mumford conjecture

Conjecture. (Pink) Let X be an irreducible
variety over C and B → X an algebraic fam-
ily of semiabelian varieties. Let Y ⊂ B be an
irreducible closed subvariety, not contained in
any proper closed subgroup scheme of B → X.
If Y contains a zariski dense subset of torsion
points then dimY ≥ dim(B/X).

Theorem. (Masser-Zannier 2008) There are
only finitely many λ ∈ C, λ 6= 0,1 such that

Pλ = (2,
√

2(2− λ)), and Qλ = (3,
√

6(3− λ))
are both of finite order on

Eλ : y2 = x(x− 1)(x− λ).

So X = C, Bλ = Eλ × Eλ, Y = {(Pλ, Qλ)}.

For Pλ alone: infinitely many λ, but sparse.

The “unlikely intersection” of the two sparse
sets is finite.
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V. Andre-Oort conjecture

Analogue of MM.

Manin-Mumford conjecture:

Ator ⊂ A ⊃ V⊃ torsion coset of ab. subv. ?

Andre-Oort conjecture:

special points ⊂ S ⊃ V ⊃ special subvariety?

AO is now Theorem of Yafaev-Klingler-Ullmo

under GRH for CM fields

Example: C is a Shimura variety, as j-line.

Special points = j invariants of CM elliptic

curve. No interesting subvarieties.
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Another example: C2 is a Shimura variety

parameterizing pairs of elliptic curves.

Special points: (j, j′), j, j′ both CM points.

Special subvarieties: “vertical” , “horizontal”

copies of C with the fixed coordinate a CM

point, C2 itself, and modular curves.

Recall: j : H → C, invariant under SL2(Z).

If τ ′ = Nτ then FN(j(τ), j(τ ′)) = 0. More

generally if τ ′ = γτ for γ ∈ GL2(Q)+ acting

as fractional linear transformation on H.

CM values of j ∈ C ↔ imag. quadratic τ ∈ H,

preserved by τ ′ = γτ for γ ∈ GL2(Q)+. So

modular curves V ⊂ C2 : FN(x, y) = 0 have

lots of special points.
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Early case of AO:

Theorem. (André, Edixhoven 1998) Let V be

an irreducible curve in C2. Then V contains

only finitely many special points unless V is a

special subvariety.

Edixhoven: conditional on GRHIQ, uniform

for curves of given degree and degree of defi-

nition, and effective (Breuer 2001).

Andre: unconditional, but not uniform.

New proof (JP, 2008). Unconditional and

also uniform (but ineffective without GRHIQ)
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Sketch proof. Can assume V defined over Q.

Have SL2(Z)2 invariant map

π : H2 → C2, π(τ1, τ2) = (j(τ1), j(τ2)).

Let F be the usual fundamental domain for

SL2(Z) on H. Have

{(j, j′) CM points} ⊂ C2 ⊃ V,

pull back under π to get

{(τ, τ ′) quadratic points} ⊂ H2 ⊃ X

and X is an SL2(Z)2 invariant analytic set.

Show: X contains no semialgebraic curves

except possibly of form z = γz′ for γ ∈ GL2(Q)+,

vertical or horizontal lines i.e. (almost) just if

V has no special subvarieties as components.
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Definability.

j : H → C is not definable in any o-minimal

structure, as it is periodic under SL2(Z), so

j−1(point) is an infinite discrete set.

But j : F → C is.

The Weierstrass ℘ function ℘(τ, z). For τ ∈ H,

doubly periodic meromorphic function in z with

fundamental parallelogram

Lτ = {t1 + t2τ : 0 ≤ t1, t2 < 1}.

Peterzil-Starchenko: ℘(τ, z) is definable on

{(τ, z) : τ ∈ F, z ∈ Lτ}

in the o-minimal structure Ran,exp. And the

“exp” is necessary.

Definability of j : F → C follows.
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Continue sketch proof of André-Oort for C2.

We view X as a real surface in R4, and X =

X ∩ F2 is definable.

Suppose V contains no special subvarieties then

*essentially* X contains no algebraic curves.

Then , if ε > 0,

N2(X , T ) ≤ c(X, ε)T ε

For discriminant D of an imag. quad. order,

h(D) >>δ |D|1/2−δ

by Siegel (ineffective; effective under GRHIQ).

H(Im(τ)), H(Re (τ)) << H(τ) << |D|1/2,

and j(τ) has h(D) conjugates.
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Suppose (τ1, τ2) ∈ X with τ1, τ2 imag. quadratic.

Put τ1 = u+ iv, τ2 = x+ iy.

Put ∆ = max(|D(τ1)|, |D(τ2)|).

H(u, v, x, y) ≤ 16
√

∆

Conjugates of (j(τ1), j(τ2)) come from points

(τ ′1, τ
′
2) ∈ F

2 with same discriminant, so same

bound on height. A positive fraction c(V ) of

the conjugates also lie on V . So

c(δ)c(V )∆1/2−δ ≤ N2(X ,16
√

∆) ≤ c(X, ε)(16
√

∆)ε

Choose δ = 1/4, ε = 1/3 say. Estimates are

untenable once ∆ is sufficiently large.
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Two further “André-Oort-Manin-Mumford” type

results.

Elliptic curve in Legendre form (rational 2-

torsion):

Eλ : y2 = x(x− 1)(x− λ), λ 6= 0,1

Surface A ⊂ A1 × P2

Y 2Z = X(X − Z)(X − λZ), λ 6= 0,1

Special points: (λ, P ) where Eλ is CM and P ∈
Eλ torsion.

Special subvarieties: “vertical” some {λ}×Eλ,
CM, “horizontal”: a torsion section, A itself.
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Theorem. (JP 2008) Let V be an irreducible

curve in A. Then the number of special points

of V is finite unless V is special.

A variant of a result of André (≤ 2001):

Finiteness for special points on a non-torsion

section of a non-isotrivial elliptic pencil.

Our A is a particular non-isotrivial pencil as j is

a non-constant function of λ, but our V need

not be a section.

Again: unconditional and uniform (for V ) but

ineffective.
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Modular elliptic curve X0(N)→ E.

Can ask: when is the image of a special point

(=CM point) of X0(N) torsion on E?

= special points on the graph Γ of X0(N)→ E,

Γ ⊂ X0(N)× E.

The map is non-constant and surjective, so not

special.

Heegner points. Nekovar-Schappacher (1999):

for the CM points with Heegner conditions,

only finitely many map to torsion in E. (and

for abelian variety A instead of E)
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Let A = X0(N)× E, any elliptic curve over Q.

Special points: (CM, torsion).

Special subvarieties: “vertical” {P}×E, where

P is CM, “horizontal” constant maps to Q ∈ E
torsion, A.

Theorem. (JP 2008) Let V be an irreducible

curve in A. Then V has only finitely many

special points unless V is special.

Remark. Definability in all these results is

in Ran,exp by Peterzil-Starchenko. Subanalytic

sets are not enough. The o-minimal generality

is necessary.

***

“‘Tame” geometry governs arithmetic”
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