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Abstract. Spatial regression models incorporating non-stationarity in the regression coefficients 
are popular. In this paper we propose a family of spatial Smooth Transition AutoRegressive 
(STAR) models inspired by analogous nonlinear approaches developed in the time series 
literature. Spatial STAR models constitute a parsimonious, easy-to-estimate approach to 
modeling nonlinear spatial parameter variation and endogenous detection of spatial regimes. A 
distinct advantage of the approach is the integration of modeling spatial dependence and 
heterogeneity in an integrated model where tradeoffs between the two can be assessed in a valid 
statistical framework. The STAR approach is especially useful given the observational 
equivalence of spatial autocorrelation and spatial heterogeneity. We derive the necessary 
Lagrange Multiplier tests to identify nonlinearity and spatial autocorrelation individually as well 
as jointly. Monte Carlo simulation experiments are used to assess the small sample performance 
of the LM tests, including the probability of identifying the correct underlying model. 
Uncomplicated maximum likelihood estimation and inference procedures are demonstrated in an 
example using data on economic growth for United States counties.  
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1. Introduction 

In regression models utilizing spatial cross-sectional data authors typically pay attention to 

spatial heterogeneity and spatial dependence. Because modeling spatial dependence requires 

tailored techniques it has gathered substantial scrutiny. Spatial heterogeneity or non-stationarity 

occurs if the modeled relationships vary systematically over space. This variation can be 

captured in the coefficients (spatial regimes or trends), the error variance (heteroskedasticity), the 

functional form, or some combination of these (Anselin, 1988).  

Geographically Weighted Regression (GWR) has popularized the notion of spatial 

variation in the regression parameters (Fotheringham et al., 2002). In GWR each parameter is 

determined locally by exploiting the variation in distance-weighted subsets of neighbors. This 

approach has several, potentially serious, drawbacks (Cho et al., 2009). For instance, repeated 

usage of overlapping neighborhood sets and the conditional nature of the regression coefficients 

induced by prior kernel selection and bandwidth calibration challenge statistical inference based 

on standard least squares principles (LeSage, 2004). In addition, neighborhood sets need to be 

large for the estimator to be efficient. This creates a delicate tradeoff between efficiency and the 

desired (lack of) smoothness of the parameter surface.  

In comparison, the use of spatial regimes is statistically unproblematic and more 

parsimonious, but requires a potentially ad hoc division of the sample into a disjoint, possibly 

predetermined number of groups. This issue has surfaced prominently in the economic growth 

literature in an attempt to validate the existence of convergence clubs. Solutions vary from 

exogenous fixes using cutoff points or exploratory (spatial) data analysis, to endogenous 

approaches based on regression trees, predictive density, or stationary tests (Abreu et al., 2005). 

In a spatial setting Dall’erba et al. (2008) propose a series of tests to endogenize regime choice, 
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and Basile and Gress (2005) and Basile (2008) suggest a semi-parametric approach that 

endogenizes regime selection and simultaneously accounts for spatial processes. 

In this paper we propose a spatial version of the Smooth Transition AutoRegressive 

(STAR) modeling technique as an obvious pendant to the regime-switching approaches 

developed in time series econometrics (Teräsvirta, 1994). The spatial STAR model provides a 

lucid framework for statistical inference on the extent of spatial parameter variation and 

endogenously determines a (potentially) smooth transition between regimes. 

 

2. Spatial STAR model 

A family of spatial STAR models can be developed from the basic spatial autoregressive error 

specification: 

 

1( )y X I Wβ ρ µ−= + − , (1) 

 

where y  is an (n×1) spatial data series, X  an (n×k) matrix of explanatory variables, µ  a vector 

of innovations, and W an (n×n) spatial weights matrix. Equation (1) can be extended to include 

the spatially lagged dependent variable ,Wy  resulting in the so-called spatial ARAR model. It 

may also contain one or more linearly independent spatial cross-regressive terms taken fromWX . 

The parameters in β  are stationary across space, except if the specification contains the spatially 

lagged dependent variable, which forces the parameters into a smooth autoregressive pattern due 

to the presence of the spatial multiplier in the reduced form (Anselin, 2006). 

A spatial error STAR model can be easily constructed from (1) by adding a set of 

coefficients δ  for a second regime, interacted with a transition function: 
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1( ; , ) ( )y X X G s c I W −= + + −�β δ γ ρ µ , (2) 

 

where ( ; , )G s cγ is a potentially smooth, real-valued transition function bounded between zero 

and one, γ  and c  are respectively the slope and location parameter, and �  is the Hadamard 

product (element-by-element multiplication). In time series, (2) is often parameterized by using a 

logistic or exponential function, with a lagged endogenous variable, an exogenous variable, or a 

time trend identified as the transition variable, s . Analogous definitions of the transition variable 

can be used in a spatial setting, although the use of the spatially lagged dependent variable 

results in a highly nonlinear specification. Employing a spatially lagged exogenous variable or a 

polynomial in the coordinates of the observations is, however, straightforward. 

In this paper we use the logistic function with a spatially lagged exogenous variable Wx

as the transition variable: 

 

( ) 1
( ; , ) 1 exp ( ) WxG Wx c Wx cγ γ σ −

� �= + − −� � , (3) 

 

where the exponential part is scaled by the standard deviation of Wx to facilitate estimation.  

The spatial error STAR model is an attractive alternative to GWR. The specification is 

parsimonious, and exhibits data-determined, non-stationary coefficients across space. In the 

extreme case, if γ  and/or δ  are not statistically different from zero, the coefficients β  are 

“global” in the GWR terminology. Alternatively, for large γ  the transition function approaches 0 

or 1 depending on whether ( ) 0Wx c <− > , effectively creating one or two clearly separated spatial 
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regimes. In general, the transition function G  will have a smooth logistic shape causing the 

coefficients to be predominantly “local”.  

For estimation we use standard maximum likelihood principles for spatial process models 

(Anselin, 2006). If the errors are iid normal with mean 0 and variance 2σ the log-likelihood 

function for the spatial error STAR model is: 

 

2 2
2

1
( , , ) ln ln

2 2
n

L I Wθ ρ σ σ ρ µ µ
σ

′= − + − − , (4) 

 

where ( ) ( )( );I W y f Xµ ρ θ= − − , f is the function provided in (2) and (3) with parameters

( ), , ,cθ β δ γ ′′ ′= , and 2 / nσ µ µ′= . Since there is no analytical expression for θ , optimization 

cannot be based on a “one-shot” maximization of the concentrated likelihood. An iterative 

feasible generalized least-squares (GLS) approach is, however, appropriate as long as a 

consistent estimate of ρ  is attained through nonlinear optimization of (4) given µ . The 

estimation procedure is based on the following steps: 

1.  estimate ( ; , )y X X G Wx cβ δ γ µ= + +�  using an appropriate nonlinear least squares 

estimator and obtain the estimated residuals µ̂ ;  

2.  substitute µ̂  in (4) and optimize to obtain a consistent estimate for ρ ;  

3.  use ρ̂  to employ the Cochrane-Orcutt transformations ( )ˆy I W yρ= −� and 

( )ˆX I W Xρ= −
�

; and  

4.  repeat the above steps with transformed variables y�  and X
�

until convergence. 
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The information matrix is block-diagonal, implying invariance between θ  and the 

covariance parameters ρ  and 2σ . Under appropriate regularity conditions asymptotic inference 

for the spatial autoregressive parameter can be based on the lower right elements of: 

 

( )

( ) ( )

( )

( ) ( ) ( )

1

2

2
4 2

2
2

1
; ; 0 0

tr
AsyVar , , 0

2
tr

0 tr tr

A A

B

B
B B B

f W X f W X

Wn

W
W W W

θ θ
σ

θ σ ρ
σ σ

σ

−
� �′
� �
� �
� �= � �
� �
� �′+� �
� �

, (5) 

 

where AW I Wρ= − , and ( ) 1
BW W I Wρ −= − . 

 The specification of the spatial error STAR model cannot be used directly to derive a 

nonlinearity test utilizing conventional maximum likelihood theory because of the presence of 

unidentified nuisance parameters under the null hypothesis. In other words, the asymptotic 

distribution for γ  is non-standard. Luukkonen et al. (1988) suggest using a first order Taylor 

series approximation of G  around 0γ = , which in the spatial error STAR case reads as: 

 

1
1 2

1

( ) ( )

( ) ,

y X Wx Wx x I W

X Z I W

β ϕ ϕ ρ µ

β ϕ ρ µ

−

−

= + + + −

= + + −

�

 (6) 

 

where [ ],Z Wx Wx x= � , and 1 2( , )ϕ ϕ ϕ ′= with the individual ϕ ’s being functions of the original 

parameters in (2) and (3). Lagrange Multiplier (LM) tests for spatially autoregressive errors and 
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nonlinearity can be easily derived following the general principles outlined in Anselin et al. 

(1996): 

 

2

0 2

1
,

e We
LM

Tρ σ=
′� �= 	 


� �
 (7) 

0 2 ,
e Pe

LMϕ σ=
′

=  (8) 

2

0 0 02 2

1
,

e We e Pe
LM LM LM

Tρ ϕ ρ ϕσ σ= = = =
′ ′� �= + = +	 


� �
 (9) 

 

where e are the residuals of the model under the null hypothesis estimated using an adequate 

GLS estimator, 2 e e nσ ′= , ( )tr ( )T W W W′= + , and P is the projection matrix 1( )X X X X−′ ′� � � �

with [ ], .X X Z=� The tests are asymptotically distributed with 1, 2 and 3 degrees of freedom, 

respectively. Details about the derivations of the tests are given in Appendix 1. 

 

3. Application to economic growth 

We demonstrate these estimation and inference procedures for an unconditional neoclassical 

growth model where the annual growth of per capita income is regressed on the level of per 

capita income, both in logarithmic form and with nominal values deflated by a regional 

consumer price index series for four regions in the US (2003 = 100). The dataset comprises 

observations for 3,074 counties in the lower 48 states of the U.S., for 1963 and 2003. Income 

data are available from the Bureau of Economic Analysis (BEA), and price data from the Bureau 

of Labor Statistics (BLS). We focus on parameter variation and spatial autocorrelation, and use a 

second-order contiguity matrix of the queen type (lower orders included). Heteroskedasticity of 
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the innovations is ignored, but can be easily incorporated using a robust covariance estimator. 

Computer code for the example is given in Appendix 2. 

 
Table 1 
Different specifications and estimators for the unconditional growth model, U.S. counties, 1969–2003a 

 OLS Spatial STAR Spatial Error Spatial Error STAR 
�0, constant_1 4.622** 4.984** 3.937** 4.365** 

 (0.104) (0.132) (0.141) (0.166) 
�0, constant_2  –11.768**  –8.297** 

  (2.666)  (1.925) 
�1, ln(GDP1969)_1 –0.428** –0.465** –0.356** –0.402** 

 (0.011) (0.014) (0.015) (0.017) 
�1, ln(GDP1969)_2  1.189**  0.849** 

  (0.268)  (0.197) 
�, slope parameter  2.020**  3.271** 

  (0.421)  (1.204) 
c, location parameter  9.909**  9.933** 

  (0.054)  (0.041) 
�, AR parameter   0.762** 0.747** 

   (0.023) (0.004) 
     
convergence rateb 1.64 1.66 1.29 1.22 
 (fixed) (0.69) (fixed) (0.69) 
     
     
LM�=0 2139.78** 1993.133**   
LM�=0 90.29**  35.57**  
LM�=�=0 2230.07**    

a Standard errors in parentheses. The probability of falsely rejecting the null hypothesis is flagged by ** and * for p � 
0.01, and 0.01 < p �  0.05, respectively. 
b Mean annual convergence rate in percent, with the standard deviation in parentheses where appropriate. The 
convergence rate equals 100 × (ln(�1+1))/–T, where T is the length of the time period in years. 

 

Table 1 shows that the annual convergence rate is 1.64% for the OLS estimator, but the 

LM tests provide strong evidence for misspecification. Individual tests as well as the joint test for 

spatially correlated errors and nonlinearity are significant. Omitting cross-regressive terms 

evokes omitted variable bias whereas ignoring spatially correlated errors merely causes the OLS 

estimator to be inefficient. The preferable strategy is therefore to first estimate the spatial STAR 

model. The second column of results shows clear evidence in favor of this specification. All 

coefficients are significantly different from zero, resulting in a spatially varying annual rate of 

convergence, which on average equals 1.66%. The LM test for this model, however, points to 
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spatially correlated errors. Subsequent estimation of a spatial error STAR model shows that 

ignoring spatial error correlation clearly leads to inflated t-values. The magnitude of the 

coefficients is similar—as expected. An alternative specification strategy, based on first 

correcting for spatially correlated errors and subsequent testing for erroneously omitted 

variables, leads to the same specification. 

 
Figure 1 
Convergence rates in % yr–1 for U.S. counties (map) and estimated transition function (diagram) based on estimates 
of the spatial error STAR model 
 

The transition function in Figure 1 shows that the degree to which local variation in 

convergence rates is statistically warranted is actually rather limited in this example. The 

estimation results reveal diverging or slowly converging economies around the major 

conurbations on the East and West coast, Chicago, Detroit, Denver and southern Florida, and 

economies converging at the same speed in most of the rest of the country. The discernable 

spatial pattern in the map illustrates that the STAR technique does not “over-smooth” the results, 

nor does it introduce unwieldy local spatial parameter variation. The estimated annual 

convergence rate is 1.22%, and approximately two-thirds of the sample can statistically be 

associated with one spatial regime with an annual convergence rate of 1.51%.   
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4. Conclusions 

Spatial STAR models constitute a parsimonious, easy-to-estimate approach to modeling spatial 

parameter variation and endogenous detection of spatial regimes. A distinct advantage of the 

approach is the integration of modeling spatial dependence and heterogeneity in an integrated 

model where tradeoffs between the two can be assessed in a valid statistical framework. This 

approach is especially useful given the observational equivalence of spatial autocorrelation and 

spatial heterogeneity.  

The spatial STAR model can be extended to various other situations commonly addressed 

in spatial econometrics. Further research is warranted and could focus on alternative nonlinear 

transition functions possibly including a spatially lagged dependent variable, the extension to a 

multivariate setting with multiple regimes, alternative estimators (nonlinear GMM), and the 

coverage of space-time data. 

 

Appendix 1: Lagrange Multiplier tests for nonlinearity and autoregressive errors 

Consider a spatial error STAR model with a logistic transition function defined in terms of a 

spatially lagged exogenous variable Wx  as the transition variable:  

 

( )

1

1

( ; , ) ( ) ,

1 exp ( ) ,Wx

y X X G Wx c I W

G Wx c

α δ γ ρ µ

γ σ

−

−

= + + −

� �= + − −� �

�

 (A1) 

 

where y  is an ( 1)n×  dependent variable, X an ( )n k× matrix of non-stochastic regressors, W  an 

( )n n×  weights matrix, µ  an ( 1)n×  vector of independent and identically distributed errors, α

and δ  are ( 1)k ×  vectors with unknown parameters, and γ , c  and ρ  unknown scalars. The 
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transition variable is a spatially lagged exogenous variable Wx , with x  potentially being a 

column vector of the design matrix X . The exponent is scaled by Wxσ , the standard deviation of 

the transition variable. 

The first order Taylor series approximation of the transition function around 0γ =  is: 

 

0 1
1

,
2 4 Wx

Wx c
G Wx

γ η η
σ

−≈ + = +

 

(A2) 

 

where 0 (2 ) / 4Wx Wxcη σ γ σ= −  and 1 / 4 Wxη γ σ= . Substitution provides the Taylor series 

approximation for the spatial error STAR model: 

 

( ) ( ) 1
0 1 ,y X X Wx I Wα δ η η ρ µ−≈ + + + −�  (A3) 

 

which, after collecting terms, can be compactly rewritten as: 

 

( ) ( )

( )

1

1 ,

y X X Wx I W

Z I W

ξ ϕ ρ µ

β ρ µ

−

−

= + + −

= + −

�

 (A4) 

 

where Z  is the ( 2 )n k×  matrix containing both X  and X Wx� , and ( , )β ξ ϕ′ ′ ′=  is a (2 1)k ×

vector defined in the original parameters as 0( )γ η δ α′ ′ ′= +  and 1( )ϕ η δ ′ ′= . 

The first order approximation of the spatial error STAR model in (A4) is essentially a 

spatially autoregressive error model where the design matrix Z contains X  supplemented by a 
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matrix containing the Hadamard product of X  and the transition variable Wx . We can therefore 

use the maximum likelihood principles outlined in Anselin (1988, Chapter 6; 2006) to derive 

Lagrange Multiplier (LM) tests for nonlinearity and spatial autoregressive errors.  

Assuming µ  is independently and identically distributed as 2(0, )N Iσ and Wx is 

independent from the errors, the joint probability density function of y  is: 

 

( ) ( ) 1/2 1/22 1
2

1
2 exp ,

2

− − −� �′= Ω − Ω	 

� �

f y πσ µ µ
σ

    (A5) 

    

where ( ) ( )′Ω = − −I W I Wρ ρ . From (A6), the log-likelihood function follows as: 

  

( )2 2
2

1
, , ln(2 ) ln ln ,

2 2 2A A A
n n

W W Wβ ρ σ π σ µ µ
σ

′ ′= − − + −�  (A6) 

 

where AW I Wρ= − . 

Defining the vector of unknown parameters as 2( , , )θ β ρ σ′ ′= , the score vector is given 

by: 

 

2

2

( )

( ) ( )
( )

( )

d

d d

d

β

ρ

σ

θ
β

θ θθ
θ ρ

θ
σ

∂� �
� �∂ � �� �

� �∂ ∂� �= = = � �� �∂ ∂ � �� �
� �∂� �

� �∂� �

�

� �

�

 , (A7) 
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and the information matrix reads as: 

 

2

2

2 2 2

2 2 2

2
2 2 2

2 2 2

( )
( ) E E

d d d

d d d

d d d

β βρ βσ

ρβ ρ ρσ

σ β σ ρ σ

θθ
θ θ

� �
� �

� �∂ � �ℑ = − = −� � � �′∂ ∂� � � �
� �� �

�
. (A8) 

 

The elements of the score vector containing first order derivatives are given by: 

 

2

1
,A Ad W W Zβ µ

σ
′ ′=  (A9.1) 

( )1
2

1
tr ,A Ad WW W Wρ µ µ

σ
− ′ ′= − +  (A9.2) 

2 2 2 2

1
2 2( ) A A

n
d W Wσ µ µ

σ σ
′ ′= − + . (A9.3) 

 

The second order derivatives are: 

 

2
2

1
,A Ad Z W W Zβ σ

′ ′= −  (A10.1) 

( )2 1 1
2

1
tr ,A Ad W WW W W Wρ µ µ

σ
− − ′ ′= − −  (A10.2) 

2
2

2 2 2 3

1
,

2( ) ( ) A A
n

d W Wσ µ µ
σ σ

′ ′= −  (A10.3) 

2
2 2

1 1
,A Ad Z W W W WZβρ µ µ

σ σ
′ ′ ′ ′= − −  (A10.4) 
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2
2

2 2

1
,

( ) A Ad W W Zβσ µ
σ

′ ′= −  (A10.5) 

2
2

2 2

1
.

( ) Ad W Wρσ µ µ
σ

′ ′= −  (A10.6) 

 

We can now straightforwardly derive individual and joint Lagrange Multiplier (LM) tests 

for nonlinearity and spatially autoregressive errors. Generally, the asymptotic LM test is defined 

as [ ] 1( ) ( ) ( )LM d dθ θ θ− ′= ℑ , to be evaluated under the null hypothesis, where ( )d θ  is the score 

vector, [ ] 1( )θ −ℑ  the asymptotic variance-covariance matrix: 

 

[ ] ( ) ( ) ( )

( )

1

2

1 2
2

2 4

1
0 0

tr
( ) 0 tr tr ,

tr
0

2

A A

B
B B B

B

Z W W Z

W
W W W

W n

σ

θ
σ

σ σ

−

−

� �′ ′� �
� �
� �′ℑ = +� �
� �
� �
� �
� �

 (A11) 

 

with 1)( −−= WIWWB ρ , and 2( , , )θ β ρ σ′ ′=  the parameter vector.    

 

A1.1 Nonlinearity tests 

The nonlinearity test is simply a standard test on omitted variables, where the omitted variables 

are X Wx� . Two null hypotheses can be defined, depending on whether the restricted model is 

the non-spatial model or the spatial error model. For the first case the parameter vector of the 

restricted model is 2
0 ( ,0,0, )θ ξ σ′ ′=  and the LM statistic for the null hypothesis 0 : 0| 0H ϕ ρ= =  

is: 
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( )

2 1
0| 0 2 2

1

2

1 1
( )

,

LM Z Z Z Z

Z Z Z Z

ϕ ρ µ σ µ
σ σ

µ µ
σ

−
= =

−

′� � � �′ ′ ′= 	 
 	 

� � � �

′ ′ ′
=

 (A12) 

 

where y Xµ ξ= −  corresponds with the OLS residuals of the restricted model, and 2 / nσ µ µ′= . 

 Similarly, for the case where the restricted model is the spatial error model, the parameter 

vector under the null hypothesis is given as 2
0 ( ,0, , )θ ξ ρ σ′ ′=  and the LM statistic for the null 

hypothesis 0 : 0| 0H ϕ ρ= ≠  is: 

 

( )

1

0| 0 2 2 2

1

2

1 1 1

,

A A A A A ALM W W Z Z W W Z W W Z

Z Z Z Z

ϕ ρ µ µ
σ σ σ

µ µ
σ

−

= ≠

−

′� �� � � �′ ′ ′ ′ ′ ′= 	 
	 
 	 

� �� � � �

′ ′ ′
=

� � � �� �

�

 (A13) 

 

where ( )AW y Xµ ξ= −�  corresponds to the residuals of the spatial error model, AZ W Z=�  are the 

spatially filtered variables Z , and 2 / nσ µ µ′=� � � . Both tests are asymptotically distributed 

following a 2χ  distribution with k  degrees of freedom, where k  equals the number of 

restrictions implied by (0,0, ,0)ϕ ′= � . 

 

A1.2 Spatially autoregressive error tests 

The tests for spatially autoregressive errors can be shown to be the standard result originally 

derived in Burridge (1980). Two null hypotheses can be distinguished, depending on whether the 
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restricted model is the non-spatial model or the spatial STAR model. For the first case the 

parameter vector of the restricted model is 2
0 ( ,0,0, )θ ξ σ′ ′=  and the statistic for the null 

hypothesis 0 : 0| 0H ρ ϕ= =  is the familiar: 

 

( )( )
2

0| 0 2

1
tr

W
LM

W W Wρ ϕ
µ µ

σ= =
′� �= 	 
′ + � �

, (A14) 

 

where y Xµ ξ= −  corresponds to the OLS residuals of the restricted model, and 2 / nσ µ µ′= . In 

the second case the parameter vector of the restricted model is 2
0 ( , ,0, )θ ξ ϕ σ′ ′ ′=  and the test of 

the null hypothesis 0 : 0| 0H ρ ϕ= ≠  is identical to (A14), except that in this case y Zµ β= − . 

Both tests are asymptotically 2χ  distributed with one degree of freedom. 

 

A1.3 Joint test for nonlinearity and spatially autoregressive errors 

The familiar additivity property of many LM tests holds in the case of a joint test for nonlinearity 

and spatially autoregressive errors, because the asymptotic variance matrix in (A11) is block-

diagonal under the null hypothesis 0 : 0, 0H ρ ϕ= = . The parameter vector of the restricted model 

is 2
0 ( ,0,0, )θ ξ σ′ ′= , and the LM statistic for the joint null hypothesis is therefore simply: 

 

( )( )

1
2 2

2
0

2 2

1 1
1

0

1 10 tr

Z Z
Z Z

LM
W W WW W

ρ φ

µ µ
σ σ

σ
µ µ µ µ

σ σ

−

= =

′� � � �′ ′� �� � � �′� �� � � �=
� �� � � �′ +� �′ ′� � � �� �

� � � �

 (A15) 
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( )
( )( )

1 2

2 2

0| 0 0| 0

1
tr

,

Z Z Z Z W
W W W

LM LMϕ ρ ρ ϕ

µ µ µ µ
σ σ

−

= = = =

′ ′ ′ ′� �= + 	 
′ + � �

= +

 

 

where y Xµ ξ= −  corresponds to the OLS residuals, and 2 / nσ µ µ′= . The test asymptotically 

follows a 2χ  distribution with 1k +  degrees of freedom, where k  equals the number of 

restrictions implied by (0,0, ,0)ϕ ′= � . 

 

Appendix 2: R script for the spatial (error) STAR model 

Code for the empirical example has been written in R (version 2.8.0) using a series of external 

libraries. The script contains estimators for various restricted and unrestricted models, the 

associated LM tests, and graphical output in terms of a map and a plot of the transition function. 

 

###################################################################################### 
# A Spatial Econometric STAR Model                                                   # 
# with an Application to U.S. County Economic Growth, 1969–2003                      # 
#                                                                                    # 
# (c) rjgmflorax, vopede                                                             # 
# Dept. of Agricultural Economics, Purdue University                                 # 
# Space, Health and Population Economics (SHaPE) Program                             # 
# West Lafayette, IN, USA                                                            # 
# rflorax@purdue.edu, vpede@purdue.edu                                               # 
#                                                                                    # 
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# load libraries 
 
library(spdep) 
library(grid) 
library(sem) 
library(fields) 
library(MASS) 
library(fUtilities) 
library(RColorBrewer) 
 
# load data using shapefile 
 
uscnt <- readShapePoly("C:/Program Files/R/work/STAR/rpci.shp",IDvar="ID") 
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# import weights matrix and calculate eigenvalues  
 
weightgal <- read.gal("C:/Program Files/R/work/STAR/queen12.GAL",region.id=uscnt$ID) 
 
w <- nb2mat(weightgal) 
ws <- nb2listw(weightgal) 
 
v <- eigenw(ws, quiet = TRUE)  # eigenvalues 
vinvmin <- 1/min(v)            # minimum eigenvalue 
vinvmax <- 1/max(v)            # maximum eigenvalue 
interval <- c(vinvmin,vinvmax) # interval to set parameter space rho 
 
# define variables 
 
x <- uscnt$LN_RPC_69 
wx <- lag.listw(ws,x) 
wxx <- wx*x 
y <- uscnt$LN_PR_0369 
wy <- lag.listw(ws,y) 
n <- length(x) 
I <- diag(n) 
 
 
## spatial STAR model, y = Xb + Xd.G(Wx;g,c) + u 
 
funct.nls <- nls(y ~ beta0+beta1*x+(delta0+delta1*x)/(1+exp(-gamma*(wx-c)/sd(wx))), 
  start = list(beta0 = 5.14218, beta1 = -0.483006, delta0 = -11.3601, delta1 = 1.1553,  
  gamma = 3.1540, c = 9.97903), trace = TRUE, algorithm = "port") 
summary(funct.nls) 
 
cstar <- coef(funct.nls) 
e.nonlin <- resid(funct.nls) 
 
 
## null and alternative specifications 
 
# ols, non-spatial model, y = Xb + u 
funct.lin <- lm(y ~ x) 
summary(funct.lin) 
 
clin <- coef(funct.lin) 
bconv.Xb <- clin[2] 
e.Xb <- resid(funct.lin) 
 
# linear spatial error model, y = Xb + (I-rW)^-1 u 
funct.err <- errorsarlm(y~x,data=uscnt,ws) 
summary(funct.err) 
 
cerr <- coef(funct.err) 
bconv.err <- cerr[3] 
e.err <- resid(funct.err) 
 
# spatial error STAR model, y = Xb + Xd.G(Wx;g,c) + (I-rW)^-1 u 
 
e <- e.nonlin 
crit <- 0.000001 
max.iter <- 100 
obj.old <- 0 
 
for (i in 1:max.iter) { 
  flerr <- function(rho) { 
    (-n/2)*log((1/n)*crossprod((I-rho*w)%*%e))+sum(log(1-rho*v)) 
  } 
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  fmax <- optimize(flerr,interval=interval,maximum=TRUE) 
  rho <- fmax$maximum 
  irwy <- y-rho*lag.listw(ws,y) 
  irwx <- x-rho*lag.listw(ws,x) 
 
  funct.errstar <- nls(irwy ~ beta0*(1-rho)+beta1*irwx+(delta0*(1-rho)+ 
    delta1*irwx)/(1+exp(-gamma*(wx-c)/sd(wx))), 
    start = cstar, trace = FALSE, algorithm = "port") 
 
  cstar.err <- coef(funct.errstar) 
 
  G <- (1+exp(-cstar.err[5]*(wx-cstar.err[6])/sd(wx)))^-1 
  e <- y-(cstar.err[1]+cstar.err[2]*x+(cstar.err[3]+cstar.err[4]*x)*G) 
 
  if (abs(fmax$objective - obj.old) <= crit) break 
  obj.old <- fmax$objective 
}   
 
# estimates and inference for beta, delta, gamma and c 
 
summary(funct.errstar) 
 
# estimate and inference for rho 
 
sig2 <- crossprod(e-rho*lag.listw(ws,e))/n 
varsig2 <- n/(2*sig2^2) 
wirwi <- w%*%invIrW(ws,rho) 
covsig2rho <- (1/sig2)*sum(diag(wirwi)) 
varrho <- (sum(diag(wirwi)))^2 + sum(diag(crossprod(wirwi))) 
 
row1 <- c(varsig2,covsig2rho) 
row2 <- c(covsig2rho,varrho) 
mat <- rbind(row1,row2) 
covmat <- solve(mat) 
 
serho <- sqrt(covmat[2,2]) 
trho <- rho/serho 
df <- n-length(cstar.err+1) 
prho <- 2*pt(abs(trho),df=df,lower.tail=FALSE) 
 
output.rho <- cbind(rho,serho,trho,prho) 
print(output.rho) 
 
 
## LM tests, based on linearization using first-order Taylor approximation 
 
# LM rho = 0 given phi = 0 
 
tr <- sum(diag(crossprod(w)))+sum(diag(w%*%w)) 
we <- lag.listw(ws,e.Xb) 
ewe <- crossprod(e.Xb,we) 
s2 <- crossprod(e.Xb)/n 
LMerr.Xb <- (ewe/s2)^2/tr 
pLMerr.Xb <- 1-pchisq(LMerr.Xb,df=1,ncp=0,log=FALSE) 
LMerr.Xb 
pLMerr.Xb 
 
# LM phi = 0 given rho = 0 
 
Z <- cbind(1,x,wx,wxx) 
P <- Z%*%solve(crossprod(Z))%*%t(Z) 
LMlin.Xb <- crossprod(e.Xb,P)%*%e.Xb/(crossprod(e.Xb)/n) 
pLMlin.Xb <- 1-pchisq(LMlin.Xb,df=2,ncp=0,log=FALSE) 



20 
 

LMlin.Xb 
pLMlin.Xb 
 
# LM rho = phi = 0 
 
LMerrlin.Xb <- LMerr.Xb+LMlin.Xb 
pLMerrlin.Xb <- 1-pchisq(LMerrlin.Xb,df=3,ncp=0,log=FALSE) 
LMerrlin.Xb 
pLMerrlin.Xb 
 
# LM phi = 0 given rho <> 0 
 
Ztild <- Z-cerr[1]*lag.listw(ws,Z) 
Ptild <- Ztild%*%solve(crossprod(Ztild))%*%t(Ztild) 
LMlin.err <- crossprod(e.err,Ptild)%*%e.err/(crossprod(e.err)/n) 
pLMlin.err <- 1-pchisq(LMlin.err,df=2,ncp=0,log=FALSE) 
LMlin.err 
pLMlin.err 
 
# LM rho = 0 given phi <> 0 
 
lm.nonlin <- lm(y~x+wx+wxx) 
e.nonlin <- resid(lm.nonlin) 
we <- lag.listw(ws,e.nonlin) 
ewe <- crossprod(e.nonlin,we) 
s2 <- crossprod(e.nonlin)/n 
LMerr.nonlin <- (ewe/s2)^2/tr 
pLMerr.nonlin <- 1-pchisq(LMerr.nonlin,df=1,ncp=0,log=FALSE) 
LMerr.nonlin 
pLMerr.nonlin 
 
 
## Visualization 
 
# transition function and convergence rate, -100.(ln(dydx+1)/T, 
# for the spatial error STAR model 
 
G <- (1+exp(-cstar.err[5]*(wx-cstar.err[6])/sd(wx)))^-1                                       
 
aux1 <- (1+exp(-cstar.err[5]*(wx-cstar.err[6])/sd(wx)))^-2 
aux2 <- cstar.err[4]+cstar.err[5]*w%*%((cstar.err[3]+cstar.err[4]*x)/sd(wx)) 
aux3 <- exp(-cstar.err[5]*(wx-cstar.err[6])/sd(wx)) 
bconv <- cstar.err[2] + (cstar.err[4]+aux2)*aux3*aux1 
crate <- (-100/34)*log(1+bconv) 
 
# map function                         
 
MAP <- function(plotvar,title,steps) { 
    brks <- c(-4,0,0.25,0.5,0.75,1,1.25,1.50,1.60) 
    colors <- brewer.pal(steps,"Blues") 
    #colors <- colors[steps:1] ## reorder colors 
    
plot(uscnt,border="lightgray",col=colors[findInterval(plotvar,brks,all.inside=TRUE)]) 
    box() 
    legend("bottomright",legend=leglabs(brks),fill=colors,bty="n",cex=0.7, 
    y.intersp=1,x.intersp=1) 
    title(x=list(title)) 
} 
 
# map convergence rate and plot transition function 
graph <- par(mfrow = c(2, 2))  
MAP(crate,"Convergence rate (% per yr)",8) 
plot(wx,G,xlab="Wx") 
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