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Abstract

This paper derives several Lagrange Multiplier statistics and the correspond-
ing likelihood ratio statistics to test for spatial autocorrelation in a fixed effects
panel data model. These tests allow discriminating between the two main types
of spatial autocorrelation which are relevant in empirical applications, namely
endogenous spatial lag versus spatially autocorrelated errors. In this paper, five
different statistics are suggested. The first one, the joint test, detects the pres-
ence of spatial autocorrelation whatever its type. Hence, it indicates whether
specific econometric estimation methods should be implemented to account for
the spatial dimension. In case they need to be implemented, the other four
tests support the choice between the different specifications, i.e. endogenous
spatial lag, spatially autocorrelated errors or both. The first two are simple
hypothesis tests as they detect one kind of spatial autocorrelation assuming the
other one is absent. The last two take into account the presence of one type
of spatial autocorrelation when testing for the presence of the other one. We
use the methodology developed in Lee and Yu (2008) to set up and estimate
the general likelihood function. Monte Carlo experiments show the good per-
formance of our tests. Finally, they are applied to the Feldstein-Horioka puzzle.
They indicate a misspecification of the investment-saving regression due to the
omission of spatial autocorrelation. The traditional saving-retention coefficient
is shown to be upward biased. In contrast our results favor capital mobility.
JEL Classification: C12, C21, C23
Keywords: Spatial Autocorrelation; Panel Data; Hypothesis Tests

1 Introduction

In the past decade, spatial econometric models designed to deal with spatial auto-
correlation and heterogeneity have been mainly developed within the framework of
cross-sectional data (Anselin, 1988a; Anselin and Bera 1998; Anselin, 2006). Estima-
tion methods and hypothesis tests have been extensively studied in the econometric
literature. Lee (2004) presents a comprehensive investigation of the asymptotic prop-
erties of the maximum likelihood estimators widely used in the literature to estimate
spatial models. Kelejian and Prucha (1998, 1999) and Conley (1999) propose general-
ized method of moments as an alternative estimation method. Various test statistics,
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mainly based on the Lagrange Multiplier (LM) principle, have been elaborated in
Anselin et al. (1996) and Anselin (2001). Those spatial econometric tools have been
successfully applied in the economic literature to highlight significant spatial effects
in many fields such as growth economics1 (Conley and Ligon, 2002; Ertur and Koch,
2007), international economics (Baltagi et al., 2007b, 2008), labor economics (Con-
ley and Toppa, 2002), public economics (Brueckner, 1998, 2003) agricultural and
environmental economics (Anselin et al. 2004; Bell and Bockstael, 2000; Murdoch
et al., 1997) etc. It is now widely known that ignoring spatial effects when they are
actually present leads, at best, to inefficient OLS estimators and biased statistical
inference and, at worst, to biased and inconsistent OLS estimators.2

Although Anselin (1988a, chapter 10, p.137-168) also proposed an early study of
spatial panel data models, it is only recently that an increasing interest is emerging
in the econometric literature calling into question the typical cross-sectional inde-
pendence assumption in panel data models (Elhorst, 2003 ; Anselin et al., 2008 ; Yu
et al. 2008 ; Lee and Yu, 2008, 2009). Panel data models are primarily designed
to deal with individual heterogeneity, which can of course be inherently spatial, but
not with individual interactions or spatial autocorrelation. In other words, in the
fixed effects framework, heterogeneity due to individual characteristics, for instance
“absolute” geographical localization, is easily taken into account by demeaning. How-
ever heterogeneity due to differentiated feedback effects, originated in cross-section
interactions, based, for instance, on “relative” geographical localization of individuals
with respect to each other, cannot be dealt with and requires explicit modeling of
spatial autocorrelation. We label the latter type of heterogeneity interactive hetero-
geneity, genuinely spatial by nature, to avoid confusion with what is traditionally
called spatial heterogeneity in the literature, which is actually standard individual
heterogeneity coming from spatial structural instability in coefficients or residual
variance. Spatial panel data models are exactly designed to deal with both type of
heterogeneity: pure individual heterogeneity captured by fixed effects and interac-
tive heterogeneity captured by impact coefficients or elasticities computed from the
reduced form of the spatial autoregressive model taking into account the interaction
structure between individuals.

To the best of our knowledge, Baltagi et al. (2003) are the first to propose to
the applied researcher a joint test and two conditional LM tests as well as the cor-
responding likelihood ratio tests (LR) for the spatial error component model. The
joint statistic simultaneously tests for the existence of spatial error correlation and
random individual effects. The conditional statistics test for the existence of spatial
error correlation assuming the presence of random individual effects or for the exis-
tence of random individual effects assuming the presence of spatial error correlation.
Baltagi et al. (2007a) generalize these tests by deriving new test statistics that also
consider the problem of serial correlation in the remainder error term. Finally, Balt-
agi and Liu (2008) allow for autoregressive spatial lag dependence in the dependent
variable rather than the error term.

However none of those tests are designed to discriminate between the two types
of spatial autocorrelation that may be relevant in applied models, namely spatially
autocorrelated errors versus spatially lagged endogenous variable. This is precisely
the aim of this paper in the framework of fixed effects spatial panel data model.

To be more precise, let us consider the classical linear model for the time period
1See Rey and Le Gallo (2009) for a recent survey.
2LeSage and Pace (2009) present the state of the art in spatial econometric techniques.
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t: Yt = Xtβ+Ut, where Yt represents the n×1 vector of the dependent variable for
all individuals, Xt is the n×k matrix of covariates and Ut is the error term. The first
type of spatial autocorrelation usually takes the form of a simple first order spatial
autoregressive process on the error term: Ut = λWUt + Vt where W is the n × n
row-standardized interaction or spatial weight matrix, λ represents the intensity
of spatial correlation between residuals and Vt is a n × 1 vector of well behaved
disturbances. This model, labeled SEM, is characterized, in reduced form, by a
global spatial diffusion of a random shock. The second type of spatial autocorrelation
usually takes the form of the first order spatial autoregressive model, labeled SAR:
Yt = ρWYt + Xtβ + Ut where WYt is the n× 1 vector of the endogenous spatial
lag variable representing the spatially weighted mean of neighboring Yt values, ρ
is the spatial autoregressive parameter and Ut is a n × 1 vector of well behaved
disturbances. Needless to say that the latter type of modeling spatial dependence
may be theoretically founded and may be derived from structural equations as shown,
for instance, in Ertur and Koch (2007, 2008) in the framework of the neo-classical
and Schumpeterian growth theories. Note also, that in contrast to the former model,
the latter allows, in reduced form, for full interactive heterogeneity of the impact
coefficients or elasticities by means of the so called global spatial multiplier effect
in addition to the global spatial diffusion property of a random shock (Anselin,
2003). Finally, it is also possible to consider a model with both types of spatial
autocorrelation: Yt = ρWYt +Xtβ+Ut where Ut itself follows of first order spatial
autoregressive process: Ut = λMUt+Vt where M is a spatial weight matrix, which is
often identical to W in empirical settings. This general model, labeled SARAR(1,1),
exhibits the same properties as the previous spatial autoregressive model in terms of
interactive heterogeneity, although the global spatial diffusion process of a random
shock is here more complex.

The aim of this paper is therefore to assess whether spatial autocorrelation is
present in the sample considered and in the affirmative, to identify the most appro-
priate spatial specification as this appears to be a crucial point from the modeling
perspective of individual versus interactive heterogeneity. Five different LM and the
corresponding LR tests statistics are provided. The joint test detects the presence
of spatial autocorrelation whatever its type. Hence, it indicates whether specific
econometric estimation methods should be implemented to account for the spatial
dimension. In the case they need to be implemented, the other four tests support the
choice between the different spatial specifications, i.e. a model with an endogenous
spatial lag variable, a spatially autocorrelated error process or both. The first two
are simple hypothesis tests as they detect only one type of spatial autocorrelation
assuming the absence of the other one. The last two account for the possible pres-
ence of one type of spatial autocorrelation when testing for the presence of the other
one. We use the methodology recently developed in Lee and Yu (2008) to set up the
likelihood function of the fixed effects spatial panel data model. Some Monte Carlo
experiments show the good performance of our tests in various settings.

Finally, an empirical application of our tests is provided in the framework of
the well-known Feldstein-Horioka puzzle based on the strong empirical evidence of
high correlation between domestic saving and domestic investment rates (Feldstein
and Horioka, 1980). Actually, using our tests, we find evidence of significant spatial
autocorrelation in the form of an endogenous spatial lag variable in the fixed effects
spatial panel data specification. This result has major implications: first from the
econometric perspective, the usual within estimator is thus biased and inconsistent.
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Second, individual and interactive heterogeneity are therefore both of interest. To
be more precise the reduced form of the specification should be used to compute
the heterogeneous impact coefficients, which reflect both direct effects including own
spillovers and indirect effects, i.e. spillovers. In other words, a change in the saving
rate in one country, say country i, affects the investment rate of that country i,
which in turn affects the investment rates of other countries, which then feed back
to the investment rate of country i. Estimation of the SAR fixed effects panel data
model shows a significant drop in the mean of the heterogeneous saving-retention
coefficients, which reflect the direct effect including own-spillovers. Moreover, we find
strong evidence in favor of indirect spillovers effects, which are all significant. Our
econometric results favor therefore capital mobility in contrast to most of the previous
results obtained in the literature. Furthermore, they thus underline the importance
of properly testing for spatial autocorrelation and estimating the adequate spatial
econometric specification when using fixed effects panel data models.

The remainder of the paper is organized as follows: section 2 presents the fixed
effects spatial panel data model, the general framework used and the test statistics
proposed. All derivations are relegated to the appendix. Section 3 presents the
performance of the tests by using Monte Carlo simulations. Section 4 presents the
application of our tests to the Feldstein-Horioka puzzle. The last section concludes.

2 The model and the test statistics

Our benchmark model, elaborated by Lee and Yu (2008), combines a spatial au-
toregressive model with spatially autocorrelated disturbances of order (1,1), labeled
SARAR(1,1), in a fixed effects spatial panel data setting:

Yn,t = ρWnYn,t + Xn,tβ + µn + Un,t (1)
Un,t = λMnUn,t + Vn,t t = 1, . . . , T

where Yn,t = (y1,t, y2,t, ..., yn,t) is the n × 1 vector of the dependent variable for
all individuals in period t, Xn,t is the n × k matrix of exogenous variables, β is
the associated vector of unknown regression coefficients to be estimated. Vn,t =
(v1,t, v2,t, ..., vn,t) is the innovation term, vi,t is i.i.d. across i and t with zero mean
and variance σ2, and µn is the vector n × 1 of individual fixed effects. Wn and
Mn are n × n non-stochastic matrices typically referred to as interaction or spatial
weight matrices, ρ and λ are the unknown spatial autoregressive parameters to be
estimated. Our analysis also allows for Wn = Mn, which will be frequently the case
in applications.

Without loss of generality, we assume that, Wn and Mn are row-normalized.
According to Lee and Yu (2008, p.4), it first allows to consider as parameter space
for both ρ and λ a compact subset of (−1, 1).3 Secondly, referring to Anselin and Bera
(1998, p.243): “it facilitates the interpretation of operations with the weight matrix
as an averaging of neighbouring values.” For the sake of simplicity, we also assume
the same interaction pattern for all time periods (i.e. constant weight matrices over
time). We consider fixed effects for individuals only and assume SAR errors in the

3If the spatial weight matrix, for any reason, is not row-standardized, we can find a re-
parametrization that ensures the compactness of the parameter space (see Kelejian and Prucha,
2008).
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idiosyncratic term.4 Finally, since we are interested in the spatial dimension of the
model, the sample is arranged first by period and second by individual.5

The assumptions underlying the asymptotic properties of (quasi) maximum like-
lihood estimators for the SARAR(1,1) model are developed and discussed in Yu
et al. (2008) and Lee and Yu (2008) in the panel data setting. Let us define
Sn(ρ) = (In− ρWn) and Rn(λ) = (In− λMn). A version of this set of assumptions
adapted to normal disturbances is presented below:

Assumption 1. Wn and Mn are non-negative and non stochastic interaction ma-
trices and are fixed through time. Moreover wii = 0 and mii = 0, for i = 1, . . . , n.6

Finally, both matrices are assumed to be uniformly bounded in row and column sums
in absolute value.

Assumption 2. Sn(ρ) and Rn(λ) are invertible for all ρ and λ in a compact subset
of (−1, 1). Sn(ρ)−1 and Rn(λ)−1 are also uniformly bounded in row and column
sums in absolute value for all ρ and λ in a compact subset of (−1, 1).

Assumption 3. The disturbances vi,t are normally, identically and independently
distributed across i and t with zero mean and variance σ2.

Assumption 4. The regressor matrix X has full column rank, and its elements are
non stochastic and uniformly bounded in n and t. The limit of 1

nT

∑T
t=1(Xn,t −

Xn,T )′(Xn,t − Xn,T ) exists and is non singular, where Xi,T = 1
T

∑T
t=1 Xi,t is the

time average for individual i.

Under this set of assumptions, for each period t, the model can then be rewritten
as follows in reduced form:

Yn,t = Sn(ρ)−1Xn,tβ + Sn(ρ)−1µn + Sn(ρ)−1Rn(λ)−1Vn,t,

The variance-covariance matrix of the error term Un,t is then:

E(Un,tU′
n,t) = σ2Sn(ρ)−1Rn(λ)−1(Rn(λ)−1)′(Sn(ρ)−1)′,

with σ2In, the variance-covariance matrix of the homoskedastic normal multivariate
disturbance Vnt.

We follow the methodology developed by Lee and Yu (2008) to formulate the
likelihood function. These authors do not apply the typical within transformation
to the data to wipe out the individual effects. They show that even though the
direct (within) approach developed in Elhorst (2003) provides consistent ρ and β
coefficients, the variance of the disturbances is not consistently estimated when T is
small but n is large (see Lee and Yu, 2008, and 2009). These authors exploit the
properties of eigenvectors to transform data in such a way that individual effects still
get removed but the variance of the transformed error term is consistently estimated.
Let us recall that the within estimation applies the demeaning operator JT = (IT −
1
T ιT ι′T ) to the original data set and estimates the transformed model. Lee and
Yu (2008) define [FT,T−1

1√
T

ιT ] as the orthonormal matrix of the eigenvectors of

4Kapoor et al. (2007) suggest an alternative framework where both the error term and individual
effects are assumed to be spatially autocorrelated.

5In other words, i is the fast moving index whereas t is the slow moving one.
6This normalization assumption implies some simplifications in the interpretation of spatial

parameters since self-influence is excluded in practice, see Yu et al. (2008, p.120).
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the demeaning operator, with FT,T−1 the T × (T − 1) matrix of eigenvectors of JT

corresponding to eigenvalues equal to 1 and ιT , a T ×1 vector of ones. The suggested
transformation applies the F matrix to the original data set: Y∗

n,1
...

Y∗
n,T−1

 = (F
′
T,T−1 ⊗ In)

 Yn,1
...

Yn,T

 .

Hence, the transformed sample is shrunk of one period of time. Our benchmark
model thus becomes:

Y∗
n,t = ρWnY∗

n,t + X∗
n,tβ + U∗

n,t (2)
U∗

n,t = λMnU∗
n,t + V∗

n,t t = 1, . . . , T − 1.

Let us look how the variance-covariance matrix of the transformed disturbance, V∗
n,t

is affected by this "pseudo-within" transformation. As V∗
n,t is a linear transformation

of the original disturbance, its mean remains 0 and its variance-covariance matrix is:

E(V∗V∗′) =

 V∗
n,1
...

V∗
n,T−1

 (
V∗

n,1 . . . V∗
n,T−1

)
= σ2(F

′
T,T−1 ⊗ In)(FT,T−1 ⊗ In) = σ2In(T−1).

Two results can be highlighted: the variance-covariance matrix is well-defined and v∗i,t
are independent for all i and t since normality is assumed. Denoting θ′ = [β′, ρ, λ, σ2]
and η′ = [β′, ρ, λ], we can write the log-likelihood function as follows:

L(θ) = −n(T − 1)
2

ln 2π − n(T − 1)
2

lnσ2 + (T − 1) ln |Sn(ρ)|

+ (T − 1) ln |Rn(λ)| − 1
2σ2

T−1∑
t−1

V∗′
n,t(η)V∗

n,t(η), (3)

with V∗
n,t = Rn(λ)

[
Sn(ρ)Y∗

n,t −X∗
n,tβ

]
. Moreover, Lee and Yu (2008, 2009) show

that under normality of the disturbances, this log-likelihood is the conditional log-
likelihood of Yn,t, t = 1, . . . , T , conditional on Yi,T = 1

T

∑T
t=1 Yi,t, the time average

for individual i.
Five different hypotheses are considered in this paper:

i) Ha
0 : ρ = λ = 0; This is the joint test. Under the alternative, at least one

spatial parameter is different from 0.

ii) Hb
0 : ρ = 0; This is a simple hypothesis test. Ha : ρ 6= 0. Under the alternative

the specification is the SAR model.

iii) Hc
0 : λ = 0; This is the second simple hypothesis test. Under the alternative,

the specification includes SAR errors.

iv) Hd
0 : λ = 0, with ρ possibly different from 0. Ha: the specification to be

estimated is the general model (1).

v) He
0 : ρ = 0, with λ possibly different from 0. Under the alternative, the

appropriate model is (1).
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The joint test determines whether the spatial dimension matters. If it is not the
case, there is no need to proceed further with the other tests. However, if the joint
null hypothesis is rejected, the applied researcher should test the simple hypotheses
to identify the most appropriate specification. If the two null hypotheses are both
rejected, then one should test the last two null hypotheses to discriminate between
the two alternative specifications of spatial autocorrelation. If both are again rejected
than the appropriate specification is the SARAR(1,1) model.

Let us point out that the asymptotic distributions of our test statistics are not
formally derived but they are likely to hold under assumptions developed in Lee
and Yu (2008).7 In this paper, we focus instead on their finite sample performance
by means of Monte Carlo simulations. The next subsections are devoted to the
presentation of our LM and LR tests statistics.8

2.1 Joint test statistics for Ha
0 : ρ = λ = 0

Under the joint null hypothesis, the specification to be estimated is the usual fixed ef-
fects panel model. However, since the transformation used is different from the usual
within transformation, we could wonder whether the OLS method is still appropri-
ate. We have already shown that the variance-covariance matrix of the transformed
error term is spherical. Moreover, the transformed regression (2) is linear since the F
matrix is made of eigenvectors. Finally, the rank of X∗ is not affected by the trans-
formation. To prove the strict exogeneity assumption (needed for the consistency of
OLS estimators), one uses the equality FT,T−1F

′
T,T−1 = JT , the original demeaning

operator. Hence:

E
[
X∗′V∗

n,t

]
= E

[
X′(FT,T−1 ⊗ In)(F

′
T,T−1 ⊗ In)Vn,t

]
= E

[
X

′
(JT ⊗ In)Vn,t

]
(4)

Wooldridge (2002, p.268) has shown that (4), which corresponds to the usual within
transformation, satisfies the strict exogeneity assumption. Since all assumptions for
the OLS estimation to provide consistent estimators are met, the model under the
null can be estimated by least squares. The joint LM statistic is then:

LMJ = Q̃−1[T22 R̃2
y − 2T12R̃vR̃y + (D̃ + T11)R̃2

v] (5)

with, as notations,

R̃v =

∑T−1
t=1 Ṽ∗′

n,tMnṼ∗
n,t

σ̃2
;

R̃y =

∑T−1
t=1 Ṽ∗′

n,tWnY∗
n,t

σ̃2
;

D̃ = σ̃−2
T−1∑
t=1

(
WnX∗

n,tβ̃
)′

MX∗ (WnX∗
n,tβ̃);

Q̃ = (D̃ + T11)T22 − T 2
12.

7We computed qqplots for all our tests available from the authors upon request. They show that
even in small samples, the tests already approach a χ2 distribution.

8For the sake of brevity, we will only present final expressions: details are provided in the
Appendix.
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Also, T11 = (T − 1) tr[(Wn + W′
n)Wn], T22 = (T − 1) tr[(Mn + M

′
n)Mn], T12 =

(T−1) tr((M
′
n+Mn)Wn) and MX∗ is the usual annihilator matrix, namely In(T−1)−

X∗(X∗′X∗)−1X∗′ . Finally, Ṽ∗
n,t = Y∗

n,t −X∗
n,tβ̃ are the residuals of the constrained

model and σ̃2 is the associated residual variance, simply estimated by OLS.
The LR test is based on the difference between the log-likelihood for unrestricted

θ̂ and restricted models θ̃:9

LR = 2[L(θ̂)− L(θ̃)],

with the coefficients evaluated at their unrestricted and restricted estimates. The LR
test is asymptotically distributed as χ2(q) with q the number of constraints imposed.
The unrestricted model is (2). If we concentrate out σ̂2 and β̂, we get the following
expression for the unrestricted log-likelihood function:

L(θ̂) = −n(T − 1)
2

(1 + ln 2π)− n(T − 1)
2

ln

∑T−1
t=1 V̂′∗

n,tV̂
∗
n,t

n(T − 1)

+ (T − 1)
[
ln |Sn(ρ̂)|+ ln |Rn(λ̂)|

]
, (6)

with V̂∗
n,t = Rn(λ̂)[Sn(ρ̂)Y∗

n,t − X∗
n,tβ̂]. Let us now consider the restricted model

which is the classical linear model. Under the null hypothesis Ha
0 the restricted

log-likelihood function is:

L(θ̃) = −n(T − 1)
2

ln 2π − n(T − 1)
2

ln σ̃2 − 1
2σ̃2

T−1∑
t=1

Ṽ∗′
n,tṼ

∗
n,t

with Ṽ∗
n,t = Y∗

n,t −X∗
n,tβ̃. Again, concentrating out with respect to σ̃2 and β̃, we

obtain the following expression:

L(θ̃) = −n(T − 1)
2

(1 + ln 2π)− n(T − 1)
2

ln

∑T−1
t=1 Ṽ∗′

n,tṼ
∗
n,t

n(T − 1)

The joint LR test statistic is therefore:

LRJ = (n(T − 1))
[
ln σ̃2 − ln σ̂2

]
+ 2(T − 1)

[
ln |Sn(ρ̂)|+ ln |Rn(λ̂)|

]
, (7)

with σ̃ = 1
n(T−1)

∑T−1
t=1 Ṽ∗′

n,tṼ
∗
n,t, the estimated residual variance of the constrained

model and σ̂ = 1
n(T−1)

∑T−1
t=1 V̂∗′

n,tV̂
∗
n,t, the estimated residual variance of the unre-

stricted model.
This test indicates to the researcher whether the spatial dimension matters.

When the null hypothesis is rejected, the econometric specification should explic-
itly take into account spatial autocorrelation. As soon as one faces spatial data, this
test should be performed since spatial autocorrelation causes traditional estimation
methods to produce unreliable estimators. Let us however mention that when this
statistic is significant, further tests should be conducted to find out the most ap-
propriate specification. The aim of the four last tests is to fill this gap. The first
two (ii and iii) are simple hypothesis tests. They thus test the presence of one type
of spatial autocorrelation assuming the absence of the other. The last two (iv and
v) are conditional test statistics. They are more general since they account for a
possible misspecification of the model in terms of spatial autocorrelation.

9From now on coefficients topped by a ˜ denote estimators of the constrained models while those
topped by a ˆ denote estimators of the unconstrained models.
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2.2 Simple hypothesis tests

This section is concerned with the construction of marginal statistics to test for one
particular form of spatial autocorrelation assuming the absence of the other.

2.2.1 Marginal test statistics for Hb
0 : ρ = 0 (assuming λ = 0)

The aim of these statistics is to test for spatial autocorrelation in the form of an
endogenous spatial lag variable, i.e. a SAR model, assuming no SAR errors (i.e.
λ = 0). The constrained model is the classical linear regression:

Y∗
n,t = X∗

n,tβ + V∗
n,t t = 1, . . . , T − 1, (8)

with V∗
n,t distributed according to a normal distribution with zero mean and a

variance-covariance matrix equal to σ2In(T−1). The unconstrained model is the SAR
specification, formally written as:

Y∗
n,t = ρWny∗n,t + X∗

n,tβ + V∗
n,t t = 1, . . . , T − 1, (9)

and should be estimated by ML or GMM. Hence, the LM statistic is written as:

LMρ =

∑T−1
t=1

(
Ṽ∗′

n,tWn Y∗
n,t/σ̃2

)2

D̃ + T11

, (10)

with the same notations as before. As the constrained model can be estimated by
least squares, Ṽ∗

n,t are the residuals of the OLS estimation of (8) and σ̃2 is the
estimate of the associated residual variance.

Using the same methodology as for the joint statistic, the LR counterpart is:

LRρ = (n(T − 1))
[
ln σ̃2 − ln σ̂2

]
+ 2(T − 1)

[
ln |Sn(ρ̂)|

]
, (11)

where σ̃2 is the residual variance of the constrained model (8) whereas σ̂2 and ρ̂ are
estimated using the unconstrained model (9).

2.2.2 Marginal test statistics for Hc
0 : λ = 0 (assuming ρ = 0)

Again for this test, the restricted model is (8). The specification under the alternative
is:

Y∗
n,t = X∗

n,tβ + U∗
n,t (12)

U∗
n,t = λMnU∗

n,t + V∗
n,t t = 1, . . . , T − 1.

The LM statistic is written as:

LMλ =

∑T−1
t=1

(
Ṽ∗′

n,tMn Ṽ∗
n,t/σ̃2

)2

T22
. (13)

Again, Ṽ∗
n,t are the residuals of the estimation of (8) and σ̃2 is the estimate of the

associated residual variance.
The corresponding LR statistic compares specification (12) with the model under

the null, namely (8). The statistic is then:

LRλ = (n(T − 1))
[
ln σ̃2 − ln σ̂2

]
+ 2(T − 1) ln |Rn(λ̂)|. (14)
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For these simple hypothesis statistics, the null is the absence of spatial autocorrela-
tion. If statistics for a SAR model (LMρ and LRρ) are significant, spatial autocorre-
lation under the form of a endogenous spatial lag must be included in the regression.
Similarly, if LMλ and LRλ are significant, the regression must account for spatially
autocorrelated errors.

However, as shown in the Monte Carlo study, these statistics are affected by
misspecification of the model in terms of spatial autocorrelation and tend to over
reject the null. Their conditional version solve this drawback.

2.3 Conditional hypothesis tests

The first two statistics, LMλ|ρ and LRλ|ρ, will test the presence of spatial error
correlation when an endogenous spatial lag is already accounted for. The last two,
LMρ|λ and LRρ|λ, will detect a endogenous spatial lag when spatially autocorrelated
errors are already included in the model.

2.3.1 Condtional test statistics for Hd
0 : λ = 0 given ρ 6= 0

The main difference with the simple hypothesis tests above is that the constrained
model contains a spatial component implying the use of ML or GMM to get reliable
estimators. The appropriate specification under the null is equation (9). When the
null is rejected, the correct specification is the general model (2). Disturbances of
the restricted model are:

V∗
n,t = Sn(ρ)Y∗

n,t −X∗
n,tβ t = 1, . . . , T − 1,

which can be replaced by the ML residuals of (9) when implementing the LM test.
The conditional test for spatially autocorrelated errors in the presence of an

endogenous spatial lag is written as:

LMλ|ρ =

(∑T−1
t=1 Ṽ∗′

n,t Mn Ṽ∗
n,t/σ̃2

)2

T22 − (T̃λρ)2 ∗ var(ρ̃)
, (15)

with var(ρ̃), the variance of the autoregressive coefficient estimated under the con-
strained model and T̃λρ = (T − 1)tr

[
M

′
n Wn Sn(ρ̃)−1 + Mn Wn Sn(ρ̃)−1

]
. Ṽ∗

n,t are
the residuals of the constrained model (9).

To the difference of simple hypotheses tests, the LR statistic will include an
additional term, the jacobian of the transformation contained in the log-likelihood
function of the constrained model.

LRλ|ρ = (n(T − 1))
[
ln σ̃2 − ln σ̂2

]
+ 2(T − 1)

[
ln |Sn(ρ̂)|+ ln |Rn(λ̂)| − ln |Sn(ρ̃)|

]
, (16)

with σ̃2 and ρ̃, the residual variance and the estimated spatial autoregressive pa-
rameter of (9). Moreover, σ̂2, ρ̂ and λ̂ are respectively the residual variance, spatial
parameter for the endogenous spatial lag and the spatial parameter for the spatially
autocorrelated error component, estimated with the unconstrained model (2).
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2.3.2 Conditional tests statistics for He
0 : ρ = 0 given λ 6= 0

The unconstrained model is the general one (2) while the constrained model includes
SAR errors, i.e. equation (12). Again, the latter should be estimated by ML. Its
error term can be written as:

V∗
n,t = Rn(λ)

[
Yn,t

∗ −X∗
n,tβ

]
t = 1, . . . , T − 1.

The conditional LM statistic is:

LMρ|λ =

∑T−1
t=1

(
Ṽ∗′

n,t Rn(λ̃)Wn Y∗
n,t/σ̃2

)2

Ĩ11 − Ĩ12Ĩ22Ĩ21

. (17)

Ĩ22 is the variance-covariance matrix of the non-constrained parameters, namely
λ̃, β̃, σ̃2. Moreover, the other terms are defined as follows:

Ĩ11 = (T − 1)tr(W)2 +
1
σ̃2

T−1∑
t=1

[
(Rn(λ̃)Wn X̃∗

n,tβ̃)′(Rn(λ̃)Wn X∗
n,tβ̃)

]
+ (T − 1)tr

[
(Rn(λ̃)Wn Rn(λ̃)−1)′(Rn(λ̃)Wn Rn(λ̃)−1)

]
(18)

Ĩ ′12 =


1
σ̃2

∑T−1
t=1 X∗′

n,tRn(λ̃)′Rn(λ̃)Wn X∗
n,tβ̃

(T − 1)tr
[
(Mn Rn(λ̃)−1)′ Rn(λ̃)Wn Rn(λ̃)−1 + Mn Wn Rn(λ̃−1)

]
1
σ̃2 (T − 1)tr(Rn(λ̃)Wn Rn(λ̃)−1)

 .

All parameters involved in this test come from the constrained model, which is
estimated by ML. If the statistic is significant, the most appropriate specification is
the general model (2) since both spatial autocorrelation types are present.
To test this null hypothesis with a LR test, one has to apply the following formula:

LRρ|λ = (n(T − 1))
[
ln σ̃2 − ln σ̂2

]
+ 2(T − 1)

[
ln |Sn(ρ̂)|+ ln |Rn(λ̂)| − ln |Rn(λ̃)|

]
. (19)

3 Monte Carlo simulations

To assess the finite-sample properties of our tests, we conduct some Monte Carlo ex-
periments. Two different Data Generating Processes (DGP) are suggested. The first
implements the ideal framework for the statistics and will be referred to the Ideal
DGP (IDGP). The second DGP assesses the robustness of the proposed statistics.
It is based on the format used in earlier studies in the spatial econometric litera-
ture (Anselin and Florax, 1995; Baltagi et al., 2003, 2007) and panel data models
(Nerlove, 1971) and is viewed as the Robust DGP (RDGP).

The IDGP is set as follows:

yi,t = ρWi.yt + βxi,t + ui,t

ui,t = λMi.ut + vi,t, (20)

where Wi. is the ith row of the spatial weight matrix associated to the endogenous
spatial lag while Mi. is the ith row of the spatial weight matrix associated with
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the spatially autocorrelated errors. Also, xi,t ∼ N(µi, 1) with µ ∼ U(0, 1) ∗ 10
and vi,t ∼ IN(0, 1). The x variable is thus defined with a different mean for each
individual. We decided not to include a constant for the sake of simplicity.
Two different patterns for interaction schemes are used in our simulations: W 6= M
and W = M. In the former, we set β = 1 since this value is commonly used in
Monte Carlo studies. For the latter however, to avoid problems of identification of
λ and ρ, βxi,t should contribute to the explanation of yi,t (i.e β 6= 0). According to
Lesage and Pace (2009), the β value should be set relatively higher than the residual
variance to avoid low signal-to-noise problems. We thus set β = 3 for that case.
Hence, we consider β = 1 for W 6= M and β = 3 when W = M.

The Robust DGP has the following expression:

yi,t = ρWi.yt + βxi,t + µi + ui,t

xi,t = 0.1t + 0.5xi,t−1 + zi,t (21)
ui,t = λMi.ut + vi,t,

with the same notations as above. To operationalize this process, parameters values
and random variables are set as follows:

β = 1; 3,

µi ∼ U(−5, 5),
vi,t ∼ IIN(0, 1),
zi,t ∼ U(−0.5, 0.5).

Initial individual values are defined as xi,0 = 5 + 10zi,0. Again, two values were
assigned to β for the same reason as above. The main differences between the two
DGP come from the serial autocorrelation of the explanatory variable and the inclu-
sion of a trend. Hence, the RDGP will examine whether our tests are affected by the
presence of non-modeled serial autocorrelation. W is a Rook-type of order 1 weight
matrix while M is a Rook-type of either order 1 or 2 weight matrix.10 Both W and
M are row-normalized.

We selected several panel sizes (N = 25, 49, 81) all defined on a regular grid
for different time periods (T = 7, 10). In these simulations, we let both spatial
parameters (ρ and λ) vary over the set [0,0.9] by increment of 0.1. Experiments were
replicated 1000 times. For the sake of compactness, we will only present two sample
sizes: N = 81, T = 7 and N = 49, T = 10.11 All computations were performed in
MATLAB.

The results are summarized in Tables 1 to 11. Each Table presents the power
of one type of statistic for one DGP (except otherwise explicitly mentioned). Under
the null, the power of a test equals its size, which we set to 0.05. For the sake of
clarity, all sizes are highlighted in bold. The two different interaction schemes are
set as follows. Either both spatial weight matrices are of the Rook type of order 1
or W is of the Rook-type of order 1 while M is of Rook-type of order 2.

10The order of contiguity represents the closeness of one region with its neighbours. Order 1
means that the neighbourhood is constituted by adjacent regions. Order 2 neighbourhood is made
of the neighbours of neighbours, etc.

11The results for the other designs are very similar. We also performed Monte Carlo experiments
for negative values of spatial parameters and got very similar results.
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Insert Tables 1 to 6 around here

Let us first study the performance of the joint statistic in the IDGP, summarized
in Table 1. Under the null, the sample does not contain any spatial autocorrelation.
Sizes of LMJ and LRJ are close to the 5% value. For example, when W 6= M,
N = 81 and T = 7, sizes of LMJ and LRJ are respectively of 0.04 and 0.043.
Furthermore, the tests perform very well since a 100% rejection rate is obtained as
soon as ρ = 0.2 and λ = 0.3.12 We finally note that results for the Robust DGP
(Table 2) are very similar, implying that serial correlation does not seem to affect
the joint statistics.
Tables 3 and 4 report the behaviour of simple hypothesis tests for the presence of
spatially autocorrelated errors (LMλ and LRλ). As these test statistics perform
similarly in both DGP, we will analyze results for the Ideal one (Table 3). When the
specification does not suffer from misspecification in terms of spatial autocorrelation
(i.e ρ = 0), the size of LMλ is close to its theoretical value in all situations considered
(2 spatial schemes and 2 sample sizes). For example, when W = M, N = 49 and T =
10, the size of LMλ = 0.055. We also note that the equivalent LR statistic is
more conservative. Moreover, both tests have good power since we observe full
rejection rate (of the null) as soon as λ = 0.5 and powers increase smoothly. In case
of model misspecification, empirical sizes are very misleading. Indeed, considering
ρ = 0.5 in the case W 6= M, N = 49, T = 10, the sizes of LMλ and LRλ are
respectively of 0.978 and 0.949 against the theoretically 0.05. The explanation lies
in the construction of the simple hypothesis tests. As constrained models for both
tests are identical, simple hypothesis statistics do not discriminate between spatially
autocorrelated errors and endogenous spatial lag. Note that the sizes are even worse
when the spatial weight matrices are identical.

The outcomes of the two simple hypothesis tests for the presence of an endogenous
spatial lag (LMρ and LRρ) are presented in Tables 5 and 6. We first note that size
of LMρ is close to the theoretical value, no matter the scenario. Also, as for LRλ,
LRρ is undersized. The power of the two statistics are very good since we obtain
a full rejection rate as soon as ρ = 0.4. We finally observe that these two tests are
also affected by the presence of spatially autocorrelated errors and specifically when
both spatial weight matrices are identical Again, all the results mentioned are valid
for the Robust DGP.

Insert Tables 7 to 11 around here

The effect of model misspecification on simple hypothesis tests leads us to the
analysis of conditional statistics where it is explicitly accounted for. The perfor-
mance of the last tests are illustrated in Tables 7 to 11. We first focus on the tests of
the presence of spatially autocorrelated errors when an endogenous spatial is already
accounted for in the specification (i.e LMλ|ρ and LRλ|ρ). Their outcomes are sum-
marized in Tables 7 and 8. We will first study the performance of these two tests in
the Ideal DGP (without any serial correlation). As for simple hypothesis tests, sizes
are reported in the two first columns of the Tables, in bold. The empirical size of the
LM statistic corresponds to its theoretical counterpart, no matter the importance
of the endogenous spatial lag. For example, in the W = M, N=49, T=10 case,
when ρ = 0.8, the size of LMλ|ρ = 0.045. We also note that LRλ|ρ is undersized.

12When the figure is not reported in the table, this means that the rejection rate was 100%. This
convention has been adopted for all following tables.
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The power of these two statistic is quite high since we observe full rejection of the
null hypothesis as soon as λ = 0.5. Let us remark that the power of these statistics
are not affected either by the value of the free spatial parameter (ρ) or the possible
equality of the two spatial weight matrices. Finally, Table 8 which presents results
for the Robust DGP, exhibits similar outcomes.

The last experiments focus on the test statistics to detect an endogenous spa-
tial lag when spatially autocorrelated errors are already present in the specification
(LMρ|λ and LRρ|λ). The results are reported in Tables 9 to 11. In the Ideal DGP
(Table 9), these statistics behave the same way as the two previous one. Empirical
size of the LM statistic is similar to the required 5% while the LR is undersized.
Moreover, the value of λ (the unconstrained parameter) does not affect the proper-
ties of both tests. Looking at power, as soon as ρ, the constrained parameter, is set
to 0.3, we observe a full rejection rate of the null hypothesis. Let us finally note that
in this DGP, both LM and LR statistics are not affected by the possible equality of
spatial weight matrices. Results for the Robust DGP, summarized in Tables 10 and
11, do not show any significant difference with the Ideal case.

4 The Feldstein-Horioka puzzle revisited

In their seminal article, Feldstein and Horioka (1980) (FH) found a high correlation
between domestic saving and domestic investment rates for OECD countries in a
cross-section setting. They interpret these findings as evidence against capital mobil-
ity between countries. Indeed, if capital was perfectly mobile, domestic saving would
seek out the highest returns, no matter the location. This implies that an exogenous
shock in investment would be financed by a perfectly elastic supply of global capital.
On the contrary, if capital is immobile, we would observe a one-to-one relationship
between domestic investment and saving rates since the latter should be invested
locally. The FH result thus poses an uncomfortable puzzle since the conventional
view in most exchange rate and open-economy macroeconomic models highlights the
importance of capital mobility.

The literature challenged the FH result in several ways but obtained the same
high correlation result. This persistence gave birth to the FH paradox. Authors first
tested the FH hypothesis (high correlation) on different databases without being able
to reject the FH findings (Feldstein, 1983; Penati and Dooley, 1984; Dooley et al,
1987; Tesar, 1991).

The application of panel data model to the FH puzzle was initiated by Krol
(1996). He argued that time-averaged data (cross-section) bias results against capital
mobility since they obscure variation in current account and thus, discrepancies
between investment and saving (an argument already pointed out by Sinn, 1992).
He partly solved the paradox but Jansen (2000) challenged his findings invoking the
presence of Luxembourg in his sample. Krol’s study was followed by many others
applying either classical panel data models or more sophisticated methods as panel
smoothing (Fouquau et al., 2008) or cointegrated panel data models (Coiteux and
Olivier, 2000) without being able to solve the puzzle.

All the works mentioned above make the implicit assumption that countries are
independent from each others. More precisely, investment rates (the dependent vari-
able in FH) are assumed to be independent across countries. We propose here to test
this hypothesis, which is crucial since its violation causes classical estimators to be
unreliable. Hence, we test the presence of spatial autocorrelation in the investment-
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savings relationship in a fixed effects panel data model. The choice of the fixed effects
panel framework comes from the literature. All panel data model estimations con-
clude to the presence of individual fixed effects and the absence of temporal effects
(see for instance Jansen, 2000; Corbin, 2001). We show that spatial autocorrelation
is indeed present and ignoring it leads to an upward biased estimator, which favors
capital immobility.

In this work, we consider investment and saving rates for 24 OECD countries
between 1960 and 2000 (41 periods).13 Ratios of investment come from the Penn
World Table and are defined as investment share of real gross domestic product per
capita. Ratio of savings are defined as the percentage change of current savings
to GDP.14 Table 12 reports some descriptive statistics for the two variables under
consideration.

We consider first the results of the usual fixed effects panel data model applied
to this dataset. We split the sample into three sub-periods. The first one covers
the eleven first periods (1960 - 1970). The reason is that in the late 60’s, a trend
of liberalizing capital flows and deregulating financial markets occurred in most of
the countries belonging to OECD (OECD, 1990). Then, we divide the remaining
observations into two equal sub-periods to allow comparison with the first period.

We first estimate a traditional fixed effects panel model of the investment-saving
correlation for the three sub-periods:

It = µ + βSt + εt, t = 1, . . . , T, (22)

where, for each time period t, It is the n × 1 vector of investment rates for all
countries, St is the n × 1 vector of saving rates, µ is the n × 1 vector of individual
fixed effects, and εt is a n × 1 vector of assumed well behaved disturbances. Table
13 reports the results.

We clearly see a decrease in the relationship between domestic saving and invest-
ment rates across time since we start from a value of 0.932 for the sixties and end
up with a value of 0.442 for the last sub-period. This indicates an upsurge in capital
mobility, as noted by OECD (1990).

However, these results are obtained under the restrictive and unlikely assumption
of no spatial autocorrelation between countries, which are considered as “indepen-
dent islands”. As mentioned above, capturing spatial interactions requires the setup
of an exogenous spatial weight matrix. Let us underline that, contrary to the time
series case, there is no unique natural ordering of cross section observations in spatial
econometrics. The interaction matrix W is then the fundamental tool to define a
“relevant” order structure by specifying a “neighbourhood set” for each observation.
More precisely, each observation is connected to a set of “neighbouring” observations
by means of an exogenous pattern introduced in the interaction matrix. By conven-
tion an observation is not a neighbour to itself so that elements on the main diagonal
of W are set to zero (wii = 0), whereas in each row i, a non zero element wij defines
j as being a neighbor of i and further specifies the way i is connected to j.

Many different spatial weights matrices may then be specified to study the same
issue and it may be difficult to identify the most “relevant” matrix, leaving the room

13Countries considered are: Australia, Austria, Belgium, Canada, Switzerland, Denmark, Spain,
Finland, France, United Kingdom, Greece, Ireland, Iceland, Italy, Japan, Mexico, Netherlands,
Norway, New Zealand, Portugal, Republic of Korea, Sweden, Turkey and United States.

14They are actually computed as subtracting consumption share and government share of real
gross domestic product per capita, from 100.
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for some arbitrariness. Sensitivity analysis of the results plays then an important
role in practice. Traditionally, connectivity has been understood as geographical
proximity, various weights matrices based on geographical space have therefore been
used in the spatial econometric literature such as contiguity, nearest neighbors and
geographical distance based matrices. However the definition is in fact much broader
and can be generalized to any network structure to reflect any kind of interactions
between observations. As also underlined by Durlauf et al. (2005, p. 643-645),
what really matters when adapting these methods to growth econometrics is the
identification of the appropriate notion of space and of the appropriate similarity or
interaction measure. By analogy to Akerlof (1997) countries may be considered as
localized in some general socio-economic and institutional or political space defined
by a range of factors. Implementation of spatial methods requires then to identify
accurately their location in such a general space. Ideally, such a matrix should be
theory based but this is beyond the scope of the present paper.

We adopt here a heuristic approach by specifying two different interaction matri-
ces, frequently used in the literature, to test the robustness of our results with regard
to the choice of the spatial weight matrix. The first interaction matrix we use is based
on inverse distance. The general term of this matrix is defined as wij = d−1

ij if i 6= j,
where dij is the arc-distance between capitals of countries i and j. The second in-
teraction matrix is the binary seven nearest neighbours weight matrix whose general
term is defined as follow:{

wij = 1 if dij ≤ di, i 6= j

wij = 0 if dij > di, i 6= j,
(23)

where di is the 7th order smallest arc-distance between countries i and j such that
each country i has exactly 7 neighbours. Note that the second matrix is sparse
whereas the preceding one is not, reflecting quite different interaction patterns. Both
interaction matrices are row-normalized as usually done in the applied literature.
Finally, let us point out that we assume the same spatial scheme for both spatially
autocorrelated errors and endogenous spatial lag.

Table 14 summarizes the results of the application of the spatial autocorrelation
tests developed above. We first observe similar results for the two weight matrices,
which pleads for the robustness against the choice of the interaction scheme. We
will thus focus on the first spatial scheme. In the first sub-period, which covers the
sixties, the joint tests (LMJ and LRJ) are not significant. Hence, spatial autocor-
relation is not an issue and investment rates can be viewed as independent between
countries. Given this result, the other tests should not be computed and the model
can be estimated with traditional fixed effects methods. Moving to the second sub-
period, we observe significant joint tests. Spatial autocorrelation should thus be
accounted for in the econometric regression. Looking at simple hypothesis tests, we
note that the two types of spatial autocorrelation are also significant. However, at
this stage, we cannot determine what type of spatial autocorrelation characterizes
the sample. We thus study their conditional counterparts to collect further infor-
mation: LMρ|λ and LRρ|λ are significant. Accounting for spatially autocorrelated
errors in the specification does not solve the problem since an endogenous spatial lag
is still present. However, the two other conditional statistics (LMλ|ρ and LRλ|ρ) are
not significant. Thus, once an endogenous spatial lag is included in the econometric
specification, no residual spatial autocorrelation remains. For this sub-period, the
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adequate econometric specification consists in adding an extra regressor, the spatially
lagged investment rate, to equation (22), which yields a SAR model.

The analysis of the last sub-period provides the same conclusion. Joint statistics
are significant, marginal tests all reject their respective null hypothesis, and the
study of conditional statistics reveals that an econometric specification containing
an endogenous spatial lag is the most adequate to capture spatial autocorrelation.
Note that LR statistics are more conservative than their LM counterpart.

Formally, the SAR specification is written as follows:

It = µ + ρWIt + βSt + εt, t = 1, . . . , T. (24)

In this model the investment rate of one country depends on investment rates in
other countries in addition to its saving rate. It is estimated in implicit form with
the maximum likelihood estimation method proposed in Lee and Yu (2008). However,
we need to express its reduced form to obtain estimates of the spillovers effects as
follows:

It = (In − ρW)−1µ + (In − ρW)−1βSt + (In − ρW)−1εt, (25)

This model implies that the saving rate of one country spills over countries. It is
then possible to quantify the effects of the saving rate of one country on its own
investment rate but also on investment rates of other countries. We therefore obtain
the estimated matrix of the derivatives of It relative to St:

Ξ̂S
I ≡

∂It

∂St
= β̂ (I− ρ̂W)−1 (26)

Estimated direct effects including own spillover effects appear on the main diagonal of
this matrix and are inherently heterogeneous in presence of spatial autocorrelation,
whereas estimated indirect effects appear outside the main diagonal. The Delta
method can then be used to assess statistical significance of those effects under the
regularity conditions described by Lee (2004). Moreover, the sum across the ith row
represents the total impact on investment rate of country i of a change of the saving
rates by the same amount across all n countries. The sum down the jth column
yields the total impact over all investment rates of a change of the saving rate in
country j, which is of particular interest here. Lesage and Pace (2009, chap. 2)
present a comprehensive analysis of those effects along with some useful summary
measures in the cross-section setting. The average direct impact is therefore defined
as n−1tr(Ξ̂S

I ) whereas the average total impact is defined as n−1ι′Ξ̂S
I ι where ι is the

n× 1 sum vector. Finally the average indirect impact is by definition the difference
between the average total impact and the average direct impact.

Table 15 provides estimation results of equation (24) using both interaction ma-
trices for the last two subperiods along with the within estimation of equation (22)
for the first subperiod. The results confirm the view expressed in OECD (1990) that
capital mobility, and thus interactions between countries, increased from the late
sixties on. We note that the coefficients of the saving rates are significant as well as
the spatial autocorrelation coefficients whatever the interaction matrix used, high-
lighting the robustness of our estimates with regard to the choice of the interaction
scheme. The significance of the spatial autocorrelation parameter is crucial: first it
implies that the investment rate in one country cannot be considered as indepen-
dent from those of other countries and second it implies that the saving-retention
coefficient is characterized by interactive heterogeneity.
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The estimated matrix (26) is therefore presented in Table 16 for the second
subperiod and in Table 17 for the last subperiod using the inverse distance matrix.15

We represent in bold the estimated direct effect including the own spillover effect
(main diagonal). Note that all impact coefficients are significant. The average direct
impact is 0.632 for the second subperiod and 0.367 for the last subperiod. Comparing
these results with Table 13, usual within estimators appear to be upward biased.
Accounting for spatial autocorrelation thus pleads for capital mobility. Indeed, for
the second sub-period, we see a drop of the saving-retention coefficient from 0.707 to
0.632. For the last sub-period, the coefficient drops from 0.442 to 0.367. The average
total impact is 1.245 for the second subperiod and 0.763 for the last subperiod. The
average indirect impact is therefore 0.613 for the second subperiod and 0.396 for the
last subperiod.

Let us finally remark that the tests indicate the predominance of an endogenous
spatial lag to capture spatial autocorrelation. Spatial autocorrelation can thus be
viewed as a substantive process and should deserve attention in the economic model-
ing of the investment-saving correlation. Until now, this has been overlooked in the
literature.

5 Conclusion

This paper has developed several LM and LR statistics to diagnose the presence and
type of spatial autocorrelation in a fixed effects panel data model. Our estimation
procedure is based on the Lee and Yu (2008) paper, which allows the estimation of a
fixed effects spatial panel data by Maximum Likelihood. We suggest a general joint
statistic as a preliminary test to detect spatial autocorrelation. This test is shown
to be powerful against both types of spatial autocorrelation. If the joint statistic
is significant, the two simple hypothesis tests should be applied. Each one tests for
the presence of one type of spatial autocorrelation: spatially autocorrelated errors
or endogenous spatial lag. When only one test is significant, the final specification
should be set accordingly.

However, Monte Carlo results show that simple hypothesis tests are affected by
model misspecification in terms of spatial autocorrelation. Simple hypothesis tests
will thus generally be both significant, which does not allow to determine the best
way to model spatial autocorrelation. To solve this drawback, conditional statis-
tics are derived. If only one of them is significant, the best specification can be
determined. For example, if only (LMρ|λ and LRρ|λ) are significant, the best spa-
tial specification will include an endogenous spatial lag. If however, the two remain
significant, the econometric regression should include both types of spatial autocor-
relation. Furthermore, Monte Carlo experiments showed that the performance of the
statistics are very good and unaffected by the DGP chosen.

Finally, the application of the tests to the Feldstein-Horioka puzzle shows that
spatial autocorrelation is an important issue and should be accounted for in the
econometric specification of the panel data model under the form of an endogenous
spatial lag. Otherwise, results would be biased. We observed that explicitly account-
ing for spatial autocorrelation leads to a drop of the investment-saving relationship
suggesting more capital mobility. The next step would be to theoretically derive

15Results obtained using the 7 nearest-neighbours matrix are similar and available upon request
from the authors.

18



an investment-saving relationship that accounts for spatial autocorrelation with a
special focus on the relevant interaction matrix to adopt.
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A Appendix

In order to compute the LM statistics, we need to compute FOC and SOC of the
general model (3) and evaluate them under the null hypothesis considered.

A.1 FOC

∂L

∂ρ
=

∂ ln |Sn|
∂ρ

− 1
2σ2

∂V′V
ρ

∂Sn(ρ)
∂ρ

=
∂[In − ρWn]

∂ρ
= −Wn

∂ln|Sn(ρ)|
∂ρ

= tr(Sn(ρ)−1 ∗ ∂Sn(ρ)/∂ρ) = −tr
[
Sn(ρ)−1Wn

]
∂V∗

n,t

∂ρ
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∂Rn(λ)Sn(ρ)Y∗
n,t
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n,t

∂V∗′V∗
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T−1∑
t=1
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∂V∗
n,t

∂ρ

]
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t=1
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n,t
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Sn(ρ)−1Wn

]
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with tr(), the trace operator and V∗
n,t = Rn(λ)]

[
Sn(ρ)Y∗

n,t −X∗
n,tβ

]
∂L

∂λ
= −(T − 1)tr
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Rn(λ)−1Mn
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1
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n,tV

∗
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We will consider the construction of the joint test. Hence, the null under consider-
ation is H0 : ρ = λ = 0, implying Sn(ρ) = Rn(λ) = In. Let us evaluate these FOC
under H0 to construct the first part of the LM test.

∂L

∂ρ

∣∣∣∣
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1
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[Y∗
n,t −X∗
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Under the null, we have shown that β could be estimated by OLS, using the "pseudo"
within transformed model. We will thus replace the unobserved V∗

n,t term by the
residuals of the OLS estimation of the constrained model, Ṽ∗

n,t = Y∗
n,t −X∗

n,tβ̃. We
also define σ̃2 as the estimated residual variance of the constrained model. Using
this transformation, (31) and (32) constitute the score vector that will be used to
define the joint LM test.

We thus define the score vector for θ1 = [ρ λ]′ evaluated under the null as :

d̃ =

 PT−1
t=1 Ṽ∗′

n,tWnY∗
n,t

σ̂2PT−1
t=1 Ṽ∗′

n,tMnṼ∗
n,t

σ̂2

 =
[

R̃y

R̃v

]

We will now go to the derivation of the Hessian matrix and evaluate it under the
null hypothesis.

A.2 SOC

The second order conditions for the θ2 = [β′ σ2]′ parameters are :

∂2L
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We will now derive the Information matrix elements for θ1. To achieve it, we will
divide this step into three. The reason behind is that we need further information to
compute expectations. We will thus calculate first the SOC, find expectations and
finally compute the information matrix elements.
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Let us now look at the expectations problem. The within transformation of the
general model is written as follow :

Y∗
n,t = Sn(ρ)−1X∗

n,tβ + Sn(ρ)−1U∗
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Let now use these results to find the information matrix elements.
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In order to compute the elements of the I11, we need to use some properties of
the trace estimator. For instance, considering ∂2L

∂ρ2 , we see that it is formed of two
terms. The first is non-stochastic, meaning that it is not affected by the Expectation



operator. However, even though the second term is stochastic, it is a scalar. Hence,
we can apply a trace operator on it:

1
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The last expression coming from the cyclic property of the trace operator (commu-
tativity). Taking expectation, we get :
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Replacing the expression of E

(
Y∗

n,tY
∗′
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)
in the above equation allows to find Iρρ.
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Finally, using the fact that E(Y∗
n,tU

∗′
n,t) = σ2Sn(ρ)−1Rn(λ)−1Rn(λ)−1′ , we get :
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The final step consists in evaluating all this terms under the null hypothesis of
absence of spatial autocorrelation (Sn = Rn = In).
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Iρρ|H0 = (T − 1)tr
[
(Wn + W

′
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]
+
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Let now resume the construction of the LM statistic. We know that the test is
written as follows :

LM = d′I11d ∼ χ2
q

where q is the number of restrictions, I11 is the inverse of the partitioned information
matrix and d is the score vector. Using rules of partitioned matrix, we find that

I11 =
{
I11 − I12I22I21

}−1

Let just provide the expression of the different matrices that will be used.

I11 =
[

σ−2
∑T−1
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(
(WnX∗
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)
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[
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0 0
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I21 =
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σ−2 (X′ W∗

nXβ) 0

]
I22 =

[
−2σ4/(n(T − 1)) 0

0 σ2(X∗′
n,tX

∗
n,t)

−1

]
with the same notations as in the paper. After some algebra, we find that I11 = C−1,
where C is a (2 × 2) matrix. For the sake of notation, we chose to present the end
of appendix in matrix form. The C matrix looks like :

C =
[

σ−2 (WnX∗β)′ WnX∗β + T11 T12

T12 T22

]
with MX∗ = In(T−1) − X∗(X∗′X∗)−1X∗′ is the usual annihilator. Assuming D =
(WnX∗β)′ MX∗ WnX∗β, the determinant of C is :

Q = |C| = T22(D + T11)− T 2
12

We compute the final test as follows :

LMJ =
1
Q

[
Ry Rv

] [
T22 −T12

−T12 D + T11

] [
Ry

Rv

]
=

1
Q

[
T22R

2
y − 2T12RyRv + (D + T11)R2

v

]
To implement it, we need to replace the unknown values of D, Q, Ry, Rv by their
estimate, namely D̃, Q̃, R̃y, R̃v whose values are derived from the estimators of the
constrained model, estimated by OLS. The derivation of the four other LM statis-
tics is in the same fashion except that the null is different, implying a (sometimes)
different constrained model.



Table 1: Performance of joint statistics in the Ideal DGP
W = M, N=49, T=10

ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4
λ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ

0 0.042 0.035 0.285 0.276 0.84 0.832 0.993 0.992 1 1
0.1 0.724 0.713 0.949 0.95 0.998 0.999 1 1 1 1
0.2 0.998 1 1 1 1 1 1 1 1 1
0.3 1 1 1 1 1 1 1 1 1 1

W = M, N=81, T=7
λ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ

0 0.051 0.053 0.731 0.727 0.999 1 1 1 1 1
0.1 0.304 0.293 0.966 0.969 1 1 1 1 1 1
0.2 0.86 0.851 0.999 0.999 1 1 1 1 1 1
0.3 0.999 0.998 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1

W 6= M, N=49, T=10
λ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ

0 0.033 0.032 0.236 0.19 0.704 0.669 0.984 0.97 1 1
0.1 0.429 0.424 0.653 0.625 0.87 0.848 0.989 0.987 1 0.999
0.2 0.968 0.964 0.985 0.982 0.994 0.993 1 1 1 1
0.3 1 1 1 1 1 1 1 1 1 1

W 6= M, N=81, T=7
λ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ

0 0.04 0.043 0.227 0.193 0.734 0.696 0.968 0.953 1 1
0.1 0.435 0.43 0.61 0.585 0.886 0.868 0.986 0.984 1 1
0.2 0.96 0.955 0.991 0.988 0.994 0.993 1 1 1 1
0.3 1 1 1 1 1 1 1 1 1 1
LMJ and LRJ test the presence of spatial autocorrelation in the sample studied.



Table 2: Performance of joint statistics in the Robust DGP
W = M , N=49, T=10

ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4
λ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ

0 0.044 0.043 0.642 0.636 1 1 1 1 1 1
0.1 0.271 0.263 0.934 0.936 1 1 1 1 1 1
0.2 0.839 0.826 0.999 0.999 1 1 1 1 1 1
0.3 0.991 0.991 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1

W = M, N=81, T=7
λ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ

0 0.039 0.037 0.738 0.733 1 1 1 1 1 1
0.1 0.304 0.308 0.963 0.966 1 1 1 1 1 1
0.2 0.839 0.839 1 1 1 1 1 1 1 1
0.3 0.998 0.998 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1

W 6= M, N=49, T=10
λ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ

0 0.035 0.041 0.198 0.163 0.688 0.64 0.971 0.966 1 0.999
0.1 0.36 0.36 0.568 0.538 0.843 0.822 0.987 0.985 1 1
0.2 0.941 0.939 0.961 0.958 0.994 0.993 0.999 0.999 1 1
0.3 0.999 0.999 1 1 1 1 1 1 1 1

W 6= M, N=49, T=10
λ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ LMJ LRJ

0 0.052 0.05 0.216 0.18 0.686 0.65 0.97 0.953 1 0.999
0.1 0.321 0.315 0.52 0.491 0.844 0.822 0.978 0.974 1 1
0.2 0.898 0.894 0.944 0.941 0.984 0.983 0.998 0.997 1 1
0.3 0.999 1 0.999 1 1 1 1 1 1 1
LMJ and LRJ test the presence of spatial autocorrelation in the sample studied.



Table 3: Performance of LMλ and LRλ statistics in the Ideal DGP
W = M, N=49, T=10

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4
ρ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ

0 0.055 0.007 0.351 0.191 0.907 0.795 0.996 0.992 1 1
0.1 0.388 0.228 0.902 0.793 0.997 0.989 1 1 1 1
0.2 0.921 0.841 0.999 0.996 1 1 1 1 1 1
0.3 0.998 0.997 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1

W = M, N=81, T=7
ρ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ

0 0.047 0.015 0.368 0.224 0.924 0.814 0.999 0.998 1 1
0.1 0.359 0.21 0.906 0.813 0.998 0.995 1 1 1 1
0.2 0.912 0.839 0.997 0.994 1 1 1 1 1 1
0.3 1 0.997 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1

W 6= M, N=49, T=10
ρ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ

0 0.05 0.012 0.246 0.112 0.788 0.646 0.977 0.941 1 1
0.1 0.057 0.017 0.34 0.179 0.813 0.647 0.988 0.966 1 0.998
0.2 0.15 0.063 0.541 0.349 0.906 0.792 0.996 0.983 1 1
0.3 0.374 0.214 0.813 0.667 0.972 0.933 1 0.998 1 1
0.4 0.773 0.629 0.972 0.922 0.998 0.994 1 1 1 1
0.5 0.978 0.949 0.999 0.999 1 1 1 1 1 1
0.6 1 0.998 1 1 1 1 1 1 1 1

W 6= M, N=81, T=7
ρ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ

0 0.05 0.008 0.278 0.135 0.782 0.593 0.993 0.952 1 1
0.1 0.052 0.012 0.385 0.202 0.802 0.668 0.983 0.964 1 0.999
0.2 0.133 0.043 0.526 0.316 0.907 0.801 0.995 0.98 1 1
0.3 0.38 0.216 0.822 0.662 0.98 0.954 0.998 0.993 1 1
0.4 0.798 0.669 0.968 0.926 0.999 0.996 1 1 1 1
0.5 0.986 0.962 1 0.994 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1 1 1 1
LMλ and LRλ test for the presence of spatially autocorrelated errors in the specification.



Table 4: Performance of LMλ and LRλ statistics in the Robust DGP
W = M, N=49, T=10

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4
ρ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ

0 0.053 0.005 0.354 0.193 0.91 0.802 0.995 0.99 1 1
0.1 0.384 0.216 0.903 0.785 0.997 0.987 1 1 1 1
0.2 0.916 0.818 0.999 0.996 1 1 1 1 1 1
0.3 0.997 0.996 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1

W = M, N=81, T=7
ρ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ

0 0.041 0.009 0.382 0.216 0.917 0.819 1 0.996 1 1
0.1 0.396 0.222 0.902 0.808 0.999 0.992 1 1 1 1
0.2 0.916 0.838 0.999 0.997 1 1 1 1 1 1
0.3 1 0.999 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1

W 6= M, N=49, T=10
ρ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ

0 0.051 0.02 0.255 0.117 0.764 0.575 0.981 0.946 1 0.998
0.1 0.053 0.019 0.292 0.135 0.816 0.635 0.983 0.945 1 1
0.2 0.111 0.033 0.462 0.273 0.885 0.769 0.994 0.975 1 0.999
0.3 0.308 0.188 0.75 0.592 0.969 0.917 1 0.996 1 1
0.4 0.699 0.546 0.945 0.876 0.994 0.986 1 1 1 1
0.5 0.958 0.92 0.993 0.987 1 0.999 1 1 1 1
0.6 1 1 1 1 1 1 1 1 1 1

W 6= M, N=81, T=7
ρ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ LMλ LRλ

0 0.049 0.005 0.243 0.101 0.769 0.58 0.98 0.948 1 0.999
0.1 0.069 0.026 0.338 0.168 0.8 0.627 0.988 0.956 1 1
0.2 0.11 0.044 0.487 0.308 0.899 0.8 0.997 0.987 1 0.999
0.3 0.329 0.187 0.752 0.609 0.966 0.926 1 0.994 1 1
0.4 0.705 0.58 0.952 0.907 0.996 0.993 1 0.999 1 1
0.5 0.977 0.954 0.998 0.993 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1 1 1 1
LMλ and LRλ test for the presence of spatially autocorrelated errors in the specification.



Table 5: Performance of LMρ and LRρ statistics in the Ideal DGP
W = M, N=49, T=10

ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4
λ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ

0 0.048 0.008 0.822 0.666 1 0.998 1 1 1 1
0.1 0.153 0.063 0.963 0.897 1 1 1 1 1 1
0.2 0.484 0.315 0.996 0.981 1 1 1 1 1 1
0.3 0.833 0.709 0.999 0.998 1 1 1 1 1 1
0.4 0.981 0.963 1 1 1 1 1 1 1 1
0.5 0.998 0.997 1 1 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1 1 1 1

W = M, N=81, T=7
λ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ

0 0.063 0.019 0.815 0.673 1 1 1 1 1 1
0.1 0.16 0.063 0.967 0.924 1 1 1 1 1 1
0.2 0.497 0.311 0.998 0.99 1 1 1 1 1 1
0.3 0.838 0.705 1 0.999 1 1 1 1 1 1
0.4 0.983 0.955 1 1 1 1 1 1 1 1
0.5 1 0.998 1 1 1 1 1 1 1 1

W 6= M, N=49, T=10
λ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ

0 0.038 0.007 0.522 0.355 0.98 0.947 1 1 1 1
0.1 0.074 0.023 0.552 0.368 0.992 0.967 1 1 1 1
0.2 0.095 0.033 0.598 0.406 0.982 0.949 1 1 1 1
0.3 0.131 0.051 0.629 0.435 0.987 0.96 1 1 1 1
0.4 0.172 0.066 0.662 0.49 0.981 0.961 1 1 1 1
0.5 0.241 0.106 0.7 0.536 0.982 0.955 1 1 1 1
0.6 0.318 0.163 0.707 0.555 0.978 0.944 0.999 0.998 1 1
0.7 0.442 0.258 0.727 0.587 0.968 0.942 1 0.998 1 1
0.8 0.612 0.429 0.759 0.617 0.937 0.886 1 0.999 1 1
0.9 0.736 0.571 0.798 0.668 0.922 0.863 0.979 0.96 0.998 0.996

W 6= M, N=49, T=10
λ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ

0 0.038 0.008 0.536 0.339 0.977 0.957 1 1 1 1
0.1 0.06 0.017 0.602 0.395 0.986 0.957 1 1 1 1
0.2 0.098 0.027 0.581 0.382 0.986 0.962 1 1 1 1
0.3 0.123 0.043 0.646 0.469 0.988 0.959 1 1 1 1
0.4 0.197 0.09 0.681 0.489 0.99 0.963 1 1 1 1
0.5 0.228 0.091 0.713 0.543 0.99 0.972 1 1 1 1
0.6 0.326 0.18 0.727 0.577 0.984 0.958 1 1 1 1
0.7 0.471 0.27 0.765 0.62 0.978 0.951 1 0.999 1 1
0.8 0.561 0.367 0.794 0.643 0.953 0.91 0.999 0.994 1 1
0.9 0.745 0.6 0.812 0.686 0.939 0.881 0.986 0.968 0.999 0.997
LMρ and LRρ test for the presence an endogenous spatial lag in the specification.



Table 6: Performance of LMρ and LRρ statistics in the Robust GDP
W = M, N=49, T=10

ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4
λ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ

0 0.038 0.007 0.522 0.355 0.98 0.947 1 1 1 1
0.1 0.248 0.13 0.92 0.803 1 1 1 1 1 1
0.2 0.764 0.605 0.995 0.983 1 1 1 1 1 1
0.3 0.984 0.954 1 1 1 1 1 1 1 1
0.4 1 0.999 1 1 1 1 1 1 1 1

W = M, N=81, T=7
λ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ

0 0.047 0.008 0.446 0.283 0.964 0.924 1 0.999 1 1
0.1 0.306 0.162 0.923 0.821 0.999 0.997 1 1 1 1
0.2 0.862 0.727 0.998 0.993 1 1 1 1 1 1
0.3 0.996 0.983 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1

W 6= M, N=49, T=10
λ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ

0 0.042 0.006 0.391 0.24 0.952 0.876 1 1 1 1
0.1 0.066 0.019 0.469 0.29 0.959 0.89 0.999 0.998 1 1
0.2 0.113 0.038 0.516 0.344 0.956 0.898 0.999 0.999 1 1
0.3 0.132 0.055 0.574 0.392 0.968 0.918 0.999 0.999 1 1
0.4 0.197 0.09 0.618 0.439 0.97 0.92 1 1 1 1
0.5 0.302 0.131 0.675 0.495 0.973 0.935 1 1 1 1
0.6 0.384 0.19 0.636 0.472 0.961 0.922 1 0.999 1 1
0.7 0.489 0.302 0.716 0.554 0.961 0.919 1 0.996 1 1
0.8 0.615 0.402 0.741 0.587 0.947 0.896 0.993 0.984 1 0.999
0.9 0.769 0.607 0.794 0.654 0.917 0.838 0.98 0.96 0.998 0.996

W 6= M, N=81, T=7
λ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ LMρ LRρ

0 0.047 0.008 0.446 0.283 0.964 0.924 1 0.999 1 1
0.1 0.069 0.024 0.517 0.328 0.966 0.929 1 1 1 1
0.2 0.084 0.027 0.553 0.366 0.969 0.927 1 1 1 1
0.3 0.13 0.046 0.607 0.408 0.982 0.943 0.999 0.999 1 1
0.4 0.214 0.083 0.626 0.446 0.979 0.942 1 1 1 1
0.5 0.265 0.119 0.647 0.463 0.981 0.943 1 1 1 1
0.6 0.345 0.18 0.678 0.512 0.968 0.938 1 0.999 1 1
0.7 0.476 0.279 0.744 0.59 0.964 0.918 1 0.998 1 1
0.8 0.613 0.409 0.753 0.593 0.944 0.9 0.995 0.99 1 1
0.9 0.752 0.589 0.786 0.659 0.918 0.855 0.988 0.967 1 1
LMρ and LRρ test for the presence an endogenous spatial lag in the specification.



Table 7: Performance of LMλ|ρ and LRλ|ρ in the Ideal DGP
W = M, N=49, T=10

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4
ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ
0 0.046 0.048 0.257 0.246 0.751 0.747 0.979 0.967 1 0.996

0.1 0.05 0.043 0.243 0.253 0.799 0.803 0.978 0.977 1 1
0.2 0.042 0.023 0.258 0.258 0.778 0.791 0.979 0.978 1 1
0.3 0.052 0.02 0.289 0.294 0.75 0.756 0.972 0.979 1 1
0.4 0.052 0.02 0.263 0.265 0.773 0.784 0.982 0.983 0.998 0.999
0.5 0.049 0.017 0.26 0.263 0.758 0.758 0.978 0.98 1 1
0.6 0.051 0.018 0.296 0.29 0.772 0.785 0.968 0.971 1 1
0.7 0.052 0.012 0.308 0.302 0.812 0.806 0.973 0.979 1 1
0.8 0.045 0.017 0.275 0.274 0.79 0.789 0.991 0.991 1 1
0.9 0.056 0.025 0.311 0.287 0.819 0.824 0.992 0.993 0.999 0.999

W = M, N=81, T=7
ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ
0 0.042 0.041 0.283 0.268 0.784 0.783 0.983 0.975 1 0.998

0.1 0.05 0.039 0.268 0.269 0.777 0.789 0.977 0.979 0.999 1
0.2 0.034 0.019 0.269 0.279 0.744 0.758 0.973 0.975 1 1
0.3 0.058 0.019 0.301 0.309 0.765 0.783 0.975 0.98 1 1
0.4 0.051 0.019 0.25 0.243 0.791 0.799 0.975 0.979 0.999 0.999
0.5 0.043 0.015 0.28 0.282 0.801 0.808 0.977 0.979 0.998 0.999
0.6 0.043 0.015 0.307 0.297 0.783 0.794 0.985 0.989 0.999 0.999
0.7 0.062 0.022 0.291 0.278 0.831 0.825 0.98 0.986 1 1
0.8 0.052 0.02 0.307 0.308 0.815 0.82 0.981 0.981 1 1
0.9 0.049 0.032 0.329 0.326 0.838 0.841 0.991 0.993 1 1

W 6= M, N=49, T=10
ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ
0 0.047 0.05 0.219 0.202 0.779 0.763 0.971 0.967 1 1

0.1 0.044 0.048 0.259 0.247 0.756 0.738 0.984 0.976 0.999 0.999
0.2 0.063 0.044 0.252 0.234 0.761 0.744 0.98 0.98 1 1
0.3 0.039 0.02 0.271 0.248 0.728 0.711 0.981 0.978 1 1
0.4 0.057 0.025 0.263 0.244 0.754 0.737 0.973 0.969 1 1
0.5 0.041 0.015 0.245 0.222 0.762 0.736 0.976 0.973 1 1
0.6 0.055 0.018 0.253 0.217 0.712 0.674 0.976 0.973 0.999 0.999
0.7 0.045 0.019 0.223 0.19 0.727 0.704 0.962 0.959 1 1
0.8 0.042 0.022 0.273 0.242 0.707 0.679 0.96 0.956 0.997 0.996
0.9 0.049 0.021 0.245 0.192 0.687 0.663 0.949 0.941 0.998 0.998

W 6= M, N=81, T=7
ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ
0 0.047 0.051 0.26 0.245 0.769 0.744 0.989 0.98 1 0.999

0.1 0.043 0.046 0.287 0.27 0.754 0.744 0.979 0.978 1 1
0.2 0.043 0.029 0.247 0.227 0.75 0.73 0.982 0.978 1 1
0.3 0.048 0.023 0.272 0.247 0.785 0.757 0.977 0.975 0.999 0.999
0.4 0.056 0.022 0.248 0.232 0.761 0.74 0.975 0.973 0.999 0.999
0.5 0.043 0.02 0.231 0.204 0.76 0.736 0.967 0.962 1 1
0.6 0.046 0.018 0.249 0.223 0.73 0.709 0.968 0.963 1 1
0.7 0.043 0.019 0.265 0.238 0.739 0.706 0.97 0.966 0.999 0.999
0.8 0.047 0.013 0.242 0.204 0.701 0.67 0.965 0.957 0.998 1
0.9 0.04 0.016 0.224 0.166 0.67 0.646 0.954 0.948 0.999 0.999
LMλ|ρ and LRλ|ρ test for the presence of spatially correlated errors when an endogenous
spatial lag is included in the specification.



Table 8: Performance of LMλ|ρ and LRλ|ρ in the Robust DGP
W = M, N=49, T=10

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4
ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ
0 0.047 0.052 0.231 0.23 0.69 0.688 0.963 0.941 0.999 0.997

0.1 0.057 0.05 0.255 0.26 0.717 0.722 0.963 0.968 0.999 1
0.2 0.053 0.023 0.262 0.275 0.706 0.723 0.969 0.975 1 1
0.3 0.055 0.014 0.273 0.279 0.746 0.751 0.975 0.976 0.999 0.999
0.4 0.049 0.024 0.237 0.239 0.785 0.8 0.981 0.985 1 1
0.5 0.039 0.012 0.278 0.285 0.772 0.788 0.981 0.986 0.999 0.999
0.6 0.054 0.03 0.302 0.3 0.805 0.817 0.984 0.987 1 1
0.7 0.06 0.041 0.306 0.297 0.806 0.814 0.99 0.991 1 1
0.8 0.052 0.034 0.318 0.327 0.832 0.841 0.993 0.993 1 1
0.9 0.052 0.035 0.357 0.346 0.87 0.87 0.997 0.998 1 1

W = M, N=81, T=7
ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ
0 0.048 0.045 0.268 0.264 0.745 0.74 0.981 0.97 0.999 0.999

0.1 0.06 0.05 0.258 0.259 0.783 0.793 0.979 0.986 1 1
0.2 0.056 0.032 0.26 0.27 0.788 0.797 0.988 0.99 1 1
0.3 0.04 0.016 0.281 0.286 0.803 0.814 0.992 0.992 1 1
0.4 0.047 0.018 0.28 0.285 0.812 0.833 0.99 0.993 1 1
0.5 0.055 0.027 0.274 0.283 0.844 0.847 0.994 0.997 1 1
0.6 0.05 0.031 0.335 0.334 0.818 0.824 0.993 0.994 1 1
0.7 0.051 0.034 0.322 0.323 0.847 0.85 0.995 0.996 1 1
0.8 0.05 0.03 0.342 0.36 0.862 0.869 0.999 0.996 1 1
0.9 0.05 0.043 0.367 0.368 0.888 0.881 0.997 0.997 1 1

W 6= M, N=49, T=10
ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ
0 0.051 0.054 0.23 0.209 0.74 0.712 0.977 0.972 0.999 0.998

0.1 0.057 0.059 0.225 0.215 0.751 0.734 0.97 0.969 0.999 0.999
0.2 0.04 0.026 0.222 0.202 0.744 0.73 0.983 0.98 1 1
0.3 0.05 0.025 0.238 0.218 0.754 0.736 0.973 0.968 1 1
0.4 0.057 0.034 0.216 0.199 0.695 0.676 0.977 0.976 1 1
0.5 0.057 0.031 0.224 0.202 0.735 0.711 0.964 0.963 0.999 0.999
0.6 0.06 0.02 0.223 0.192 0.72 0.698 0.973 0.97 1 0.999
0.7 0.055 0.035 0.235 0.203 0.707 0.677 0.967 0.963 0.999 0.998
0.8 0.048 0.025 0.226 0.21 0.698 0.675 0.951 0.948 1 1
0.9 0.042 0.022 0.234 0.19 0.697 0.664 0.957 0.944 0.996 0.997

W 6= M, N=81, T=7
ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ LMλ|ρ LRλ|ρ
0 0.048 0.047 0.218 0.195 0.753 0.722 0.977 0.972 1 1

0.1 0.064 0.066 0.26 0.241 0.745 0.731 0.98 0.98 1 1
0.2 0.046 0.03 0.239 0.227 0.755 0.747 0.982 0.978 0.999 0.999
0.3 0.057 0.022 0.237 0.217 0.74 0.726 0.982 0.978 1 1
0.4 0.042 0.03 0.257 0.235 0.752 0.73 0.973 0.968 1 1
0.5 0.04 0.018 0.217 0.187 0.726 0.702 0.983 0.976 1 1
0.6 0.052 0.022 0.247 0.214 0.749 0.717 0.972 0.969 0.999 0.999
0.7 0.055 0.041 0.255 0.217 0.731 0.703 0.964 0.958 1 1
0.8 0.051 0.035 0.219 0.198 0.711 0.692 0.959 0.953 0.999 0.999
0.9 0.05 0.026 0.225 0.185 0.704 0.678 0.965 0.955 1 1
LMλ|ρ and LRλ|ρ test for the presence of spatially correlated errors when an endogenous
spatial lag is included in the specification.



Table 9: Performance of LMρ|λ and LRρ|λ in the Ideal DGP
W = M, N=49, T=10

ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3
λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ
0 0.046 0.046 0.625 0.618 0.991 0.99 1 1

0.1 0.063 0.061 0.601 0.622 0.993 0.995 1 1
0.2 0.057 0.051 0.583 0.603 0.985 0.991 1 1
0.3 0.046 0.023 0.616 0.597 0.986 0.989 1 1
0.4 0.058 0.022 0.577 0.594 0.981 0.984 1 1
0.5 0.063 0.009 0.54 0.579 0.987 0.991 1 1
0.6 0.04 0.008 0.612 0.584 0.988 0.987 1 1
0.7 0.054 0.02 0.545 0.554 0.979 0.981 1 1
0.8 0.043 0.022 0.538 0.565 0.981 0.983 1 1
0.9 0.048 0.019 0.606 0.588 0.99 0.991 1 0.999

W = M, N=81, T=7
λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ
0 0.054 0.055 0.655 0.645 0.998 0.993 1 1

0.1 0.05 0.045 0.646 0.66 0.992 0.992 1 1
0.2 0.057 0.05 0.606 0.621 0.991 0.994 1 1
0.3 0.051 0.026 0.66 0.644 0.988 0.99 1 1
0.4 0.057 0.03 0.602 0.613 0.993 0.993 1 1
0.5 0.059 0.017 0.578 0.619 0.985 0.988 1 1
0.6 0.049 0.016 0.644 0.613 0.988 0.987 1 1
0.7 0.052 0.011 0.591 0.61 0.983 0.988 1 1
0.8 0.042 0.02 0.578 0.6 0.992 0.992 1 1
0.9 0.048 0.019 0.671 0.654 0.996 0.997 1 1

W 6= M, N=49, T=10
λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ
0 0.038 0.036 0.519 0.511 0.982 0.978 1 0.999

0.1 0.057 0.058 0.492 0.501 0.989 0.989 1 1
0.2 0.049 0.052 0.479 0.494 0.964 0.965 1 1
0.3 0.045 0.036 0.46 0.465 0.966 0.97 1 1
0.4 0.033 0.026 0.473 0.483 0.964 0.965 1 1
0.5 0.056 0.028 0.449 0.458 0.962 0.963 1 1
0.6 0.044 0.027 0.45 0.455 0.961 0.963 1 1
0.7 0.052 0.029 0.425 0.439 0.962 0.965 1 1
0.8 0.041 0.031 0.416 0.424 0.946 0.949 1 1
0.9 0.046 0.036 0.429 0.433 0.959 0.957 1 1

W 6= M, N=81, T=7
λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ
0 0.035 0.035 0.527 0.519 0.978 0.973 1 1

0.1 0.047 0.049 0.534 0.545 0.976 0.981 1 1
0.2 0.042 0.045 0.478 0.489 0.972 0.973 1 1
0.3 0.033 0.025 0.506 0.506 0.971 0.971 1 1
0.4 0.051 0.045 0.492 0.504 0.971 0.973 1 1
0.5 0.038 0.024 0.497 0.51 0.976 0.98 1 1
0.6 0.06 0.03 0.504 0.512 0.979 0.979 1 1
0.7 0.046 0.028 0.461 0.475 0.965 0.967 1 1
0.8 0.04 0.026 0.487 0.495 0.969 0.972 1 1
0.9 0.049 0.031 0.465 0.471 0.964 0.964 1 1
LMρ|λ and LRρ|λ test for the presence an endogenous spatial lag when spatially autocor-
related errors are included in the specification.



Table 10: Performance of LMρ|λ and LRρ|λ in the Robust DGP with W 6= M
W 6= M, N=49, T=10

ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4
λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ
0 0.041 0.046 0.398 0.385 0.953 0.948 1 1 1 1

0.1 0.052 0.055 0.414 0.432 0.942 0.946 0.999 0.999 1 1
0.2 0.051 0.05 0.398 0.411 0.926 0.933 0.999 0.999 1 1
0.3 0.06 0.043 0.414 0.416 0.936 0.942 0.999 0.999 1 1
0.4 0.041 0.036 0.398 0.406 0.924 0.929 1 1 1 1
0.5 0.045 0.018 0.409 0.425 0.94 0.942 1 1 1 1
0.6 0.053 0.028 0.376 0.38 0.912 0.912 0.999 0.999 1 1
0.7 0.06 0.053 0.359 0.373 0.912 0.92 1 1 1 1
0.8 0.047 0.046 0.371 0.377 0.903 0.909 0.999 0.999 1 1
0.9 0.039 0.033 0.346 0.355 0.915 0.909 1 0.999 1 1

W 6= M, N=81, T=7
λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ LMρ|λ LRρ|λ
0 0.047 0.051 0.432 0.434 0.968 0.964 1 1 1 1

0.1 0.047 0.047 0.448 0.459 0.955 0.958 1 1 1 1
0.2 0.042 0.044 0.431 0.441 0.949 0.951 1 1 1 1
0.3 0.047 0.031 0.433 0.446 0.963 0.962 0.999 0.999 1 1
0.4 0.047 0.04 0.424 0.433 0.937 0.939 1 1 1 1
0.5 0.045 0.02 0.402 0.407 0.949 0.955 1 1 1 1
0.6 0.054 0.031 0.405 0.408 0.946 0.949 1 1 1 1
0.7 0.046 0.039 0.406 0.414 0.933 0.934 1 1 1 1
0.8 0.045 0.039 0.399 0.406 0.932 0.936 1 1 1 1
0.9 0.05 0.047 0.406 0.407 0.936 0.932 1 1 1 1
LMρ|λ and LRρ|λ test for the presence an endogenous spatial lag when spatially autocor-
related errors are included in the specification.
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Table 12: Descriptive statistics for ratio of investment and saving
Obs. mean Std deviation min max

Investment 984 25.54793 5.987409 9.798207 44.85361
Savings 984 24.84542 6.990893 0.1976267 41.84594

Table 13: Results of the within estimation
Dependent variable Investment rate

Period 1960-1970 1971-1985 1986-2000
Saving rate 0.932 0.707 0.442

(0.000) (0.000) (0.000)
R2 0.653 0.453 0.108

p-values are between brackets.



Table 14: Tests to detect spatial autocorrelation
1960-1970 1971-1985 1986-2000

Weight matrix : inverse distance
LMJ 2.03 166.97 82.58

(0.363) (0.000) (0.000)
LRJ 2.50 73.36 43.08

(0.286) (0.000) (0.000)
LMλ - 147.51 72.79

(0.000) (0.000)
LRλ - 70.47 39.07

(0.000) (0.000)
LMρ - 133.53 82.56

(0.000) (0.000)
LRρ - 69.86 42.08

(0.000) (0.000)
LMλ|ρ - 2.14 0.44

(0.143) (0.504)
LRλ|ρ - 3.49 1.06

(0.062) (0.316)
LMρ|λ - 100.52 183.64

(0.000) (0.000)
LRρ|λ - 2.88 4.01

(0.089) (0.045)
Preferred model a-spatial SAR SAR
Weight matrix : 7 Nearest neighbours

LMJ 2.54 128.61 56.40
(0.280) (0.000) (0.000)

LRJ 3.27 64.12 33.10
(0.194) (0.000) (0.000)

LMλ - 114.03 52.69
(0.000) (0.000)

LRλ - 60.93 30.43
(0.000) (0.000)

LMρ - 105.75 55.73
(0.000) (0.000)

LRρ - 61.65 33.10
(0.000) (0.000)

LMλ|ρ - 1.37 0.01
(0.241) (0.965)

LRλ|ρ - 2.46 0.01
(0.116) (0.931)

LMρ|λ 106.48 154.44
(0.000) (0.000)

LRρ|λ - 3.18 2.68
(0.074) (0.102)

Preferred model a-spatial SAR SAR
p-values are between brackets. SAR specification stands for
a model including a spatial endogenous lag while "a-spatial"
stands for a classical regression, without the spatial dimen-
sion.



Table 15: Estimation of final models
Dependent variable : Investment

1960-1970 1971-1985 1986-2000
Weight matrix : inverse distance

Model a-spatial SAR SAR
Savings 0.932 0.614 0.355

(0.000) (0.000) (0.000)
ρ 0.507 0.535

(0.000) (0.000)
Tests for 26.440 234.59 291.62

fixed effects (0.000) (0.000) (0.000)
Weight matrix : 7 nearest neighbours

Model a-spatial SAR SAR
Savings 0.932 0.609 0.367

(0.000) (0.000) (0.000)
ρ 0.452 0.451

(0.000) (0.000)
Tests for 26.440 226.63 303.44

fixed effects (0.000) (0.000) (0.000)
p-values are between brackets. ρ is the spatial autoregressive parameter
associated with the spatial endogenous lag. Tests for fixed effects are the
usual Chow test for the a-spatial model and LR tests for the last two
subsamples since the Chow statistic is affected by the presence of spatial
autocorrelation.



Table 16 : Matrix of reaction coefficients for the 1971-1985 period.
AUS AUT BEL CAN CHE DNK ESP FIN

AUS 0.6251 0.0254 0.0327 0.019 0.0274 0.0274 0.022 0.0243
AUT 0.0034 0.6316 0.0528 0.0086 0.0523 0.0443 0.0256 0.0292
BEL 0.0025 0.0299 0.6502 0.0069 0.0464 0.0353 0.0226 0.0205
CAN 0.0074 0.0249 0.0354 0.6322 0.0285 0.0284 0.0246 0.0236
CHE 0.003 0.0422 0.0661 0.0079 0.636 0.0361 0.0288 0.0229
DNK 0.0032 0.0377 0.0532 0.0083 0.0381 0.6356 0.0219 0.0365
ESP 0.0037 0.0315 0.0492 0.0105 0.0439 0.0316 0.6311 0.0224
FIN 0.0039 0.0344 0.0426 0.0096 0.0334 0.0504 0.0214 0.6318
FRA 0.0027 0.0305 0.0844 0.0074 0.0536 0.033 0.0271 0.0205
GBR 0.0027 0.0285 0.079 0.0077 0.0423 0.0342 0.0256 0.0211
GRC 0.0046 0.0438 0.0437 0.0101 0.0413 0.0352 0.0281 0.028
IRL 0.0033 0.0294 0.0591 0.0099 0.0391 0.037 0.0287 0.0245
ISL 0.0048 0.0303 0.0469 0.017 0.0353 0.0387 0.0275 0.031
ITA 0.0036 0.0491 0.0501 0.0091 0.0563 0.0355 0.0319 0.0251
JPN 0.0174 0.0261 0.0338 0.0175 0.0279 0.0289 0.0218 0.0264
KOR 0.0161 0.0267 0.0344 0.0167 0.0285 0.0296 0.0221 0.0272
MEX 0.0126 0.0266 0.0369 0.0425 0.0301 0.0298 0.0259 0.0251
NLD 0.0026 0.0306 0.1046 0.0072 0.0426 0.0405 0.0222 0.0222
NOR 0.0034 0.0321 0.0471 0.009 0.034 0.0628 0.0214 0.0424
NZL 0.0782 0.0247 0.0321 0.0211 0.0267 0.0268 0.0215 0.0237
PRT 0.004 0.0304 0.0469 0.0118 0.0402 0.0314 0.0755 0.0227
SWE 0.0034 0.0332 0.0433 0.0087 0.0329 0.06 0.0205 0.0647
TUR 0.0051 0.0418 0.0427 0.0106 0.0385 0.0365 0.0264 0.0312
USA 0.0077 0.0245 0.0347 0.0979 0.0281 0.0277 0.0244 0.023



Table 16 (continued)
FRA GBR GRC IRL ISL ITA JPN KOR

AUS 0.0299 0.0294 0.0218 0.0241 0.0194 0.0237 0.0291 0.0282
AUT 0.0461 0.0419 0.0281 0.0292 0.0164 0.0432 0.0059 0.0063
BEL 0.0722 0.0656 0.0159 0.0332 0.0144 0.0249 0.0043 0.0046
CAN 0.0325 0.0327 0.0187 0.0285 0.0266 0.0231 0.0114 0.0115
CHE 0.0653 0.05 0.0214 0.0312 0.0154 0.0399 0.0051 0.0054
DNK 0.0425 0.0427 0.0193 0.0312 0.0179 0.0265 0.0056 0.0059
ESP 0.0505 0.0464 0.0222 0.0351 0.0183 0.0346 0.0061 0.0064
FIN 0.0365 0.0364 0.0212 0.0286 0.0198 0.026 0.007 0.0076
FRA 0.6428 0.0725 0.017 0.0356 0.0151 0.0276 0.0046 0.0049
GBR 0.0746 0.6419 0.0163 0.0463 0.0164 0.025 0.0047 0.005
GRC 0.0401 0.0373 0.6272 0.0278 0.0171 0.0473 0.0075 0.0081
IRL 0.0542 0.0686 0.018 0.6312 0.0234 0.0261 0.0057 0.006
ISL 0.0421 0.0444 0.0203 0.0427 0.6231 0.0266 0.0086 0.009
ITA 0.0475 0.0418 0.0345 0.0294 0.0164 0.63 0.0061 0.0065
JPN 0.0306 0.0303 0.0214 0.025 0.0207 0.0237 0.6286 0.0887
KOR 0.0311 0.0308 0.022 0.0253 0.0207 0.0242 0.0849 0.6286
MEX 0.0339 0.0338 0.0208 0.0288 0.025 0.0249 0.0157 0.0153
NLD 0.0585 0.0618 0.0162 0.0346 0.0152 0.0246 0.0045 0.0048
NOR 0.0391 0.0405 0.0185 0.0323 0.0208 0.0245 0.006 0.0064
NZL 0.0292 0.0289 0.021 0.0239 0.0197 0.023 0.0274 0.0263
PRT 0.0467 0.0446 0.022 0.0357 0.0198 0.0321 0.0065 0.0069
SWE 0.0364 0.0367 0.0192 0.0286 0.0188 0.0246 0.0061 0.0065
TUR 0.0386 0.0366 0.0583 0.0277 0.0179 0.0385 0.0086 0.0093
USA 0.0319 0.032 0.0186 0.0277 0.0252 0.0229 0.0115 0.0115



Table 16 (continued)
MEX NLD NOR NZL PRT SWE TUR USA

AUS 0.0181 0.0313 0.0262 0.0734 0.0202 0.0269 0.0212 0.0189
AUT 0.0052 0.0498 0.0339 0.0031 0.0209 0.0356 0.0233 0.0081
BEL 0.004 0.0963 0.0282 0.0023 0.0183 0.0263 0.0135 0.0065
CAN 0.0239 0.0338 0.0277 0.0078 0.0236 0.0272 0.0171 0.0936
CHE 0.0047 0.0558 0.029 0.0027 0.0224 0.0284 0.0173 0.0075
DNK 0.0049 0.0561 0.0565 0.0029 0.0184 0.0547 0.0173 0.0078
ESP 0.0062 0.0445 0.0279 0.0034 0.0642 0.0271 0.0181 0.0099
FIN 0.0057 0.0425 0.0528 0.0035 0.0185 0.0817 0.0205 0.009
FRA 0.0044 0.063 0.0274 0.0025 0.0213 0.0258 0.0142 0.007
GBR 0.0045 0.0685 0.0292 0.0025 0.0209 0.0268 0.0139 0.0072
GRC 0.0063 0.041 0.0304 0.0042 0.0237 0.032 0.0506 0.0096
IRL 0.0056 0.0568 0.0345 0.0031 0.0249 0.0309 0.0156 0.0092
ISL 0.009 0.0458 0.0406 0.0046 0.0251 0.0372 0.0184 0.0153
ITA 0.0055 0.0456 0.0295 0.0033 0.0252 0.03 0.0244 0.0086
JPN 0.0135 0.0325 0.0281 0.0154 0.0199 0.0289 0.0211 0.0167
KOR 0.0126 0.033 0.0286 0.0141 0.0201 0.0296 0.022 0.016
MEX 0.6195 0.0352 0.0288 0.0139 0.0247 0.0286 0.0191 0.0472
NLD 0.0042 0.6462 0.0316 0.0024 0.0182 0.0289 0.0139 0.0067
NOR 0.0053 0.0487 0.635 0.0031 0.0184 0.0685 0.0169 0.0084
NZL 0.0212 0.0307 0.0258 0.625 0.0201 0.0263 0.0203 0.0212
PRT 0.0069 0.0429 0.0282 0.0037 0.6289 0.0273 0.0182 0.0112
SWE 0.0052 0.0439 0.0676 0.0031 0.0176 0.6378 0.0179 0.0082
TUR 0.0067 0.0405 0.0321 0.0046 0.0226 0.0345 0.6254 0.01
USA 0.0278 0.0331 0.027 0.0082 0.0234 0.0265 0.017 0.6324
All numbers are significant at the 1% level.



Table 17 : Matrix of reaction coefficients for the 1986-2000 period.
AUS AUT BEL CAN CHE DNK ESP FIN

AUS 0.3621 0.0166 0.0218 0.0121 0.0181 0.018 0.0144 0.0158
AUT 0.0022 0.3668 0.0343 0.0056 0.0334 0.0284 0.0166 0.0188
BEL 0.0017 0.0194 0.3793 0.0046 0.0298 0.0229 0.0148 0.0135
CAN 0.0048 0.0163 0.0235 0.3668 0.0188 0.0186 0.016 0.0154
CHE 0.002 0.0269 0.0425 0.0052 0.3698 0.0234 0.0185 0.0149
DNK 0.0021 0.0242 0.0345 0.0055 0.0247 0.3695 0.0143 0.0233
ESP 0.0024 0.0204 0.0321 0.0068 0.0283 0.0207 0.3663 0.0147
FIN 0.0025 0.0222 0.028 0.0062 0.0218 0.0322 0.014 0.3669
FRA 0.0018 0.0198 0.0536 0.0049 0.0342 0.0215 0.0175 0.0135
GBR 0.0018 0.0186 0.0504 0.0051 0.0273 0.0222 0.0166 0.0138
GRC 0.003 0.0279 0.0287 0.0066 0.0267 0.0229 0.0181 0.0181
IRL 0.0022 0.0191 0.0382 0.0064 0.0253 0.024 0.0185 0.0159
ISL 0.0031 0.0197 0.0307 0.0108 0.023 0.025 0.0177 0.0199
ITA 0.0024 0.0311 0.0326 0.0059 0.0358 0.023 0.0204 0.0163
JPN 0.0109 0.0171 0.0225 0.0112 0.0184 0.019 0.0142 0.0171
KOR 0.0101 0.0174 0.0228 0.0107 0.0187 0.0194 0.0144 0.0176
MEX 0.0079 0.0174 0.0244 0.0266 0.0198 0.0195 0.0168 0.0163
NLD 0.0017 0.0199 0.0658 0.0047 0.0275 0.0261 0.0145 0.0145
NOR 0.0022 0.0208 0.0308 0.0059 0.0222 0.0397 0.014 0.0269
NZL 0.0479 0.0162 0.0214 0.0134 0.0176 0.0177 0.0141 0.0155
PRT 0.0026 0.0197 0.0307 0.0076 0.026 0.0205 0.047 0.0148
SWE 0.0022 0.0215 0.0284 0.0057 0.0215 0.038 0.0134 0.0405
TUR 0.0033 0.0267 0.028 0.0069 0.025 0.0236 0.0171 0.02
USA 0.0049 0.0161 0.023 0.0603 0.0185 0.0182 0.0158 0.015



Table 17 (continued)
FRA GBR GRC IRL ISL ITA JPN KOR

AUS 0.0198 0.0195 0.0141 0.0158 0.0125 0.0155 0.0182 0.0177
AUT 0.0299 0.0273 0.0179 0.019 0.0106 0.0274 0.0039 0.0041
BEL 0.0458 0.0418 0.0104 0.0214 0.0094 0.0162 0.0029 0.0031
CAN 0.0215 0.0216 0.0122 0.0185 0.0169 0.0151 0.0073 0.0073
CHE 0.0416 0.0323 0.0138 0.0202 0.01 0.0254 0.0034 0.0036
DNK 0.0277 0.0278 0.0125 0.0202 0.0115 0.0172 0.0037 0.0039
ESP 0.0326 0.03 0.0143 0.0226 0.0118 0.0221 0.004 0.0042
FIN 0.024 0.0239 0.0137 0.0186 0.0127 0.0169 0.0046 0.0049
FRA 0.3743 0.046 0.0111 0.0229 0.0098 0.0179 0.003 0.0032
GBR 0.0473 0.3737 0.0107 0.0294 0.0106 0.0163 0.0031 0.0033
GRC 0.0262 0.0244 0.3638 0.0181 0.0111 0.0299 0.0049 0.0052
IRL 0.0349 0.0436 0.0117 0.3665 0.0149 0.0169 0.0037 0.0039
ISL 0.0274 0.0288 0.0132 0.0272 0.3611 0.0172 0.0056 0.0058
ITA 0.0307 0.0272 0.0218 0.0191 0.0106 0.3657 0.004 0.0042
JPN 0.0203 0.0201 0.0138 0.0164 0.0133 0.0155 0.3644 0.0545
KOR 0.0206 0.0203 0.0142 0.0165 0.0133 0.0158 0.0521 0.3644
MEX 0.0223 0.0223 0.0134 0.0187 0.0159 0.0162 0.0099 0.0097
NLD 0.0376 0.0395 0.0106 0.0223 0.0099 0.0161 0.003 0.0032
NOR 0.0256 0.0264 0.012 0.0209 0.0133 0.016 0.0039 0.0042
NZL 0.0194 0.0192 0.0136 0.0157 0.0127 0.015 0.0172 0.0165
PRT 0.0303 0.0289 0.0142 0.023 0.0127 0.0206 0.0042 0.0045
SWE 0.0239 0.0241 0.0124 0.0186 0.0121 0.016 0.004 0.0043
TUR 0.0253 0.024 0.0363 0.0181 0.0116 0.0246 0.0055 0.006
USA 0.0211 0.0211 0.0121 0.0181 0.0161 0.0149 0.0074 0.0074



Table 17 (continued)
MEX NLD NOR NZL PRT SWE TUR USA

AUS 0.0114 0.0208 0.0172 0.045 0.0131 0.0176 0.0136 0.0121
AUT 0.0034 0.0323 0.0219 0.0021 0.0136 0.023 0.0149 0.0053
BEL 0.0027 0.0606 0.0184 0.0015 0.012 0.0173 0.0088 0.0043
CAN 0.0149 0.0224 0.0181 0.0049 0.0152 0.0178 0.0111 0.0576
CHE 0.0031 0.036 0.0189 0.0018 0.0145 0.0186 0.0112 0.0049
DNK 0.0032 0.0361 0.0358 0.0019 0.012 0.0347 0.0112 0.0051
ESP 0.004 0.029 0.0182 0.0022 0.0399 0.0178 0.0117 0.0064
FIN 0.0037 0.0278 0.0335 0.0023 0.0121 0.0511 0.0132 0.0058
FRA 0.0029 0.0405 0.0179 0.0016 0.0138 0.017 0.0093 0.0046
GBR 0.0029 0.0438 0.019 0.0017 0.0136 0.0176 0.0091 0.0047
GRC 0.0041 0.0269 0.0198 0.0027 0.0153 0.0208 0.0315 0.0062
IRL 0.0037 0.0366 0.0223 0.002 0.016 0.0201 0.0102 0.006
ISL 0.0057 0.0298 0.026 0.003 0.0162 0.024 0.0119 0.0098
ITA 0.0036 0.0297 0.0192 0.0022 0.0162 0.0196 0.0156 0.0056
JPN 0.0085 0.0215 0.0183 0.0097 0.0129 0.0189 0.0136 0.0107
KOR 0.008 0.0219 0.0187 0.0089 0.013 0.0193 0.0141 0.0103
MEX 0.3585 0.0232 0.0188 0.0087 0.0159 0.0187 0.0123 0.0294
NLD 0.0028 0.3766 0.0205 0.0016 0.0119 0.0189 0.0091 0.0044
NOR 0.0034 0.0316 0.369 0.002 0.012 0.0431 0.011 0.0055
NZL 0.0132 0.0204 0.0169 0.362 0.0131 0.0173 0.0131 0.0135
PRT 0.0045 0.0281 0.0184 0.0024 0.3649 0.0179 0.0118 0.0072
SWE 0.0034 0.0287 0.0425 0.002 0.0115 0.3708 0.0116 0.0054
TUR 0.0043 0.0266 0.0208 0.003 0.0146 0.0223 0.3626 0.0065
USA 0.0173 0.0219 0.0176 0.0052 0.0151 0.0174 0.011 0.3669
All numbers are significant at the 1% level.


