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Abstract

We analyze the small sample properties of various correlation tests

in linear panel models with spatial autoregressive (SAR) or moving av-

erage (SMA) errors. The size distortions of some tests can be corrected

by applying Monte Carlo (MC) test versions of the statistics leading to

exact tests for spatial correlation, while the power remains the same.

For the SAR and the SMA specification, we apply the method, pro-

posed by Dufour (1990), to build exact confidence sets for the spatial

autocorrelation coefficient by “inverting” spatial (MC) correlation tests.

Furthermore, we develop upon our procedure a test based point estima-

tor. Simulation results show that for large time dimensions our estima-

tor do nearly perform as good as the Maximum Likelihood estimator

and better for some cases with SMA errors. Besides we deliver exact

confidence intervals for our estimates. It shows that Pesaran’s (2004)

CD test obtains exact inference even if the spatial weights matrix is

misspecified.
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1 Introduction

Several authors mention substantial computational problems of the Maximum

Likelihood (ML) estimator for spatial models if the cross-sectional dimension

is large (e.g. Kapoor et al., 2007, Anselin et al., 2008, Kelejian and Prucha,

1999). Kapoor et al. (2007) and Kelejian and Prucha (1999) circumvent

this problem for a SAR specification in the panel and cross-sectional case,

respectively. They suggest a generalized moments estimator for the spatial

autocorrelation coefficient and the variance components of the disturbance

process. A feasible generalized least squares (FGLS) procedure obtains an

efficient estimation of the regression parameters. However, they do not derive

the distributional properties of the autocorrelation parameter.

In this paper, we apply the method, proposed by Dufour (1990), to con-

struct exact confidence sets for the spatial autocorrelation coefficient in linear

panel models with spatial autoregressive (SAR) or moving average (SMA)

errors (Cliff and Ord, 1973, 1981, Anselin, 1988 and Anselin et al., 2008).

These sets are constructed by utilizing tests for correlation among the regres-

sion disturbances. To find the best performing test for obtaining exact and

as small as possible intervals, we consider small sample properties of various

correlation tests under several spatial specifications. The considered tests are

Pesaran’s (2004) CD test, the statistic proposed by Breusch and Pagan (1980)

and the LME statistic (Burridge, 1980), extended to the pooled regression

model (Anselin et al., 2008). As suggested by Pesaran (2004), we consider

also transformations of the CD and the Breusch and Pagan (1980) statistic

to test for local, in the sense of spatial correlation. Since most of the tests

have distorted sizes when the time dimension is small, we develop a Monte

Carlo (MC) test procedure. Results of Monte Carlo simulations show that this

procedure ensures the correct size of the tests, while the size adjusted power

remains the same.

Furthermore, we develop upon our procedure a test based estimator for

the spatial autocorrelation coefficient. The point and the interval estimator

are compared in a Monte Carlo simulation to the Maximum Likelihood (ML)

estimator (e.g. Anselin, 1988, Elhorst, 2003 and Mur and Angulo, 2007). Our

procedure obtains exact confidence intervals (CI), which are in some cases

on average smaller than the obtained intervals of the ML estimator. If the

spatial weights matrix is misspecified, the CI estimator, based on the CD test,

maintains the exact properties. The LME test based point estimator does
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nearly perform as good as the ML estimator and even better for some cases

with SMA errors.

The remainder of this paper is as follows: in Section 2 the spatial panel

model under the SAR and SMA specification is introduced. Section 3 presents

the method of constructing exact confidence intervals for the spatial autocor-

relation coefficient and its test based point estimator. The considered tests

and the MC test procedure are described in Section 4. In Section 5 the small

sample properties of the tests and estimators are discovered, and the latter are

compared to the ML estimator. Section 6 concludes.

2 The spatial panel model

The underlying model is the spatial panel error model (Cliff and Ord, 1973,

1981, Anselin, 1988 and Elhorst, 2003). Consider a pooled linear regression

model

yt = Xtβ + et, t = 1, ..., T, (1)

where yt is an N × 1 vector of observations of the dependent variable in time

t, Xt is an N × K matrix of observations of explanatory variables, β a K ×
1 vector of parameters and et an N × 1 vector of error terms. The cross-

sectional and time dimension is denoted by N and T, respectively. The spatial

interdependence is introduced through the error term affecting its covariance

structure. We consider two different specifications of the error term process.

The SAR specification

et = ρWet + εt, (2)

and the SMA specification

et = γWεt + εt, (3)

where W is a spatial weights matrix of dimension N × N with zero diagonal

and row normalized constants (such that each row sums to unity), ρ and γ

are the spatial autocorrelation coefficients with ρ ∈ (−1, 1) and γ ∈ (−1, 1)

(e.g. Mur and Angulo, 2007), and εt is an N × 1 vector of location specific

disturbance terms, with the following properties

E[εt] = 0, and E[εtε
′
t] = σ2

ε IN . (4)
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Alternatively, the error term of the SAR model can be expressed as

et = (IN − ρW )−1εt. (5)

The covariance matrix of et is given by

E[ete
′
t] = σ2

ε

[
IN − ρ(W + W ′) + ρ2W ′W

]−1
= ΩSAR, (6)

which is a non-sparse matrix for ρ 6= 0, suggesting that a shock in one location

is transmitted to other locations which are not directly connected to each

other. Due to the global effect of a shock, the spatial covariance structure in

this model is denoted as global (e.g. Anselin et al., 2008 and Fingleton, 2008).

For the SMA specification, the error terms become to

et = (IN + γW )εt, (7)

thus the covariance matrix is

E[ete
′
t] = σ2

ε

[
IN + γ(W + W ′) + γ2WW ′] = ΩSMA. (8)

If W is a first order contiguity matrix, the spatial covariance includes only

linkages between first and second order neighbors. Hence, in contrast to the

SAR model, the shock-effects are local.

In matrix form the model can be written as

y = Xβ + e, (9)

where the SAR error process become to

e =
[
IT ⊗ (IN − ρW )−1

]
ε (10)

and the SMA to

e = [IT ⊗ (IN + γW )] ε, (11)

where ⊗ denotes the Kronecker product, y = (y′1, ..., y
′
T )′ a (TN × 1) vector,

X = (X ′
1, ..., X

′
T )′ a (TN ×K) matrix, e = (e′1, ..., e

′
T )′ and ε = (ε′1, ..., ε

′
T )′ are

(TN × 1) vectors.
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3 Test based estimation

In this Section, we describe our test based estimation procedure. For ease

of illustration, in the following θ denotes the corresponding autocorrelation

parameter, ρ (SAR) and γ (SMA).

3.1 Exact confidence sets

To construct exact confidence sets for θ, we proceed from testing the following

hypotheses

H0 : θ = θ0 vs. H1 : θ 6= θ0, (12)

for all admissible values of θ0 ∈ (−1, 1). Common tests for spatial correlation

face only the case, where θ0 = 0. To test the more general problem (12) we

first specify the panel model under the null hypothesis. The SAR model is

specified as

y = Xβ +
[
IT ⊗ (IN − θ0W )−1

]
ε, (13)

whereas the SMA as

y = Xβ + [IT ⊗ (IN + θ0W )] ε. (14)

An efficient estimator of this model is the generalized least squares estimator

(GLS)

β̂
GLS

0 = (X∗′
0 X∗

0)
−1X∗′

0 y∗0, (15)

where X∗
0 and y∗0 denote the spatially filtered variables under H0. For the

SAR model the variables are filtered by

X∗
0 = [IT ⊗ (IN − θ0W )] X and y∗0 = [IT ⊗ (IN − θ0W )] y (16)

and for the SMA by

X∗
0 =

[
IT ⊗ (IN + θ0W )−1

]
X and y∗0 =

[
IT ⊗ (IN + θ0W )−1

]
y. (17)

If the null hypothesis is true, i.e. θ = θ0, the spatially filtered estimated

residuals

ε̂0 = y∗0 −X∗
0β̂

GLS

0 (18)

are spatially uncorrelated. In the other case, when θ 6= θ0, some spatial cor-

relation remains, and should be detected by any spatial correlation test. To
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test for (remaining) spatial correlation various tests for contemporaneous and

spatial correlation are considered (Section 4.1). Given any test statistic, T ,

of a two-sided test for testing H0 : θ = θ0, say T (θ0), the null hypothesis is

rejected when the observed value of the statistic, T̂ (θ0), exceeds the upper,

c1, or lower, c2, critical value, respectively. An exact confidence set for θ with

level 1−α is obtained by finding the set of admissible values of θ that are not

rejected by the test, e.g.

CI ts
T (α) =

{
θ0 ∈ S : c1 ≤ T̂ (θ0) ≤ c2

}
, (19)

where S = {θ : |θ| < 1}. For a one-sided test the exact confidence set becomes

to

CIos
T (α) =

{
θ0 ∈ S : T̂ (θ0) ≤ c1(θ0)

}
. (20)

So that values of θ0 are assigned to the confidence set, whose corresponding

p-values (when testing for H0 : θ = θ0) exceed the nominal level α.

3.2 Test based estimation

Based on this procedure a test based estimator, θ̂T , for θ is defined as the

particular θ0, where the test statistic, T (θ0), reaches its minimum, i.e.

θ̂T = arg min
θ0

{T (θ0)}, (21)

such that the remaining spatial correlation is minimized. The regression pa-

rameter vector, β, can be estimated via FGLS

β̂
FGLS

T = (X∗′
TX∗

T )−1X∗′
T y∗T , (22)

where the spatially filtered variables, X∗
T and y∗T , are obtained under SAR as

X∗
T =

[
IT ⊗ (IN − θ̂T W )

]
X and y∗T =

[
IT ⊗ (IN − θ̂T W )

]
y (23)

and under SMA as

X∗
T =

[
IT ⊗ (IN + θ̂T W )−1

]
X and y∗T =

[
IT ⊗ (IN + θ̂T W )−1

]
y. (24)
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4 Testing for correlation

4.1 Considered tests

In this Section we present the test statistics used to test, if the filtered residuals

(18) are spatially uncorrelated under H0 : θ = θ0.

CD test

The general version of Pesaran’s (2004) cross-sectional dependence test is given

by

CD0 =

√
2T

N(N − 1)

(
N−1∑
i=1

N∑
j=i+1

%̂0,ij

)
d−→ N(0, 1), (25)

where

%̂0,ij =

∑T
t=1 ε̂0,itε̂0,jt√∑T

t=1 ε̂2
0,it

∑T
t=1 ε̂2

0,jt

(26)

is the correlation coefficient of the filtered estimated residuals. The test is

valid for N and T tending to infinity. It does not need any spatial weights

specification. In the case, where N is relative large compared to T , the power

of the CD test can be enhanced by testing for local correlation. Only the

correlation among these residuals is considered which are expected to be cor-

related, because of their contiguity, prespecified by the spatial weights matrix.

Following Pesaran (2004), the test statistic (25) can be easily transformed to

CDW
0 =

√
2T

p

(
N−1∑
i=1

N∑
j=i+1

I(wij>0) %̂0,ij

)
d−→ N(0, 1), (27)

where p is the number of non-zero elements in W and I is an indicator function.

If W is a non-sparse matrix, this statistic is identical to (25).

BP test

Breusch and Pagan (1980) proposed the following Lagrange Multiplier statistic

BP0 = T

N−1∑
i=1

N∑
j=i+1

%̂2
0,ij

d−→ χ2
N(N−1)/2. (28)
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The test is valid for fixed N as T tends to infinity. Similarly to the CDW test

we transform this statistic to test for local correlation as

BPW
0 = T

N−1∑
i=1

N∑
j=i+1

I(wij>0)%̂
2
0,ij

d−→ χ2
p/2. (29)

LME test

As another test we use the LME statistic (Burridge, 1980), extended to the

pooled regression model (e.g. Anselin et al., 2008). It is given by

LME
0 =

[ε̂′0(IT ⊗W )ε̂0/(ε̂
′
0ε̂0/NT )]

2

T tr(W 2 + W ′W )

d−→ χ2
1. (30)

4.2 Monte-Carlo test procedure

Under H0 the distributions of the underlying test statistics, basing on the

spatially filtered residuals (18), are determined by ρ0, i.e. (under H0) a “true”

parameter. They are not depending on any nuisance parameters. Hence the

test statistics are pivotal and the technique of Monte Carlo (MC) testing can

be applied (Dwass, 1957, Barnard, 1963, Dufour and Khalaf, 2001 and Dufour,

2006). This is done, because of two reasons. On the one hand Anselin and

Rey (1991) and Florax and Rey (1995) show that the asymptotic distributions

of several tests for spatial correlation are sensitive to misspecification of the

spatial weights matrices. So, if the weights matrix is misspecified, the GLS

estimation (15) and the spatial filtering of X and y can deliver residuals which

are not asymptotically distributed as proposed theoretically under (12). On

the other hand in small sample sizes the tests’ asymptotic distributions are

not valid, leading to size distortions, which can be corrected by means of MC-

techniques.

The main idea behind the MC method is that critical values and their p-

values can be obtained by replacing the “theoretical” null distribution, F (T0),

through its simulation-based “estimate” (Dufour, 2006), which is given by

F̂R[T0; T (R)] =
1

R

R∑
j=1

I[0,∞)(T0 − Tj), (31)

where T0 is the sample test statistic and T (R) = (T1, ..., TR)′ are under H0
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simulated test statistics. To simulate these statistics, error terms, uj, are

drawn in the j-th replication from the normal distribution with N(0, 1). The

spatial dependence structure is introduced to the errors for the SAR model by

ej =
[
IT ⊗ (IN − θ0W )−1

]
uj (32)

and for the SMA model by

ej = [IT ⊗ (IN + θ0W )] uj. (33)

The j-th sample is then computed as

yj = Xβ̂
GLS

0 + ej, (34)

where β̂
GLS

0 is given by (15). The spatially filtered residuals of the j-th simu-

lated sample

ε̂j = y∗j −X∗
j β̂

GLS

j (35)

enter the test statistic and deliver Tj. The GLS estimator of the regression

coefficients of the j-th simulated sample, β̂
GLS

j , is analog to (15). This proce-

dure is done R times, where R is chosen to be sufficiently large. The p-value

is obtained by

p̂R(T0) =
RĜR(T0) + 1

R + 1
, (36)

where

ĜR[T0; T (R)] =
1

R

R∑
j=1

I[0,∞)(Tj − T0) (37)

is the corresponding sample function of the tail area.

5 Monte Carlo Simulation

5.1 Data Generation

The data generation is closely related to Anselin and Moreno (2003). We

consider two different spatial weights matrices, which are created by the rook

criterion and a full-distance method. A regular lattice is considered for both

weights generations. The rook criterion of contiguity is defined as: Wij = 1 for

regions that share a common side with the region of interest. The element Wij
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of the full-distance weights matrix contains the inverse of the distance between

region i and j. The distance is one if they share a common border, two if one

have to cross one region to reach from region j to region i, three if there are

two regions to cross, etc. However one cannot go diagonally.

We differentiate between two correct and two incorrect spatial weights spec-

ifications. When the data is generated by a spatial rook matrix which is also

used in the tests or estimation procedure, we call it “correct rook”. Accord-

ingly, we call it “correct full” if the full distance weights matrix is used for the

data generation and for testing or estimation. The spatial pattern is under-

specified when the data is generated by a full distance matrix, whereas we use

a rook matrix for estimation and testing. It is over-specified in the opposite

case.

The regression part of the model is β1 + β2xit, where β1 and β2 are set to

1, the xit are drawn at the beginning from U [10, 0] and are hold fix during the

experiment. The errors, ut, are drawn from N(0, 1). The spatial dependence

is introduced for the SAR model by et = (I − θW )−1ut and for the SMA by

et = (I + θW )ut. So the dependent variable is computed as

yt = ιβ1 + Xtβ2 + et,

where ι is an N × 1 vector of ones.

We consider three different sample sizes: the small sample case (T = 5,

N = 9), the case with an increased time dimension (T = 25, N = 9) and the

opposite case with an increased cross-sectional dimension (T = 5, N = 25).

5.2 Small sample properties of correlation tests

The small sample properties are considered for two different null hypotheses.

The first one is the usual null when testing for spatial correlation. It tests,

whether there is correlation, or not and is denoted as H1
0 : θ = θ0 = 0. The

second null tests for remaining spatial correlation in the case if the spatial

correlation is filtered out for θ0 = 0.3 and is denoted as H2
0 : θ = θ0 = 0.3. We

run 5,000 replications for each experiment. The number of replications in the

MC tests is 999.
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5.2.1 Size of the tests

The empirical rejection frequencies under the null hypotheses H1
0 and H2

0 are

provided by table 1 for the SAR and by table 2 for the SMA model. In the

case of testing for H1
0 : θ = θ0 = 0, we only consider the correct weights spec-

ifications, because of the absence of spatial correlation in the data generation

(θ = 0). This also means that there are no differences between the SAR and

SMA model. The results show that the asymptotic versions of almost all tests

under-rejects for all sample sizes the null significantly. Except the CDW and

LME test for the rook specification. The size distortion is corrected by means

of the MC procedure, obtaining rejection frequencies which are lying in the 95%

confidence interval [0.0438, 0.0562], constructed as [α ± 2
√

α(1− α)/5000],

α = 0.05.

If we consider the case when testing for remaining spatial correlation,

H2
0 : θ = θ0 = 0.3, we discriminate between the cases of correct and miss

specification of the spatial weights matrix. If the weights matrix is correct

specified, the sizes’ pattern over the tests is quite similar to the previous case

for the SAR and SMA model. Under a misspecified weights matrix all tests

have significant size distortions, except the MC version of the CD and, for the

case of overspecification, the CDW test, which is identical to the CD statistic if

a full weights matrix is used. Only in the SMA model with an under-specified

weights matrix it under-rejects the null significantly for the small sample size

and in the SAR model for large N when W is over-specified. The LME statis-

tic has the correct size in both models for the small sample size under an

over-specified weights matrix. With increasing T or N it over-rejects the null

significantly.

5.2.2 Size Adjusted Power of the tests

To make the power of the tests comparable, we compute the rejection frequen-

cies under the alternative with adjusted nominal levels, in such a way that

the empirical level for all tests is the same (Lloyd, 2005). We compute the

size adjusted power for two alternatives: H1
1 : θ 6= θ0 = 0, with θ = 0.3 and

H2
1 : θ 6= θ0 = 0.3, with θ = 0. The same specifications as before are used.

The results are given for the SAR model by table 3 and for the SMA model

by table 4. Two results are consistent for both models and all tests: there are

no differences between the asymptotic and MC versions of the tests, and all

statistics face stronger raises in power due to an increase of T rather of N .
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At first, the power of the tests under H1
1 are considered in detail. All tests

face higher power properties in the SAR than in the SMA model, whereas

the differences between the tests, the weights specifications and the sample

sizes are similar. Under a correct rook specification the power of the CD

and BP test is clearly dominated by its transformed versions, the CDW and

BPW test, respectively. The highest power is accomplished by the LME test,

followed by the CDW test. The difference becomes smaller under the full dis-

tance weights specification. For all specifications under H1
1 the CD and CDW

statistic outperforms the BP and BPW test, respectively. Underspecification

of the weights matrix leads to a power loss for the LME and CDW statistic,

whereas the CD and BP test are unaffected and the power of the BPW test

even slightly increases. In this case, the CD statistic faces the highest power,

irrespectively of the sample size. If the weights matrix is over-specified, the

LME test is the most powerful test, however, it looses its power compared to

the correct rook case.

If we testing against H2
1 under a correct specification, the LME statistic has

the highest power for the SAR and SMA model for all sample sizes. Under the

correct rook weights matrix, all statistics have higher power than for the case

of testing against H1
1 , except the CD test looses its power, even completely

for small T . Under the full weights matrix the power of all tests decrease

compared to H1
1 . If the spatial weights matrix is under-specified, the LME

statistic remains the most powerful test. In the SMA model, the adjusted

rejection frequencies cannot be computed for the MC version of the CDW test

in the case of T = 25 and N = 9, and for the LME statistic for both large

sample sizes, because the size distortions are too large to obtain values different

from zero. In the case of overspecification the CD test has the highest power

for large T . For large N all tests loose its power completely.

5.3 Estimation properties

The MC simulations are run with 1,000 replications. To obtain the confidence

intervals and the point estimators for θ, we apply a grid search from θ0 ∈
(−0.99, 0.99) in a step of 0.01. The number of replications for the MC tests

is the same as above, i.e. 999. The properties of our test based estimator are

compared to the corresponding ML estimator of the SAR (e.g. Anselin, 2008

and Elhorst, 2003) or SMA (e.g. Mur and Angulo, 2007) model, respectively.

Its interval estimates are truncated upward to 0.99 and downward to -0.99 if
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the upper or lower bounds exceed or fall below this values, respectively.

5.3.1 Confidence interval estimation

First, we consider the CI estimation properties under correct specified weights

matrices. Table 5 and 6 contain the coverage and in brackets the average length

of the CI for θ for the SAR and SMA model, respectively. For both models,

the test based CI’s, applying the MC procedure, show an exact coverage of the

desired level, i.e. 95%, and smaller average lengths than the CI’s basing on the

asymptotic tests. Only the intervals of the MC versions of the BP and BPW

statistic cover the true parameter too often in the case when T is large. Under

the correct rook specification and large N the coverage of the MC version of

the BPW test is about 97% and thus exceeds the 95% coverage as well. The

CI’s basing on the asymptotic versions of the LME and the CDW test do not

yield an exact coverage only under the correct full distance weights matrix for

the samples with small T . Similar to the results of the power analysis, under a

correct rook specification the transformed statistics, the CDW and BPW test,

obtain on average smaller CI’s than the CD and BP test, respectively. In the

SAR model the coverage of the ML estimator is exact 95% for all sample sizes

and specifications. The average length of the intervals are the smallest for the

small sample case under both correct weights matrices and for large N under

the correct full distance matrix. In the other scenarios the CI’s basing on

the LME test are the smallest intervals. In the SMA model specification the

ML estimator worsen its performance. Only for large N and θ = 0 under the

correct rook specification the coverage is 94.7% and can be regarded as exact.

For all other cases the coverage is much lower than 95%. The lowest coverage,

77.4%, is obtained under the full distance weights matrix in the small sample

case and θ = 0. Whereas in many cases the exact intervals of the LME and

CDW test are on average smaller than the ones of the ML estimator.

In the case when the spatial weights matrix is misspecified we only consider

the case of θ = 0.5. Table 7 and 8 show the results for the SAR and the SMA

model, respectively. The coverage for almost all CI’s is far from exact. Only

the CI basing on the MC version of the CD test has a coverage of around 95%.

Except for two cases: if the weights matrix is over-specified in the SAR model

in the small sample, the coverage is 97.4% and if the weights matrix is under-

specified in the SMA model in the large T sample, the coverage is 93.5%. The

CI’s basing on the asymptotic version of the BP test are around 95% in the

SAR model. Only for large T and under-specified weights matrix it is far from
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the desired level. The coverage of the ML estimator is for both models much

lower than 95% in the case of underspecification. The lowest value, 2.3%, is

obtained for large T in the SAR model. If the matrix is over-specified, the

performance of the ML estimator improves. In the SAR model the coverage

is around 98% and exact for large N . It is also exact for the small sample

size in the SMA model and 97.6% for large N . For large T the CI covers only

in 38.9% the true value of θ. In the cases where the ML estimator obtains

useful intervals, i.e. its coverage is around 95%, the average length of the ML

estimator’s CI is much smaller than the intervals based on the MC version

of the CD test. However, these intervals are nearly exact and robust for all

specifications.

5.3.2 Point estimation

Table 9 and 10 show the standardized root mean squared error (RMSE) and

in brackets the bias of the estimated θ under the SAR and SMA specification,

respectively. The RMSE is divided though the corresponding RMSE of the

ML estimator. Under correct specified weights matrices the estimator basing

on the LME statistic has the smallest RMSE of all test based estimators.

However, in the SAR model they all are outperformed from the ML estimator,

whereas the bias of the LME test based estimator is quite similar to the one

of the ML estimator. In the SMA model, there are several situations, where

the estimator basing on the LME test obtains the smallest RMSE. If the

weights matrix is misspecified, in the SAR model the ML estimator remains

the best performing estimator. Only in the case of underspecification and for

large T , the CD and BP test based estimators obtain smaller RMSE’s. In

the SMA model, the ML estimator is outperformed for all sample sizes by

the LME test based estimator, irrespectively if the weights matrix is over- or

under-specified. For large T all test based estimators have smaller RMSE’s

than the ML estimator.

6 Conclusion

In this paper, we apply the method, proposed by Dufour (1990), to construct

exact confidence sets for the spatial autocorrelation coefficient in linear panel

models with SAR or SMA errors (Cliff and Ord, 1973, 1981, Anselin, 1988

and Anselin et al., 2008). We utilize tests for contemporaneous and spatial
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correlation among the regression disturbances. Furthermore, we develop upon

our procedure a test based estimator for the spatial autocorrelation coefficient.

To indicate the best performing test we run simulation experiments under

several spatial specifications. For the SAR as well as for the SMA model,

results show that almost all tests have distorted sizes, which can be corrected

by applying an MC test procedure, while the size adjusted power remains the

same. We indicate the LME statistic (Burridge, 1980), extended to the pooled

regression model (Anselin et al., 2008), as the most powerful test if the spatial

weights matrix is correct specified.

The point and the interval estimator are compared in a Monte Carlo sim-

ulation to the ML estimator (e.g. Anselin, 1988, Elhorst, 2003 and Mur and

Angulo, 2007). Under correct spatial weights specification the coverage of the

CI’s basing on the MC versions of almost all considered statistics is exact to

the desired level for both models, SAR and SMA. Whereas in the SMA model

the ML estimator obtains intervals which are far from the desired level. The

CI’s basing on the LME test are the smallest of the test based intervals. Under

misspecification of the spatial weights matrix the MC version of the CD test

show the best performance and obtain for almost every scenario exact coverage

of the CI’s. Thus, the CD test is a robust tool for constructing exact CI’s,

particularly if the time dimension is large. The test based point estimator

basing on the LME statistic does nearly perform as good as the ML estimator

and even better for some cases with SMA errors, particularly if the weights

matrix is misspecified.

Finally, we show an alternative to make exact inference for the spatial

autocorrelation coefficient in linear panel models, even if the spatial weights

matrix is misspecified. For future research it would be of interest to extend the

approach to fixed and random effects specifications, as well as to consider a

dynamic panel model and models containing spatially lagged dependent vari-

ables. Our procedure can also applied to the cross-sectional case by using

appropriate spatial correlation tests.
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Table 9: RMSE(θ) and BIAS(θ) [SAR]

[estim; data] [N; T] θ CD CDW BP BPW LME ML

[r; r] [9; 5] 0 3.0814 1.1717 2.3965 1.6877 1.0866 1.0000
“correct [-0.3146] [-0.0358] [-0.0191] [-0.0517] [-0.0382] [-0.0354]
rook” 0.5 2.8979 1.1290 2.2251 1.6133 1.0482 1.0000

[-0.2294] [-0.0330] [-0.0416] [-0.0319] [-0.0332] [-0.0581]
[9;25] 0 2.1719 1.0599 1.1890 1.0615 1.0160 1.0000

[-0.0547] [-0.0093] [-0.0086] [-0.0092] [-0.0092] [-0.0090]
0.5 1.5038 1.0878 1.2091 1.1070 1.0504 1.0000

[-0.0299] [-0.0081] [-0.0157] [-0.0093] [-0.0077] [-0.0123]
[25; 5] 0 4.4785 1.1406 3.6774 1.5844 1.0302 1.0000

[-0.2807] [-0.0115] [0.0004] [-0.0084] [-0.0120] [-0.0117]
0.5 4.6783 1.1639 3.6157 1.7303 1.0541 1.0000

[-0.2175] [-0.0102] [-0.0173] [ 0.0000] [-0.0099] [-0.0201]

[f; f] [9; 5] 0 1.3482 1.3482 1.6633 1.6633 1.0973 1.0000
“correct [-0.3071] [-0.3071] [-0.0490] [-0.0490] [-0.2246] [-0.2021]

full” 0.5 1.3153 1.3153 1.7114 1.7114 1.0247 1.0000
[-0.1899] [-0.1899] [-0.1364] [-0.1364] [-0.1407] [-0.1483]

[9;25] 0 1.1886 1.1886 1.2554 1.2554 1.0132 1.0000
[-0.0514] [-0.0514] [-0.0493] [-0.0493] [-0.0373] [-0.0369]

0.5 1.0654 1.0654 1.2619 1.2619 1.0067 1.0000
[-0.0270] [-0.0270] [-0.0357] [-0.0357] [-0.0221] [-0.0244]

[25; 5] 0 1.4654 1.4654 2.1805 2.1805 1.0657 1.0000
[-0.2614] [-0.2614] [0.0186] [0.0186] [-0.1549] [-0.1462]

0.5 1.4445 1.4445 2.1278 2.1278 1.0354 1.0000
[-0.1705] [-0.1705] [-0.0760] [-0.0760] [-0.1037] [-0.1157]

[r; f] [9; 5] 0.5 1.3504 1.0363 1.4149 1.2070 1.0212 1.0000
“under- [-0.1917] [-0.2226] [-0.2036] [-0.2358] [-0.2279] [-0.2144]
spec” [9;25] 0.5 0.4970 1.1260 0.9465 1.1548 1.1413 1.0000

[-0.0266] [-0.1745] [-0.1346] [-0.1800] [-0.1785] [-0.1492]
[25; 5] 0.5 1.1030 1.0255 1.3502 1.0802 1.0231 1.0000

[-0.1760] [-0.3081] [-0.2559] [-0.3108] [-0.3118] [-0.3007]

[f; r] [9; 5] 0.5 2.0886 2.0886 2.4503 2.4503 1.0769 1.0000
“over- [-0.2374] [-0.2374] [-0.0464] [-0.0464] [-0.0018] [-0.0821]
spec” [9;25] 0.5 1.6570 1.6570 3.1389 3.1389 1.6559 1.0000

[-0.0583] [-0.0583] [0.0449] [0.0449] [0.0806] [0.0103]
[25; 5] 0.5 3.2051 3.2051 3.9188 3.9188 2.7580 1.0000

[-0.2359] [-0.2359] [0.1014] [0.1014] [0.3112] [0.0638]

Notes: 1,000 replications; estimated with grid of 0.01 and RMC = 999; f denotes the use of a full distance

weight matrix, r the use of a rook weight matrix; numbers in brackets denotes the average length of the

confidence intervals

26



Table 10: RMSE(θ) and BIAS(θ) [SMA]

[estim; data] [N; T] θ CD CDW BP BPW LME ML

[r; r] [9; 5] 0 1.8922 0.9888 1.7394 1.2722 0.9160 1.0000
“correct [-0.1966] [-0.0374] [-0.0393] [-0.0502] [-0.0393] [-0.0423]
rook” 0.5 3.2956 1.0761 2.1879 1.5065 1.0094 1.0000

[-0.2984] [-0.0358] [-0.0830] [-0.0551] [-0.0350] [-0.0132]
[9;25] 0 1.8174 1.0303 1.2057 1.0372 0.9877 1.0000

[-0.0381] [-0.0094] [-0.0091] [-0.0094] [-0.0091] [-0.0093]
0.5 2.9018 1.1001 1.2298 1.1184 1.0587 1.0000

[-0.0593] [-0.0080] [-0.0017] [-0.0062] [-0.0076] [-0.0031]
[25; 5] 0 3.0096 1.0687 2.6817 1.4233 0.9680 1.0000

[-0.1715] [-0.0118] [ 0.0041] [-0.0097] [-0.0121] [-0.0125]
0.5 5.3309 1.1410 3.3758 1.5718 1.0344 1.0000

[-0.2835] [-0.0108] [-0.0755] [-0.0153] [-0.0099] [-0.0004]

[f; f] [9; 5] 0 1.0795 1.0795 1.5468 1.5468 0.9369 1.0000
“correct [-0.1680] [-0.1680] [-0.0318] [-0.0318] [-0.1401] [-0.1431]

full” 0.5 1.1523 1.1523 1.3094 1.3094 0.9519 1.0000
[-0.2399] [-0.2399] [-0.2086] [-0.2086] [-0.1771] [-0.1594]

[9;25] 0 1.0970 1.0970 1.2799 1.2799 0.9839 1.0000
[-0.0325] [-0.0325] [-0.0325] [-0.0325] [-0.0258] [-0.0259]

0.5 1.2097 1.2097 1.2082 1.2082 1.0018 1.0000
[-0.0464] [-0.0464] [-0.0355] [-0.0355] [-0.0335] [-0.0273]

[25; 5] 0 1.1615 1.1615 2.0496 2.0496 0.9405 1.0000
[-0.1348] [-0.1348] [0.0869] [0.0869] [-0.0915] [-0.0921]

0.5 1.2587 1.2587 1.5232 1.5232 0.9592 1.0000
[-0.2214] [-0.2214] [-0.1355] [-0.1355] [-0.1289] [-0.1133]

[r; f] [9; 5] 0.5 1.3831 1.0050 1.2674 1.1096 0.9902 1.0000
“under- [-0.3164] [-0.2991] [-0.3210] [-0.3127] [-0.3020] [-0.3047]
spec” [9;25] 0.5 0.6215 0.9570 0.9781 0.9624 0.9615 1.0000

[-0.1157] [-0.2597] [-0.2642] [-0.2611] [-0.2619] [-0.2746]
[25; 5] 0.5 1.2303 0.9980 1.2054 1.0368 0.9925 1.0000

[-0.3051] [-0.3599] [-0.3577] [-0.3615] [-0.3617] [-0.3655]

[f; r] [9; 5] 0.5 1.1724 1.1724 1.3110 1.3110 0.8142 1.0000
“over- [-0.2530] [-0.2530] [-0.0868] [-0.0868] [0.0789] [0.2116]
spec” [9;25] 0.5 0.4856 0.4856 0.9838 0.9838 0.6834 1.0000

[-0.0521] [-0.0521] [0.3734] [0.3734] [0.2480] [0.4141]
[25; 5] 0.5 1.0791 1.0791 1.2350 1.2350 0.8893 1.0000

[-0.2430] [-0.2430] [0.0349] [0.0349] [0.3524] [0.4437]

Notes: 1,000 replications; estimated with grid of 0.01 and RMC = 999; f denotes the use of a full distance

weight matrix, r the use of a rook weight matrix; numbers in brackets denotes the average length of the

confidence intervals
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