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Abstract

We extend the three-step Generalized Methods of Moments (GMM) approach of

Kapoor, Kelejian, and Prucha (2007), which corrects for spatially correlated errors

in static panel data models, by introducing a spatial lag and a one-period lag of the

endogenous variable as additional explanatory variables. Combining the extended

KKP approach with the dynamic panel data model GMM estimators of Arellano

and Bond (1991) and Blundell and Bond (1998) and supplementing the dynamic

instruments by lagged and weighted exogenous variables as suggested by Kelejian and

Robinson (1993) yields new spatial dynamic panel data estimators. The performance

of these spatial dynamic panel data estimators is investigated by means of Monte

Carlo simulations. We show that differences in bias as well as root mean squared

error between spatial GMM estimates and corresponding GMM estimates in which

spatial error correlation is ignored are small.
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1 Introduction

The literatures on dynamic panel data models and spatial econometric models have ma-

tured rapidly and have reached (graduate) textbooks during the last decade.1 Panel data

may feature state dependence—that is, the dependent variable is correlated over time—as

well as display spatial dependence, that is, the dependent variable is correlated in space.

Applied economists’ interest in frameworks that integrate spatial considerations into dy-

namic panel data models is a fairly recent development, however.2 Elhorst (2003, 2008a,b)

and Yu, De Jong, and Lee (2007) have analyzed the properties of Maximum Likelihood

(ML) estimators and combinations of ML and Corrected Least Squares Dummy Variables

(CLSDV) for this model class. Elhorst (2008b) briefly touches upon spatial Generalized

Methods of Moments (GMM) estimators in comparison to ML estimators. The properties

of spatial Generalized Methods of Moments (GMM) estimators have not been comprehen-

sively studied in a dynamic panel data context yet.3 This paper fills this void by comparing

the performance of various spatial GMM estimators of dynamic panel data models with

fixed effects.

Spatial panel data applications typically employ either a spatial lag model or a spatial

error model. Many economic interactions among agents are characterized by a spatially

lagged dependent variable, which consists of observations on the dependent variable in other

locations than the “home” location. In the public finance literature, for example, local

governments take into account the behavior of neighboring governments in setting their

tax rates (cf. Wilson, 1999; and Brueckner, 2003) and deciding on the provision of public

goods (cf. Case, Rosen, and Hines, 1993). In the trade literature, for example, foreign

direct investment (FDI) inflows into the host country depend on FDI inflows into proximate

1See Arellano (2003) and Baltagi (2008, Chapter 8) for an analysis of dynamic panel data models and
Anselin (1988, 2006) for a treatment of spatial econometrics.

2Badinger, Mueller, and Tondl (2004) and Jacobs, Ligthart, and Vrijburg (2009) provide empirical
applications of spatial dynamic panel data models.

3See Cameron and Trivedi (2005, pp. 744–745) for a general discussion on GMM estimators.
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host countries (cf. Blonigen et al., 2007). Spatial error dependence is an alternative way

of capturing spatial aspects. It may arise, for example, in house price models in which

air quality affects house prices but is not included as an explanatory variable (cf. Kim,

Phipps, and Anselin, 2003).4 Spatially correlated errors can be thought of as analogous to

the well-known practice of clustering error terms by groups, which are defined based on

some direct observable characteristic of the group. In spatial econometrics, the groups are

based on spatial “similarity,” which is typically captured by some geographic characteristic

(e.g., proximity).

Recently, Kapoor, Kelejian, and Prucha (2007) designed a GMM procedure to deal

with spatial error correlation. We extend their three-step spatial procedure to panels with

a spatially lagged dependent variable and a one-period time lag of the dependent variable.

The performance of the spatial GMM estimators—which is measured in terms of bias and

root mean squared error (RMSE)—is investigated by means of Monte Carlo simulations.

We consider panels with a small number of time periods relative to the number of units.

Rather than modeling either a spatial error or a spatial lag model, we allow both processes

to be present simultaneously. In economic interaction models, spatial error dependence

may exist above and beyond the theoretically motivated spatial lag structure,5 reflecting

the potential presence of omitted spatial variables. Ignoring spatial error correlation in

static panels may give rise to a loss in efficiency of the estimates and may thus erroneously

suggest that strategic interaction is absent. In contrast, disregarding spatial dependency

in the dependent variable comes at a relatively high cost because it gives rise to biased

estimates (cf. LeSage and Pace, 2009, p. 158).

The time lag of the (endogenous) dependent variable is correlated with the unit-specific

4Spatial error correlation may also result from measurement error in variables or a misspecified func-
tional form of the regression equation.

5In their study on commodity tax competition, Egger, Pfaffermayr, and Winner (2005) find a signifi-
cantly positive coefficient of the spatial lag while controlling for spatially correlated errors; the spatially
autoregressive coefficient is shown to be significantly negative and non-negligible in size.
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effect. Consequently, the standard fixed effects estimator for (non-spatial) panels with a

fixed time span and a large number of units is biased and inconsistent. Dynamic panel

data models are usually estimated using the GMM estimator of Arellano and Bond (1991),

which differs from static panel GMM estimators in the set of moment conditions and

the matrix of instruments. Alternatively, authors have used Blundell and Bond’s system

(1998) approach, which extends Arellano and Bond’s instrument set by allowing differences

of variables to be included. In the following, we contribute to the literature by developing

spatial and spatial correlation corrected variants of the Arellano-Bond and Blundell-Bond

estimators. This involves defining appropriate instruments to control for the endogeneity

of the spatial lag and time lag of the dependent variable while controlling for spatial

error correlation. For this we use an instrumental variables approach based on the set of

instruments suggested by Kelejian and Robinson (1993).

The Monte Carlo evidence indicates the following. Differences in bias as well as RMSE

between spatial GMM estimates and corresponding GMM estimates in which spatial error

correlation is ignored are small. Choosing appropriate instruments for both the time and

spatial lag is sufficient to model the spatial characteristics in our setting. However, it

remains to be seen whether our estimators also perform well when exogenous variables are

allowed to have spatial attributes.

The paper is organized as follows. Section 2 sets out the dynamic spatial panel data

model. Section 3 develops the two estimators for dynamic spatial panel data models, that

is, the spatial Arellano-Bond and spatial Blundell-Bond estimators. Section 4 presents

Monte Carlo simulation outcomes. Finally, Section 5 concludes.
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2 The Dynamic Spatial Panel Data Model

Consider i = 1, ..., N spatial units and t = 1, ..., T time periods. The focus is on panels

with a small number of time periods relative to the number of units. Assume that the data

at time t are generated according to the following model:

y(t) = λy(t− 1) + δWNy(t) + x(t)β + u(t), (1)

where y(t) is an N × 1 vector of observations on the dependent variable, y(t − 1) is a

one-period time lag of the dependent variable, WN is an N ×N matrix of spatial weights,

x(t) is an N×K matrix of observations on the (exogenous) explanatory variables (where K

denotes the number of covariates), and u(t) is an N × 1 vector of error terms (see below).6

The scalar parameter λ is the autocorrelation coefficient, δ is the spatial autoregressive

coefficient (which measures the endogenous interaction effect among units), and β is a

K × 1 vector of slope coefficients.

The spatial lag is denoted by WNy(t), which captures the contemporaneous correlation

between unit i’s behavior and a weighted sum of the behavior of units j 6= i. The elements of

WN (denoted by ωij) are exogenously given, non-negative, and zero on the diagonal of the

matrix. In addition, the elements are row normalized so that each row sums to one. Note

that there is little formal guidance on choosing the “correct” spatial weights because many

definitions of neighbors are possible. The literature usually employs contiguity (having

common borders) or physical distance as weighting factors.

In the absence of a time lag of the dependent variable (λ = 0), the reduced form of

Equation (1) amounts to: y(t) = (IN − δWN)−1x(t)β + (IN − δWN)−1u(t), where

(IN − δWN)−1 =
∞∑
i=0

(δWN)i = IN + δWN + δ2W2
N + δ3W3

N + ..., (2)

6Note that our exogenous explanatory variables are not spatially weighted. We leave this for further
research.
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where IN is an identity matrix of dimension N ×N and W0
N = IN . Hence, the dependent

variable is affected not only by the characteristics of the own jurisdiction but also those of

direct neighbors and of “neighbors of neighbors.” Stationarity of the model requires that

1/ζL < δ < 1/ζU , where ζL and ζU denote the smallest and largest characteristic root of

WN , respectively. If WN is (row) normalized then ζU = 1 and thus 1/ζL < δ < 1. If a

time lag of the dependent variable is present (λ > 0), the stationarity condition |λ| < 1

needs to be imposed (cf. Elhorst, 2008b).

Spatial error correlation may arise when omitted variables follow a spatial pattern,

yielding a non-diagonal variance-covariance matrix of the error term u(t). In the case of

spatial correlation, the error structure in Equation (1) is a spatially weighted average of

the error components of neighbors, where MN is an N ×N matrix of spatial weights (with

typical element mij). More formally, the spatially autoregressive process is given by:

u(t) = ρMNu(t) + ε(t), (3)

where MNu(t) is the spatial error term, ρ is a (second) spatially autoregressive coefficient,

and ε(t) denotes a vector of innovations. The interpretation of the “nuisance” parameter

ρ is very different from δ in the spatial lag model, in that there is no particular relation to

a substantive theoretical underpinning of the spatial interaction. We follow the common

practice in the literature by assuming that WN 6= MN .7 The spatial error process in

reduced form is: u(t) = (IN −ρMN)−1ε(t) = ε(t)+ρMNε(t)+ρ2M2
Nε(t)+ρ3M3

Nε(t)+ ...,

where IN is an identity matrix of dimension N . Shocks in the spatial error representation

have a global effect. Intuitively, a shock in location k directly affects the error term

of location k but also indirectly transmits to other locations (with a non-zero mij) and

eventually works its way back to k. If |ρ| < 1, the spatial error process is stable thus

yielding feedback effects that are bounded.

7If WN = MN , then parameters δ and ρ cannot be disentangled when estimated by ML (cf. Anselin,
2006). When using GMM estimation, however, δ and ρ can be separately identified.
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The vector of innovations is defined as:

ε(t) = INη(t) + v(t), v ∼ iid(0, σ2
vIN), (4)

where η is an N × 1 vector representing (unobservable) unit-specific effects, and v(t) is an

N × 1 vector of independently and identically distributed (iid) error terms with variance

σ2
v (which is assumed to be constant across units and time periods). In the following, we

focus on a specification in which η is correlated with the regressors.

Using conventional notation, Equations (1), (3), and (4) can be written concisely as:

y(t) = z(t)θ + u(t), (5)

u(t) = (IN − ρMN)−1[INη(t) + v(t)], (6)

where z(t) ≡ [y(t − 1),WNy(t),x(t)] denotes the matrix of regressors, θ ≡ [λ, δ,β′]′ is a

vector of K +2 parameters, and a prime denotes a transpose. Our general dynamic spatial

panel data model embeds various special cases discussed in the literature. If λ = ρ = 0

and δ > 0, our model reduces to the familiar spatial lag model (also known as the mixed

regressive spatial autoregressive model; see Anselin, 1988), whereas for λ = ρ = β = 0 we

get a pure spatial autoregressive model. If λ = δ = 0 and ρ > 0, we obtain the spatial

error model. If λ > 0 and δ = ρ = 0, we arrive at Arellano and Bond’s dynamic panel data

model. Finally, the dynamic general spatial panel data model boils down to a standard

static panel data model if λ = δ = ρ = 0.

3 Dynamic Spatial Panel Data Estimators

This section develops the dynamic spatial estimators to be used in the Monte Carlo sim-

ulations of Section 4. We extend Kapoor, Kelejian, and Prucha’s (2007) approach—which

explicitly corrects for spatial error correlation—to include a spatial lag and a time lag of
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the dependent variable. Because the latter two regressors are endogenous, we also propose

sets of instruments. This procedure yields “spatial” Arellano-Bond and Blundell-Bond

estimators in Sections 3.1 and 3.2, respectively.

3.1 Spatial Arellano-Bond Estimator

This section extends Arellano and Bond’s (1991) dynamic panel data approach to a spatial

setting in which both a spatial lag and a spatial error term are present. The Spatial

Arellano-Bond estimator (denoted by SAB) will be derived in three stages.

3.1.1 The First Stage

In the first stage, we derive a consistent estimate of θ, which we use to calculate û(t) =

y(t)− z(t)θ̂.8 To eliminate η from ε(t), we take first differences of (5) and (6):

∆y(t) = ∆z(t)θ + ∆u(t), (7)

∆u(t) = (IN − ρMN)−1∆v(t), for t = 3, ..., T, (8)

where ∆q(t) ≡ q(t)−q(t−1) for q(t) = {y(t), z(t),u(t),v(t)}. Because of the endogeneity

of the spatial lag and the time lag of the dependent variable, we apply a panel GMM

procedure. Both endogenous regressors are correlated. Therefore, the challenge is to find

instruments that are more strongly correlated with the spatial lag than with the time

lag of the dependent variable. The panel GMM procedure relies on the existence of an

N(T − 2) × F instrument matrix (i.e., HSAB, see below) that satisfies the following F

moment conditions: E[H′
SAB∆u] = 0, where we use stacked notation (sorting the data

first by time and then by unit) and E denotes the expectations operator. If the model is

8Strictly speaking, consistency still has to be proved. Both the Arellano-Bond estimator and the spatial
GMM estimator of Kelejian and Robinson (1993) are consistent. What remains to be proved is that the
combination of the two is also consistent. The asymptotics of our spatial GMM estimators are postponed
to a next version of this paper.
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just identified, the panel GMM estimator simplifies to an instrumental variables estimator.

The resulting first-stage SAB estimator becomes:

θ̂SAB = [∆z′HSABASABH′
SAB∆z]

−1
∆z′HSABASABH′

SAB∆y, (9)

where ASAB = [H′
SABGHSAB]−1 is an F × F matrix of instruments and G = IN ⊗Gij is

an N(T − 2)×N(T − 2) weighting matrix with elements:9

Gij ≡



2 if i = j

−1 if i = j + 1

−1 if j = i + 1

0 otherwise

, (10)

where ⊗ denotes the Kronecker product. The instrument matrix HSAB(t) = [y(t −

2), ...,y(1),H(t)] consists of two sets: (i) the dynamic instruments suggested by Arel-

lano and Bond (which we call the AB component); and (ii) the instruments for the spatial

lag (denoted by H(t)).

Arellano and Bond (1991) propose to use the levels of the dependent variable (i.e., y(t−

2), ...,y(1)) as instruments for the time lag of the dependent variable in first differences (i.e.,

∆y(t− 1)). Because of time dependency in the model, the instruments are correlated with

the time lag of the dependent variable in first differences ∆y(t− 1), but uncorrelated with

the error term in first differences (i.e., ∆v(t)) as the unit-specific effect is eliminated from

the first differenced variable. Recall that y(t− 2) is correlated with v(t− 2), ...,v(1), but

not with v(t) and v(t− 1). The Arellano-Bond procedure implies the moment conditions

E[y(t− s)′∆v(t)] = 0, (11)

for t = 3, ..., T and s = 2, ..., T − 1. Equation (11) yields (T − 2)(T − 1)/2 potential

instruments.

9Arellano and Bond (1991) use (10) to yield a one-step estimator that is asymptotically equivalent to
the two-step estimator (if the vij ’s are independent and homoskedastic both across units and over time).
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The set of instruments for the spatial lag, that is, H(t), is based on a modified version

of the approach of Kelejian and Robinson (1993). We expand the expected value of the

spatial lag to arrive at H(t) = [WNx(t),x(t)]. This yields 2K additional instruments,

which satisfy the following moment condition:

E[H(t)′∆v(t)] = 0. (12)

The total instrument matrix HSAB consists of the two instrument sets discussed above.

For example, for T = 5, we find the following:

HSAB =


y(1) 0 0 0 0 0 H(1)

0 y(1) y(2) 0 0 0 H(2)

0 0 0 y(1) y(2) y(3) H(3)

 . (13)

The AB component has T − 2 instrument blocks. Note that if T increases, the number

of instruments rises exponentially, potentially giving rise to multicollinearity. The matrix

contains F = (T − 2)(T − 1)/2 + 2K instruments in total.

3.1.2 The Second Stage

In the second step, consistent GMM estimates of ρ and σ2
v are obtained using û(t) and

the three moment conditions of Kapoor, Kelejian, and Prucha (2007), which we modify to

correct for the time lag in the model. These moment conditions (in stacked format) are:
1

N(T−2)
ε′QNε

1
N(T−2)

ε̄′QN ε̄

1
N(T−2)

ε̄′QNε

 =


σ2

v

σ2
v

1
N

tr(M′
NMN)

0

 , (14)

where tr(.) is the trace of the matrix M′
NMN , QN ≡ (IT−1 − JT−1/(T − 1)) ⊗ IN is the

“within” transformation matrix, IT−1 is an identity matrix of dimension T −1, and JT−1 ≡

9



eT−1e
′
T−1 is a (T − 1)× (T − 1) matrix of unit elements. The N(T − 1)× 1 vectors ε and

ε̄ are:

ε ≡ u− ρū, ε̄ ≡ ū− ρ¯̄u, (15)

where ū = (IT−1 ⊗MN)u and ¯̄u = (IT−1 ⊗MN)ū. The estimated values of u in Equation

(15) are substituted into (14) to obtain three equations in two unknowns:10

1
N


2

T−2 û
′QN ˆ̄u − 1

T−2
ˆ̄u′QN ˆ̄u 1

2
T−2

ˆ̄̄u′QN ˆ̄u − 1
T−2

ˆ̄̄u′QN
ˆ̄̄u tr(M′

NMN )

2
T−2

[
û′QN

ˆ̄̄u + ˆ̄u′QN ˆ̄u
]

− 1
T−2

ˆ̄u′QN
ˆ̄̄u 0




ρ

ρ2

σ2
v

 =
1
N


1

T−2 û
′QN û

1
T−2

ˆ̄u′QN ˆ̄u

1
T−2u

′QN ˆ̄u

 .(16)

This nonlinear system of equations can be solved to obtain estimates of ρ and σ2
v .

3.1.3 The Third Stage

In the final stage, the estimate of ρ is used to spatially transform the variables in (5) to

yield:

∆ỹ = ∆z̃θSAB + ∆ε, (17)

where p̃ = [IN − ρ̂MN ]p for p = {y, z}. The transformed model is used to derive the

final-stage SAB estimator:

θ̂SAB =
[
∆z̃′H̃SABÃSABH̃′

SAB∆z̃
]−1

∆z̃′H̃SABÃSABH̃′
SAB∆ỹ, (18)

where ÃSAB ≡
[
H̃′

SABGH̃SAB

]−1

and H̃SAB ≡ [IN − ρ̂MN ]HSAB.

3.2 Spatial Blundell-Bond Estimator

The standard Arellano-Bond estimator is known to be rather inefficient when instruments

are weak because it makes use of information contained in first differences of variables only.

10Kapoor, Kelejian, and Prucha (2007) derive six moment conditions, but only the first three conditions
are relevant for a model characterized by fixed effects.
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To address this shortcoming, the GMM approach of Blundell and Bond (1998) uses both

variables in levels and in first differences in one model. The spatial variant of Blundell and

Bond’s estimator (denoted by SBB) can be derived using the following model: y(t)

∆y(t)

 =

 z(t)

∆z(t)

θSBB +

 u(t)

∆u(t)

 , (19)

which can be expressed more compactly as:

ySBB(t) = zSBB(t)θSBB + uSBB(t), (20)

where ySBB(t) is a 2N × 1 vector. The Blundell-Bond structure doubles the number of

observations (i.e., 2N(T − 2)), which increases estimation efficiency. Again, we can use

the three-step spatial estimation procedure as set out in Section 3.1. In the first step, the

panel GMM estimator is derived:

θ̂SBB = [z′SBBHSBBASBBH′
SBBzSBB]

−1
z′SBBHSBBASBBH′

SBBySBB , (21)

where ASBB = [H′
SBBHSBB]−1 and HSBB is defined as:

HSBB =

 HD 0

0 HL

 . (22)

The upper left block of HSBB, denoted by HD, contains the instruments for the model in

first differences and the lower right block, HL, includes the instruments for the model in

levels. Note that diagonal structure of HSBB ensures that the instruments intended for

the variables defined in levels do not interact with the variables in first differences and vice

versa. The instrument matrix HD is based on the following moment conditions:

E[y(t− s)′∆v(t)] = 0, E[(WNy(t− s))′∆v(t)] = 0, E[H(t)′∆v(t)] = 0, (23)
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while HL is based on:

E[v(t− s)′∆y(t)] = 0, E[v(t− s)′WN∆y(t)] = 0, E[v(t− s)′∆H(t)] = 0, (24)

for t = 3, ..., T and s = 2, ..., T − 1. Compared to the SAB estimator, we consider an

additional set of dynamic instruments for the spatial lag, which are based on various time

lags of the spatially lagged dependent variable. Note that H(t) continues to include the

“static” instruments for the spatial lag, as defined above.

Taking T = 5, for example, gives the following upper left block of HSBB,

HD =


y(1) 0 0 WNy(1) 0 0 H(1)

y(2) y(1) 0 WNy(2) WNy(1) 0 H(2)

y(3) y(2) y(1) WNy(3) WNy(2) WNy(1) H(3)

 , (25)

and the lower right block

HL =


∆y(1) 0 0 WN∆y(1) 0 0 ∆H(1)

∆y(2) ∆y(1) 0 WN∆y(2) WN∆y(1) 0 ∆H(2)

∆y(3) ∆y(2) ∆y(1) WN∆y(3) WN∆y(2) WN∆y(1) ∆H(3)

 , (26)

The two instrument blocks of HSBB differ from the instruments in HSAB as follows. First of

all, the blocks of HSBB include dynamic instruments for the spatial lag [columns 4–6 of (25)

and (26)] in addition to the standard dynamic instruments (columns 1–3) and the static in-

struments for the spatial lag (column 7). Second, we operationalize the moment conditions

for both the time lag and the spatial lag of the endogenous variable differently,11 that is,

the moment conditions are instrumented by three instead of six dynamic instruments each

of which is more strongly correlated with the variable it intends to instrument. Relative

11Recall from Section 3.1 that the number of instruments suggested by Arellano and Bond (1991) tends
to explode for larger values of T . When used in short panels (i.e., T < 10) this need not be a problem,
but raises multicollinearity problems for larger time periods. One solution is to cut down on the number
of time lags used to instrument the time lag of the dependent variable. Alternatively, as pursued here, one
can opt to operationalize the moment conditions differently.
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to the operationalization of moment conditions used for HSAB, the new operationalization

reduces the total number of instruments (including the dynamic instruments for the spatial

lag) from 2 [(T − 2)(T − 1)/2 + (T − 2)(T − 1)/2 + 2K] to only 2(2T − 4 + 2K).12

Analogously to Section 3.1, the second stage of the estimation procedure uses ûSBB =

ySBB − zSBBθ̂SBB from the GMM panel procedure in the three moment conditions (14) to

arrive at ρ̂ and σ̂2
v . The value of ρ̂ is employed to transform the variables in the third step.

The SBB estimator of θ in the third stage is:

θSBB =
[
z̃′SBBH̃SBBÃSBBH̃′

SBBz̃SBB

]−1

z̃′SBBH̃SBBÃSBBH̃′
SBBỹSBB, (27)

where p̃ = [IN − ρ̂MN ]p for p = {ySBB, zSBB}. The instruments of the matrix H̃SBB are

defined as: H̃SBB = [IN − ρ̂MN ]HBB and ÃSBB =
[
H̃′

SBBH̃SBB

]−1

for t = 1, ..., T − 1.

4 Monte Carlo Simulations

To compare the performance of the estimators presented in Section 3, this section reports

a Monte Carlo experiment. The design of the Monte Carlo experiment is discussed first

before turning to the results.

4.1 Simulation Design

We report the small sample properties of the estimators using data sets generated based on

the dynamic model of Section 2. To this end, we set T = 5 and N = 60 in the benchmark

design. In generating the data, we follow a three-step procedure. First, we generate the

matrix of covariates, which includes only one exogenous variable, that is, x(t), which is an

N × 1 vector. Following Baltagi et al. (2007), the exogenous variable is defined as:

x(t) = ς + χ(t), ς ∼ iid U [−7.5, 7.5], χ ∼ iid U [−5, 5], (28)

12For T = 5 and K = 1, the number of instruments for both HD and HL are cut down by six compared
with the SAB operationalization.
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where ς represents the unit-specific component and χ(t) denotes a random component

drawn from a uniform distribution, U , defined on a pre-specified interval.

The second step generates the error component u(t) using:

η ∼ iid U [−1, 1], v ∼ iid N(0, IN), (29)

where N denotes the normal distribution. The third step generates data on the dependent

variable y(t) and the spatial lag, WNy(t). The data generation process is given by:

y(t) = (IN − δWN)−1 [
λy(t− 1) + βx(t) + (IN − ρMN)−1(η + v(t))

]
, (30)

for t = 2, ..., T and y(1) = η. The first 100 − T observations of the Monte Carlo runs

are discarded to ensure that the results are not unduly affected by the initial values (cf.

Hsiao, Pesaran, and Tahmiscioglu (2002).13 Following standard practice in the literature,

we use different weight matrices for the spatial lag and spatial error component, that is,

WN 6= MN . We use two randomly generated spatial weight matrices, which meet the

criteria set out in Section 2.

The parameters in (30) take on the following values in the data generation process.

The coefficient of the exogenous explanatory variable (β) is set to unity.14 The spatial

autocorrelation coefficient (ρ) is set to −0.3 in the simulations. A negative value of ρ

implies that an unobserved positive shock in the equation for spatial unit i reduces the

dependent variable in other spatial units i 6= j. We also consider alternative values of ρ,

that is, −0.4, −0.2, 0, 0.2, and 0.4; the zero value covers a data generation process based

on a pure spatial lag model. We set λ = 0.3 and δ = 0.5, so that the stationarity conditions

of Section 2 are satisfied. Finally, we perform some robustness tests with various values of

T ranging from 10 to 50.

13We have checked the robustness of the results with respect to changes in the initial values.
14Setting β = 1 is standard practice in the literature. Note that the model does not feature a common

intercept across all cross-sectional units.
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For each experiment, the performance of the estimators is computed based on 1, 000

replications. Following Kapoor, Kelejian, and Prucha (2007) and others, we measure per-

formance by the RMSE =
√

bias2 +
(

q1−q2

1.35

)2
, where bias denotes the difference between

the median and the “true” value of the parameter of interest (i.e., the value imposed in

the data-generating process) and q1 − q2 is the interquartile range (where q1 is the 0.75

quantile and q2 is the 0.25 quantile). If the distribution is normal, (q1 − q2)/1.35 comes

close (aside from a rounding error) to the standard deviation of the estimate.15 The RMSE

thus consists of the bias of the estimator (the first term) and a measure of the distribution

of the estimate (the second term).

In the simulations, we compare various estimators with each other. We use four different

types of GMM estimators all of which instrument the time lag of the dependent variable.

We use the Spatial Arellano-Bond estimator (labeled SAB) and Spatial Blundell-Bond

estimator (denoted SBB), which correct for spatial error correlation and apply appropriate

instruments for the spatial lag of the dependent variables (as discussed in Sections 3.1 and

3.2). In addition, we consider a Modified Arellano-Bond estimator (labeled MAB) and

a Modified Blundell-Bond estimator (labeled MBB), which instrument the spatial lag of

the dependent variable—using the standard static instruments suggested by Kelejian and

Robinson (1993)—but do not correct for spatial error correlation. We compare the GMM

estimators with the Modified Least Squares Dummy Variables (MLSDV) estimator, which

applies fixed effects and instruments the spatial lag with the static spatial instruments

(as defined in H(t)). Nickell (1981) shows that the regular LSDV estimator yields biased

estimates in the case of dynamic panels because it does not instrument the time lag of

the dependent variable. Although this bias approaches zero as the number of time periods

tends to infinity, it cannot be ignored in small samples.

15We have used the median instead of the mean in summarizing the distribution because the former is
less sensitive to outliers.
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4.2 Results

Table 1 reports the bias and RMSE in the parameters λ, δ, β, and ρ based on 1,000 repli-

cations for five estimators, that is, MLSDV, MAB, SAB, MBB, and SBB. The parameter

ρ is only estimated in case of the spatial estimators SAB and SBB, but features in the

data generation process in all cases. The left panel of the table shows the performance

of the estimators for various values of T , whereas the right panel considers performance

for various values of the spatially autoregressive coefficient in the data generation process.

The middle column of the right panel presents the case of zero spatial error correlation.

The bias in the coefficient of the lagged dependent variable (λ) is large and negative when

using the MLSDV estimator. For larger values of T the bias gets smaller rapidly. The bias

in λ is reduced if we use the MAB estimator or its full spatial variant, but it is still quite

large. The MBB/SBB estimators yield a substantial reduction in the bias. Surprisingly,

the MBB estimator yields a smaller bias than SBB. If T takes on larger values, this pattern

is reversed. In the benchmark simulation, the MAB estimator shows a larger bias than the

SAB estimator, but for larger T the SAB estimator performs better. The SBB estimator

performs consistently better than the MLSDV estimator for all considered values of T . In

estimating λ, the MBB/SBB estimators give rise to a smaller bias than the MAB/SAB

and MLSDV estimators across all values of ρ.

The bias in the spatial interaction coefficient (δ) when using the MLSDV estimator

is negative and in absolute terms much smaller than that for λ. Elhorst (2008b) finds a

similar result in his Monte Carlo simulations when using the CLSDV estimator. In contrast

to the negative bias obtained in δ when using the MLSDV estimator, the bias when using

the MAB/MBB and SAB/SBB estimators is positive in all cases. The bias in the latter

four estimators is smaller than that the absolute value of the bias when using the MLSDV

estimator. The bias in δ when using MAB, SAB, MBB, and SBB in the benchmark scenario

is on average 0.56 percent of the true δ value. This bias is much smaller than that found by
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Elhorst (2008b), who also uses a spatial GMM approach, but does not allow spatial error

correlation in the data generation process. Surprisingly, the MAB/MBB estimators yield a

smaller bias than their spatial variants. This pattern does not uphold, however, for larger

values of T . Again, the estimators based on Blundell and Bond’s approach (MBB/SBB)

perform better. Note that the MAB/MBB estimators yield a small bias for negative values

of ρ, which increases for positive values of ρ.

The MLSDV estimator again gives rise to the largest absolute bias in estimating β, but

it quickly outperforms the MAB/SAB estimators for larger values of T . The MAB/SAB

estimators yield a negative bias, whereas the bias of the MBB/SBB estimators is positive in

the benchmark specification. Just like for ρ, the bias in absolute terms of the MAB/MBB

estimators is smaller than that of their spatial counterparts. The differences in bias are

small, however.

In the benchmark scenario, the SBB estimator produces a smaller bias in ρ than the

SAB estimator. When using the SBB estimator for T = 5, the bias in ρ amounts to 5.33

percent of its true value.

Table 1 also reports the RMSE of the parameters λ, δ, β, and ρ. As expected, the

RMSE of each parameter decreases for larger values of T . Extending the time period from

5 to 60 reduces the RMSE by 76 percent on average. Not surprisingly, the fall in RMSE

is large when time periods are added starting from a small value of T ; a fall of 62 percent

on average materializes if T = 5 is extended to T = 20.

5 Conclusion

This paper has dealt with Generalized Methods of Moments (GMM) estimation of spatial

dynamic panel data models with spatially correlated errors. We extended the three-step

GMM approach of Kapoor, Kelejian, and Prucha (2007), which corrects for spatially cor-

17



related errors in static panel data models, by introducing a spatial lag and a one-period lag

of the endogenous variable as additional explanatory variables. Combining the extended

Kapoor, Kelejian, and Prucha (2007) approach with the dynamic panel data model GMM

estimators of Arellano and Bond (1991) and Blundell and Bond (1998) and supplement-

ing the dynamic instruments by lagged and weighted exogenous variables as suggested by

Kelejian and Robinson (1993) yielded new spatial dynamic panel data estimators.

Monte Carlo simulations indicated that differences in bias as well as root mean squared

error between spatial GMM estimates and corresponding GMM estimates in which spatial

error correlation is ignored are small. Choosing appropriate instruments for both the time

and spatial lag is sufficient to model the spatial characteristics in our setting.

In future research, we will add spatially weighted exogenous variables to the model.

Some preliminary analyses with the consumption tax data of Jacobs, Ligthart, and Vrijburg

(2009) suggest that including spatially weighted exogenous variables does indeed have an

impact.
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