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1 Introduction

Since Zellner’s (1962) seminal paper on seemingly unrelated regressions (SUR)
analyzing multiple equations with correlated disturbances, various extensions
have been proposed, for e.g., to deal with the serially correlated case, the
nonlinear case, the misspecified case, and SUR with unequal number of ob-
servations, see Srivastava and Dwivedi (1979).1 Of particular interest for this
paper are the extensions of SUR to panel data utilizing the error component
model, see Avery (1977), Baltagi (1980), Magnus (1982) and Prucha (1984) to
mention a few. Some applications of SUR panel data with error components
include Verbon (1980) who estimated a set of four labor demand equations,
using data from the Netherlands on 18 industries over 10 semiannual peri-
ods covering the period 1972-79; Beierlein, Dunn and McConnon (1981) who
estimated six equations describing the demand for electricity and natural
gas in the northeastern United States using data on nine states comprising
the Census Bureau’s northeastern region of the USA for the period 1967-77;
Brown, Kleidon and Marsh (1983) who studied the size-related anomalies in
stock returns using a panel of 566 firms observed quarterly over the period
June 1967 to December 1975; Howrey and Varian (1984) who estimated a
system of demand equations for electricity by time of day. Their data were
based on the records of 60 households whose electricity usage was recorded
over a five-month period in 1976 by the Arizona Public Service Company;
Sickles (1985) who modeled the technology and specific factor productivity
growth in the US airline industry; Wan, Griffiths and Anderson (1992) who
estimated production functions for rice, maize and wheat production using
panel data on 28 regions of China over the period 1980-83; Baltagi, Griffin
and Rich (1995) who estimated a SUR model consisting of a translog variable
cost function and its corresponding input share equations for labor, fuel and
material using panel data of 24 U.S. airlines over the period 1971-1986; Eg-
ger and Pfaffermayr (2004) who used industry-level data of bilateral outward
FDI stocks and exports of the U.S. and Germany to other countries between
1989 and 1999 to study the effects of distance as a common determinant
of exports and foreign direct investment (FDI) in a three-factor New Trade
Theory model; and more recently, Baltagi and Rich (2005) who estimated a
SUR model consisting of a translog cost function and its corresponding in-

1For a monograph dedicated to SUR models and their extensions, see Srivastava and
Giles (1987), also, the chapter by Fiebig (2001).
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put share equations for production workers, nonproduction workers, energy,
materials, and capital utilizing the National Bureau of Economic Research
(NBER) manufacturing productivity database file. The panel data covered
459 manufacturing industries at the SIC 4-digit level over the period 1959—
1996.

In addition, SUR models have been extended to allow for spatial autocor-
relation, see Anselin (1988a,b). In fact, Anselin (1988a) derived a Lagrange
Multiplier test for spatial autocorrelation in a SUR context. This paper ex-
tends Anselin’s (1988a,b) SUR spatial model to the panel data case. This
more general model allows for correlation across space, time and equations.
It combines the simplicity of dealing with heterogeneity in the panel using
an error component model and spatial correlation using a spatial autoregres-
sive (SAR) or spatial moving average (SMA) disturbances. In this context,
Wang and Kockelman (2007) derived the maximum likelihood estimator (un-
der the normality assumption) of a SUR error component panel data model
with SAR disturbances. They applied it to estimation of crash rates in 169
cities in China over the period 1999-2002.

The next section presents the seemingly unrelated regressions (SUR)
panel model with spatial correlated error components. Section 3 presents
the various estimators considered including maximum likelihood and gener-
alized moments (GM) methods. We propose extensions of the Kapoor, et
al. (2007) GM method to deal with SUR panel with SAR error component
structure. Also, extensions of the Fingleton (2007a) GM method and Wang
and Kockelman (2007) maximum likelihood (ML) method to deal with SUR
panel with SMA error component structure. Section 4 gives the Monte Carlo
design. The true data generating process is assumed to be SUR with spatial
error of the autoregressive (SAR) or moving average (SMA) type. More-
over, the remainder term of the spatial process is assumed to follow an error
component structure. Section 5 gives the Monte Carlo results along with sen-
sitivity checks of these results to misspecification of the spatial error process,
various spatial weight matrices, heterogeneous versus homogeneous spatial
and panel estimators, and their performance in out of sample prediction.
Section 6 concludes.
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2 SUR with spatially correlated error com-

ponents

Consider the set of M equations:

yj = Xjβj + εj , j = 1, . . . ,M (1)

where yj is (TN × 1), Xj is (TN × kj), βj is (kj × 1), and the (TN × 1) error
vector εj follows a spatial autoregressive (SAR) or a spatial moving average
(SMA) process. Those processes can be expressed as :

εj =

{ (
IT ⊗ ρjWjN

)
εj + uj SAR

(IT ⊗ λjWjN) uj + uj SMA
(2)

where IT is an identity matrix of order T , WjN is an (N ×N) known spatial
weights matrix, ρj is the spatial autoregressive parameter and λj is the spatial
moving average parameter for equation j = 1, . . . ,M . The diagonal elements
of the spatial weight matrices WjN are zero. We assume that the matrices(
IN − ρjWjN

)
are non-singular, and that the row and column sums of the

matrices WjN are bounded uniformly in absolute value for j = 1, . . . ,M .
The matrix of exogenous regressors Xj has full column rank and its elements
are uniformly bounded in absolute value. In contrast to much of the classical
literature on panel data, we group the data by periods rather than units. This
grouping is more convenient for modelling spatial correlation via (2). The
disturbance term uj of the processes (2) follows an additive error components
structure:

uj = Zµµj + vj (3)

where Zµ = ιT ⊗ IN , ιT is a (T × 1) vector of ones; µj =
(
µ
1j, . . . , µNj

)
′

and

vj =
(
v
′

Nj (1) , . . . , v
′

Nj (T )
)′
are random vectors with 0 means and covariance

matrix

E

(
µj
vj

)(
µ
′

l v
′

l

)
=

(
σ2µjlIN 0

0 σ2vjlITN

)
(4)

for j and l = 1, 2, . . . ,M , see Baltagi (1980). vNj (t) denotes the (N × 1)
vector of remainder disturbances. We note that the specification of uj cor-
responds to that of classical one-way error component model, see Baltagi
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(2008). In fact, if ρj = 0 (resp. λj = 0), ∀j = 1, 2, . . . ,M , so that there is
no spatial autocorrelation, then this reduces to the usual SUR panel model
with error components suggested by Avery (1977) and Baltagi (1980).

Following Baltagi (1980), the covariance matrix of u is given by

Ωu = E
(
uu

′

)
= [Ωjl] (5)

where Ωjl is a typical submatrix of Ωu given by

Ωjl = E
(
uju

′

l

)
= σ2µjl (JT ⊗ IN) + σ

2

vjl
ITN (6)

where JT = ιT ι
′

T is a (T × T ) matrix of ones. (6) can also be written as

Ωjl = σ2
1jl
Q1 + σ

2

vjl
Q2 (7)

with

Q1 = JT ⊗ IN (8)

Q2 =
(
IT − JT

)
⊗ IN (9)

where JT = JT/T and σ2
1jl
= σ2vjl + Tσ2µjl . The matrices Q1 and Q2 are

symmetric, idempotent and orthogonal to each other. Furthermore, Q1 +
Q2 = ITN , trQ1 = N and trQ2 = N (T − 1). Replacing Ωjl in (5) by its
value, given in (7) we get

Ωu = Σu ⊗ IN (10)

where Σu = Ωµ ⊗ JT +Ωv ⊗ IT . Alternatively,

Ωu = Ω1 ⊗Q1 +Ωv ⊗Q2 (11)

where Ωµ =
[
σ2µjl

]
, Ω1 =

[
σ2
1jl

]
and Ωv =

[
σ2vjl

]
, all of dimension (M ×M).

Then, the inverse of that covariance matrix is given by

Ω−1u = Σ−1u ⊗ IN (12)

or

Ω−1u = Ω−1
1
⊗Q1 +Ω

−1

v ⊗Q2 (13)
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see Baltagi (1980). From (2) and (3), the spatial-RE specification of the
(TN × 1) error vector εj of equation j can be expressed as:

εj = (ιT ⊗HNj)µj + (IT ⊗HNj) vj (14)

with HNj = B−1

Nj =
(
IN − ρjWjN

)
−1

for SAR-RE and HNj = DNj =
(IN + λjWjN) for SMA-RE. The corresponding (TN × TN) covariance ma-
trix of (14) is given by:

Λ
jl
= E

(
εjε

′

l

)
= σ2µjl

(
JT ⊗HNjH

′

Nl

)
+ σ2vjl

[
IT ⊗HNjH

′

Nl

]
(15)

or

Λ
jl
=
(
σ2
1j
JT + σ

2

vj

(
IT − JT

))
⊗HNjH

′

Nl
(16)

with HNjH
′

Nl
=

(
B′NlBNj

)
−1

for SAR-RE and HNjH
′

Nl
=

(
DNjD

′

Nl

)
for

SMA-RE. Combining the set of M equations, we get

y = Xβ + ε (17)

with

Λε = E
(
εε

′

)
= AΩuA

′

(18)

where A is a block-diagonal matrix defined as

A =




A11 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 AMM


 (19)

with typical block matrix Ajj = IT ⊗HNj for j = 1, . . . ,M . Following the
properties of the matrices Ωu and A, we obtain the inverse covariance matrix
of ε defined as

Λ−1ε =
(
A
′

)
−1

Ω−1u A
−1 (20)

or

Λ−1ε =
(
A
′

)
−1 (

Σ−1u ⊗ IN
)
A−1 (21)
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3 SUR spatial panel estimation

Consider the SUR spatial panel model given in (1) - (3). The true generalized
least squares (GLS) estimator of β is given by

β̂GLS =
(
X

′

Λ−1ε X
)
−1

X
′

Λ−1ε y

=
(
X∗

′

Ω−1u X
∗

)
−1

X∗
′

Ω−1u y
∗ (22)

with typical element of the jth equation

X∗

j =
(
IT ⊗H

−1

Nj

)
X∗

j (23)

y∗j =
(
IT ⊗H

−1

Nj

)
y∗j (24)

The y∗j and X
∗

j can be viewed as the result of a spatial Cochrane-Orcutt type
transformation of the original model. More specifically, premultiplication of
(1) and (2) with

(
IT ⊗H

−1

Nj

)
yields

y∗j = X∗

j βj + uj (25)

since εj = (IT ⊗HNj) uj . Stacking the set of M equations, we get

y∗ = X∗β + u (26)

with y∗ = A−1y and X∗ = A−1X. In light of the properties of (13), we can
write

Ω−1/2u = Ω
−1/2
1

⊗Q1 +Ω
−1/2
v ⊗Q2 (27)

Guided by the classical error component literature, we note that a convenient
way of computing the GLS estimator β̂GLS is to further transform the model

in (26) by premultiplying it by Ω
−1/2
u . The GLS estimator of β is then

identical to the OLS estimator of β computed from the resulting transformed
model. Ω

−1/2
v and Ω

−1/2
1

can be obtained from a Cholesky decomposition of
Ωv and Ω1, see Kinal and Lahiri (1990). We note that if ρj = 0 (resp. λj = 0),
∀j = 1, 2, . . . ,M , so that there is no spatial autocorrelation, then the GLS
estimator reduces to that proposed by Avery (1977) and Baltagi (1980) for
the SUR panel data model.

Let ρ̂j (resp. λ̂j), σ̂
2

1jl
and σ̂2vjl be estimators of ρj (resp. λj), σ

2

1jl
and σ2vjl .

The corresponding feasible GLS estimator of β, say β̂FGLS, is then obtained
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by replacing ρj (resp. λj), σ
2

1jl
and σ2vjl by those estimators in the expression

for the GLS estimator

β̂FGLS =
(
X̂∗

′

Ω̂−1u X̂
∗

)
−1

X̂∗
′

Ω̂−1u ŷ
∗ (28)

where X̂∗ = Â−1X and ŷ∗ = Â−1y. This estimator can be easily computed
as an OLS estimator on a transformed system of equations described above.
We propose a FGLS procedure that can be obtained in two steps :

• Estimate each equation with SAR-RE (resp. SMA-RE) process using
the GM spatial panel data estimator proposed by Kapoor, et al. (2007)

(resp. Fingleton (2007a)) to obtain consistent estimates of ρ̂j (resp. λ̂j)

for j = 1, . . . ,M . We can also estimate ρ̂j (resp. λ̂j) using GM cross-
section estimator proposed by Kelejian and Prucha (1999) (resp. Fin-
gleton (2007b)). This estimates cross-sectional GM estimator for each
equation with SAR disturbances (resp. SMA disturbances) for each
time period and averages the estimates over time ρ̂j = 1/T

∑T
t=1 ρ̂jt

(resp. λ̂j = 1/T
∑T

t=1 λ̂jt).

• Knowing the true disturbances uj, the analysis of variance estimates

of Ωv and Ω1 are given by Ω̂v = U ′Q2U/N(T − 1) and Ω̂1 = U ′Q1U/N
where U = [u1, . . . , uM ] is theNT×M matrix of disturbances for allM
equations, see Avery (1977) and Baltagi (1980). Using the consistent
estimates of the residuals from step 1, one obtains consistent estimates
of Ωv and Ω1.

• Obtain β̂FGLS as in (28) using ρ̂j (resp. λ̂j) from step 1 and Ω̂v and Ω̂1
from step 2.

The GM estimation method is computationally simple and yields consis-
tent estimates under mild conditions given in Kapoor, et al. (2007). This
was suggested as an alternative to the standard MLE (under normality of the
disturbances) which is computationally demanding even for the single equa-
tion case. Under normality of the disturbances, the log-likelihood function is
given by:

L = −
1

2
ln |Λε| −

1

2
(y −Xβ)′ Λ−1ε (y −Xβ) (29)
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and basic mathematical manipulations result in the following:

L =




−N

2
ln |Σu|+ T

M∑
j=1

ln
∣∣H−1

Nj

∣∣

−1

2
(y −Xβ)′ (A′)−1 (Σ−1u ⊗ IN)A

−1 (y −Xβ)

(30)

The parameters in (30) are intertwined, and the first order conditions of
maximization are non-linear. However, the model can be estimated using a
three-step method (see Wang and Kockelman (2007))2 :

• First, β can be estimated using a feasible generalized least squares
estimator (FGLS), conditional on Ωµ, Ωv and ρ (resp. λ), i.e., by
maximizing the conditional likelihood L(β/ρ,Ωµ, Ωv).

• Second, Ωµ and Ωv can be estimated conditional on β and ρ (resp. λ),
i.e., by maximizing the conditional likelihood L(Ωµ,Ωv/β, ρ). These
two steps are iterated until the optimal Ωµ, Ωv and β are found (con-
ditional on ρ (resp. λ)).

• Third, we maximize the concentrated log-likelihood function
L(ρ/Ωµ,Ωv, β) over ρ (resp. λ). The optimized values of Ωµ, Ωv and
β from the first two steps are plugged in the likelihood and the values
of ρ are obtained by non-linear optimization. The estimated ρ (resp.
λ) then re-enters the estimation of Ωµ, Ωv and β. This procedure is
iterated until convergence.

4 Monte Carlo design

In this section, we consider the Monte Carlo design to study the small sample
performance of several estimators of a SUR with spatial error components
disturbances. The data generating process (DGP) considers two specifica-
tions on the remainder errors (2), namely SAR and SMA. We suppose that
M = 2, then our spatial SUR specification is:

{
y1 = β

0,1 +X1β1,1 + ε1
y2 = β

0,2 +X2β1,2 + ε2
(31)

2Wang and Kockelman (2007) consider only the SAR-RE. We provide the extension
here for the SMA-RE specification.
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or

y = Xβ + ε (32)

where

X =

(
ιTN X1 0 0
0 0 ιTN X2

)
and β =




β
0,1

β
1,1

β
0,2

β
1,2




with β
0,1 = β

1,1 = β
0,2 = β

1,2 = 1, ιTN is an (TN×1) vector of ones, (X1,X2)
are two explanatory variables. The DGP of xj,it, j = 1, 2, is defined by:

xj,it = δj,i + ωj,it (33)

with δj,i ∼ iid.U (−7.5, 7.5) and ωj,it ∼ iid.U (−5, 5). The (2NT × 1) spatial-
RE vector of the disturbances ε is:

ε = A [µ+ v] (34)

where the matrix A is defined by (19) withW1 =W2 = WN whereWN is the
spatial weight matrix defined by Kelejian and Prucha (1999). We use two
weight matrices which essentially differ in their degree of sparseness. The
weight matrices are labelled as “s ahead and s behind” with the non-zero
elements being 1/2s, s = 1 and 5. We generate the error components term
as:

(µ+ v) ∼ N (0,Σu ⊗ IN) , Σu = Ωµ ⊗ JT +Ωv ⊗ IT (35)

The variance-covariance matrices Ωµ and Ωv are defined by:

Ωµ =

(
σ2µ

1

ρµσµ1σµ2
ρµσµ1σµ2 σ2µ

2

)
and Ωv =

(
σ2v1 ρvσv1σv2

ρvσv1σv2 σ2v2

)

with3

σ2µ
1
= σ2µ

2
= 1, σ2v1 = σ2v2 = 1, ρv = ρµ = 0.5

3We consider other values for the variances but the results were qualitatively similar
to those reported in our tables.
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In order to generate the vector of disturbances (µ+ v), we use the Cholesky
decomposition4. We consider several individual and time dimensions N =
(50, 100), T = (10, 20). For all experiments, 1000 replications are performed.
For each experiment, we consider the following 18 estimators:

Homogeneous estimators (without spatial):

1. The pooled OLS equation by equation which ignores the individual het-
erogeneity, the spatial correlation and the correlation across equations.

2. The random effects (RE) estimator, equation by equation, which as-
sumes that the µi’s are iid(0, σ2µ), and independent of the remainder
disturbances vit’s. This estimator accounts for random individual ef-
fects but does not take into account the spatial autocorrelation nor the
correlation across equations.

3. The fixed-effects (FE) estimator, equation by equation, which accounts
for fixed individual effects but does not take into account the spatial
autocorrelation and correlation across equations.

4. Zellner’s (1962) SUR-FGLS estimator which ignores the individual het-
erogeneity and spatial correlation.

5. The SUR fixed effects (FE) estimator which ignores spatial autocorre-
lation but takes into account the correlation across equations.

4As (µ+ v) ∼ N (0,Σu ⊗ IN) and µ and v are uncorrelated, µ ∼ N (0, (Ωµ ⊗ JT ⊗ IN))
and v ∼ N (0, (Ωv ⊗ INT )), then,

v ≃ (Cv ⊗ INT )

[
ũ1
ũ2

]
and µ ≃ (Cµ ⊗ ιT ⊗ IN)

[
ã1
ã2

]

where

(
ũ1
(NT )

, ũ2
(NT )

)
and

(
ã1
(N)
, ã2
(N)

)
are IIN(0, 1) random variables. Cµ (resp. Cv) is the

lower triangular matrix defined by the decomposition: Ωµ = CµC
′

µ (resp. Ωv = CvC
′

v)
namely

Cµ =

(
σµ

1
0

ρµσµ2 σµ
2

√
1− ρ2µ

)
and Cv =

(
σv1 0

ρvσv2 σv2
√
1− ρ2v

)

(see Anderson (1984)).
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6. The SUR-ML random effects (RE) estimator which ignores spatial cor-
relation.

7. SUR-FGLS random effects (RE) estimator which ignores spatial corre-
lation.

Homogeneous estimators (with spatial):

8. The SUR-ML random effects (RE) estimator which takes into account
the spatial autocorrelation of the SAR type.

9. The SUR-ML random effects (RE) estimator which takes into account
the spatial autocorrelation of the SMA type.

10. The SUR-ML fixed effects (FE) estimator which takes into account the
spatial autocorrelation of the SAR type.

11. The SUR-ML fixed effects (FE) estimator which takes into account the
spatial autocorrelation of the SMA type.

12. The SUR-FGLS random effects (RE) estimator which takes into ac-
count the spatial autocorrelation of the SAR type, using the GMmethod.
In the first step, we estimate each equation with SAR-RE process using
the GM spatial panel data estimator proposed by Kapoor, et al. (2007)
to obtain consistent estimates of ρ̂j , j = 1, 2.

13. The SUR-FGLS random effects (RE) estimator which takes into ac-
count the spatial autocorrelation of the SMA type, using the GM
method. In the first step, we estimate each equation with SMA-RE
process using the GM spatial panel data estimator proposed by Fingle-
ton (2007a) to obtain consistent estimates of λ̂j, j = 1, 2.

Heterogeneous estimator (without spatial):

14. The average heterogeneous OLS, equation by equation, to obtain a
pooled estimator, see Pesaran and Smith (1995).

Heterogeneous estimators (with spatial):

15. The average heterogeneous SUR assuming a SAR specification on the
remainder disturbances using Kelejian and Prucha (1999) GM approach
to estimate ρ̂jt. This estimates cross-sectional GM-OLS with SAR dis-
turbances for each time period and averages the estimates over time.
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16. The average heterogeneous SUR assuming a SMA specification on the
remainder disturbances using Fingleton (2007b) GM approach to es-

timate λ̂jt. This estimates cross-sectional GM-OLS with SMA distur-
bances for each time period and averages the estimates over time.

17. The SUR-FGLS random effects (RE) estimator which takes into ac-
count the spatial autocorrelation of the SAR type, using GM-Average-
within residuals. In the first step, we estimate ρ̂j, j = 1, 2, using GM
cross-section estimator proposed by Kelejian and Prucha (1999). This
estimates cross-sectional GM estimator for each equation with SAR
disturbances for each time period and averages the estimates over time
ρ̂j = 1/T

∑T
t=1 ρ̂jt, j = 1, 2.

18. The SUR-FGLS random effects (RE) estimator which takes into ac-
count the spatial autocorrelation of the SMA type, using GM-Average-
within residuals. In the first step, we estimate λ̂j, j = 1, 2, using
GM cross-section estimator proposed by Fingleton (2007b). This esti-
mates cross-sectional GM estimator for each equation with SMA dis-
turbances for each time period and averages the estimates over time

λ̂j = 1/T
∑T

t=1 λ̂jt, j = 1, 2.

We focus on the estimates β̂
1,1, β̂1,2, ρ̂1, λ̂1, ρ̂2, λ̂2, the standard errors

σ̂β̂
1,1
, σ̂β̂

1,2
, and the variance components σ̂2µ

1

, σ̂2µ
2

, σ̂2v1, σ̂
2

v2
, σ̂2ε1 , σ̂

2

ε2
. Follow-

ing Kapoor, et al. (2007), we adopt a measure of dispersion which is closely
related to the standard measure of root mean square error (RMSE) defined
as follows:

RMSE =

[
bias2 +

(
IQ

1.35

)2]1/2
(36)

where bias is the difference between the median and the true value of the
parameter, and IQ is the interquantile range defined as c1 − c2 where c1
is the 0.75 quantile and c2 is the 0.25 quantile. Clearly, if the distribution
is normal the median is the mean and, aside from a slight rounding error,
IQ/1.35 is the standard deviation. In this case, the measure (36) reduces to
the standard RMSE.

Moreover, we check the prediction-performance of the 18 alternative esti-
mators considered. Here, we use the usual RMSE criterion and compute the
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out of sample forecast errors for each predictor associated with the 18 esti-
mators. An average RMSE is calculated across the N individuals at different
forecasts horizons.

5 Monte Carlo results

5.1 The Spatial Dependence Specification Effect

5.1.1 RMSE performance of the estimators

Table 1 gives the RMSE for the various estimators considered when the
true DGP is a SUR panel model with SAR-RE remainder disturbances.
The sample size is (N, T ) = (50, 10), the weight matrix is W (1, 1), i.e.,
one neighbor behind and one neighbor ahead. The spatial coefficients are
(ρ
1
, ρ
2
) = (0.5, 0.3) with σ2µ

1

= σ2µ
2

= 1, σ2v1 = σ2v2 = 1 and ρµ = ρv = 0.5.
Focusing on the RMSE of the slope coefficient of the first equation (β

1,1), we
observe the following results: Not surprisingly, OLS and average OLS per-
form the worst because they ignore the spatial correlation, the individual het-
erogeneity and the cross-equation correlation. Taking into account only the
cross-equation correlation by performing Zellner’s SUR estimation ignoring
the spatial effects and the individual heterogeneity reduces the RMSE from
0.02546 for OLS to 0.02234 for Zellner’s SUR. Interestingly, if one performed
RE or FE ignoring the spatial effects and the cross-equation correlation, the
reduction in RMSE would have been even more (0.01776 and 0.02019, re-
spectively). Correcting for both individual heterogeneity and cross-equation
correlation by performing SUR-FE and SUR-FGLS RE reduces the RMSE
further to 0.01769 and 0.01577, respectively.

Note also that SUR-RE leads to similar RMSE for feasible GLS and ML,
respectively 0.01577 and 0.01593. Correcting for spatial correlation, individ-
ual heterogeneity and the cross-equation correlation by performing SUR—ML
or SUR-FGLS SAR-RE yields the lowest RMSE of 0.01123 (for feasible GLS)
and 0.01140 (for the corresponding ML). The RMSE for SUR SAR-FE using
ML is 0.01308. If the wrong spatial structure was used in the estimation, i.e.,
SMA rather than SAR, the corresponding RMSE for SUR SMA-RE would be
0.01599 for ML and 0.01767 for the SUR-ML SMA-FE. Ignoring the individ-
ual effects but not the spatial correlation or the cross-equation correlation,
by applying Average SUR SAR yield a RMSE of 0.01855. Interestingly, this
RMSE remains almost the same had one misspecified the SAR process and
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performed Average SUR SMA. If we take into account the individual effects,
the corresponding heterogeneous RMSE for SUR-FGLS SAR-RE (av.) is
0.01116 and 0.01213 for SUR-FGLS SMA-RE (av.).

Similar results are obtained had we focused on the slope coefficient of the
second equation β

1,2. Only the magnitudes of the RMSEs would have been
different. For example, the RMSE of OLS is 0.02655, that of FE is 0.01566,
that of RE is 0.01464. Zellner’s SUR is 0.02332. SUR-FE is 0.01477 and
SUR-FGLS RE is 0.01417 and 0.01432 for SUR-ML RE. The lowest RMSE
is obtained for SUR SAR-RE (0.01230) whether FGLS or ML. Misspecifying
the SAR process by a SMA process yields a RMSE of 0.01336 for SUR SMA-
RE by FGLS and 0.01248 by ML. The corresponding RMSE for SUR-ML
SMA-FE is 0.01512. The heterogeneous estimators yield a RMSE of 0.2685
for average OLS, 0.02146 for Average SUR SAR and 0.02081 for Average
SUR SMA. The corresponding heterogeneous RMSE for SUR-FGLS SAR-
RE (av.) is 0.01250 and 0.01232 for SUR-FGLS SMA-RE (av.).

Table 2 gives the RMSE for the various estimators considered when the
true DGP is a SUR panel model with SMA-RE remainder disturbances.
The sample size is N = 50 and T = 10, the weight matrix is W (1, 1), i.e.,
one neighbor behind and one neighbor ahead. The spatial coefficients are
(λ1, λ2) = (0.5, 0.3) with σ2µ

1

= σ2µ = 1, σ
2

v1
= σ2v2 = 1 and ρµ = ρv = 0.5.

Focusing on the RMSE of the slope coefficient of the first equation (β
1,1),

we observe the following results: OLS and average OLS still perform the
worst. Zellner’s SUR (0.02136) performs better in terms of RMSE than OLS
(0.02488) but worse than RE (0.01475), FE (0.01747), SUR-FE (0.01564),
SUR-ML RE (0.01336) and SUR-FGLS RE (0.01343). Correcting for spatial
correlation, individual heterogeneity and the cross-equation correlation by
performing SUR—ML or SUR-FGLS SMA-RE yields the lowest RMSE of
0.01044 and 0.01025, respectively. If the wrong spatial structure was used
in the estimation, i.e., SAR rather than SMA, the corresponding RMSE for
SUR SAR-RE would be 0.01038 for FGLS, 0.01052 for ML. Similar results
are obtained for the slope coefficient of the second equation β

1,2.
Table 3 gives the RMSE for the various estimators considered when the

true DGP is a SUR panel model with SAR-RE remainder disturbances. All
the parameters are the same as in Table 1, except the spatial coefficients
which are now (ρ

1
, ρ
2
) = (0.8, 0.5) rather than (0.5, 0.3) , implying higher

spatial autocorrelation of the SAR type. Focusing on the RMSE of the slope
coefficient of the first equation (β

1,1), we observe the same performance as in
Table 1 but the magnitude of the RMSE almost doubles for some estimators.
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For example, OLS and average OLS still perform the worst because they
ignore the spatial correlation, the individual heterogeneity and the cross-
equation correlation. They yield RMSE that is now of the order of 0.0501 and
0.0505 rather than 0.0255 and 0.026, as in Table 1. Zellner’s SUR estimation
ignoring the spatial effects and the individual heterogeneity yields a RMSE
of 0.0449 rather than 0.0223 as in Table 1. If one performed RE or FE
ignoring the spatial effects and the cross-equation correlation, the RMSE
would have been 0.0289 and 0.0345, rather than 0.0178 and 0.0202, as in
Table 1. Correcting for both individual heterogeneity and cross-equation
correlation by performing SUR-FE and SUR-FGLS RE yield RMSE of 0.0313
and 0.0273, rather than 0.0177 and 0.0158, as in Table 1.

SUR-RE leads to similar RMSE for feasible GLS and ML, 0.0273 and
0.0272 in Table 3 rather than 0.0159 and 0.0158, as in Table 1. Correcting
for spatial correlation, individual heterogeneity and the cross-equation cor-
relation by performing SUR—ML or SUR-FGLS SAR-RE yields the lowest
RMSE of 0.0107 (for feasible GLS) and 0.0110 (for the corresponding ML).
This is compared to 0.0112 and 0.0114 in Table 1. The RMSE for SUR
SAR-FE using ML is 0.0116 in Table 3 compared to 0.0131 in Table 1. If the
wrong spatial structure was used in the estimation, i.e., SMA rather than
SAR, the corresponding RMSE for SUR SMA-RE would be 0.0125 for ML
and 0.0138 for the SUR-ML SMA-FE in Table 3 compared to 0.0160 and
0.0177 in Table 1. Ignoring the individual effects but not the spatial correla-
tion or the cross-equation correlation, by applying Average SUR SAR yield a
RMSE of 0.0196 in Table 3 compared to 0.0186 in Table 1. Interestingly, this
RMSE is very different from Average SUR SMA (the misspecified estimator)
which is now 0.0324 in Table 3 rather than 0.0190 in Table 1. If we take
into account the individual effects, the corresponding heterogeneous RMSE
for SUR-FGLS SAR-RE (av.) is 0.0111 and 0.0179 for SUR-FGLS SMA-RE
(av.) in Table 3 compared to 0.0112 and 0.0121 in Table 1.

Similar results are obtained had we focused on the slope coefficient of the
second equation β

1,2. Only the magnitudes of the RMSEs would have been
different. For example, the RMSE of OLS is 0.0285 in Table 3 compared
to 0.0266 in Table 1, that of FE is 0.0204 in Table 3 compared to 0.0157
in Table 1, that of RE is 0.0183 in Table 3 compared to 0.0146 in Table 1.
Zellner’s SUR is 0.0254 in Table 3 compared to 0.0233 in Table 1. SUR-
FE is 0.0178 and SUR-FGLS RE is 0.0167 in Table 3 compared to 0.0148
and 0.0142 in Table 1. The lowest RMSE is obtained for SUR-ML SAR-
RE, 0.0120 in Table 3 compared to 0.0123 in Table 1. Misspecifying the
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SAR process by a SMA process yields a RMSE of 0.0132 for SUR SMA-RE
in Table 3 compared to 0.0134 in Table 1. The corresponding RMSE for
SUR-ML SMA-FE is 0.0140 in Table 3 compared to 0.0151 in Table 1. The
heterogeneous estimators yield a RMSE of 0.0287 for average OLS in Table 3
compared to 0.0269 in Table 1. Average SUR SAR and Average SUR SMA
yield RMSE of 0.0200 and 0.0207 in Table 3 compared to 0.0215 and 0.0208
in Table 1. The corresponding heterogeneous RMSE for SUR-FGLS SAR-
RE (av.) and SUR-FGLS SMA-RE (av.) are 0.0121 and 0.0129 in Table 3
compared to 0.0125 and 0.0123 in Table 1.

Table 4 gives the RMSE for the various estimators considered when the
true DGP is a SUR panel model with SMA-RE remainder disturbances.
Compared to Table 2, all the parameters are the same except the spatial
coefficients which are now (λ1, λ2) = (0.8, 0.5) rather than (0.5, 0.3) , implying
higher spatial autocorrelation of the SMA type. Focusing on the RMSE of
the slope coefficient of the first equation (β

1,1), we observe the following
results: OLS and average OLS still perform the worst with RMSE of 0.0270
and 0.0274 in Table 4 compared to 0.0249 and 0.0251 in Table 2. Zellner’s
SUR yields a RMSE of 0.0236 in Table 4 compared to 0.0214 in Table 2. RE
yields 0.0156 in Table 4 compared to 0.0148 in Table 2. FE yields 0.0189
in Table 4 compared to 0.0175 in Table 2. SUR-FE yields 0.0177 in Table
4 compared to 0.0156 in Table 2. SUR-ML RE yields 0.0151 in Table 4
compared to 0.0134 in Table 2. SUR-FGLS RE yields 0.0151 in Table 4
compared to 0.0134 in Table 2. Correcting for spatial correlation, individual
heterogeneity and the cross-equation correlation by performing SUR—ML or
SUR-FGLS SMA-RE yields the lowest RMSE of 0.0058 and 0.0061 in Table
4 compared to 0.0104 and 0.0103 in Table 2. If the wrong spatial structure
was used in the estimation, i.e., SAR rather than SMA, the corresponding
RMSE for SUR SAR-RE would be 0.0076 for FGLS, 0.0082 for ML in Table
4 compared to 0.0104 and 0.0105 in Table 2. Similar results are obtained for
the slope coefficient of the second equation β

1,2 but the magnitudes of the
RMSEs are higher.

5.1.2 Forecast Accuracy

Table 5 gives the forecast RMSE results when the true DGP is a SUR panel
model with SAR-RE remainder disturbances. The sample size is still N =
50, T = 10, and the weight matrix is W (1, 1). In general, for (ρ

1
, ρ
2
) =

(0.5, 0.3) with σ2µ
1

= σ2µ
2

= 1, σ2v1 = σ2v2 = 1 and ρµ = ρv = 0.5, the lowest
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forecast RMSE is that of SUR SAR-RE (ML, FGLS and FGLS (av.)). This is
followed closely by SMA-RE. Misspecifying the SAR by an SMA in an error
component model does not seem to affect the forecast performance as long
as it is taken into account. However, the magnitudes of the RMSE in Table 5
(where the true DGP is a SAR-RE process) are higher than those in Table 6
(where the true DGP is a SMA-RE process). Once again, the forecast RMSE
based on ML and FGLS are quite similar. Pooled OLS, SUR-FGLS, average
heterogeneous OLS, average SUR SAR and average SUR SMA perform worse
in terms of forecast RMSE than spatial/panel homogeneous estimators. This
forecast performance is robust whether we are predicting one period, two
periods or 5 periods ahead and is also reflected in the average over the five
years. The gain in forecast performance is substantial once we account for
RE or FE and is only slightly improved by additionally accounting for spatial
autocorrelation.

Tables 7 and 8 lead to similar RMSE as those reported in Tables 5 and 6
except that the magnitudes of the RMSEs for the first equation are almost
double for some forecasts. Compared to Tables 5 and 6, all the parame-
ters are the same except for the spatial coefficients which are now higher
(ρ
1
, ρ
2
) = (λ1, λ2) = (0.8, 0.5) rather than (0.5, 0.3) , implying higher spatial

autocorrelation. In Table 7, when the true DGP is a SAR panel model with
SAR-RE remainder disturbances, the average RMSE is around 2 for the first
equation compared to 1 in Tables 5 and 6. OLS, SUR-FGLS, Average SUR
SAR and Average SUR SMA continue to perform badly yielding the worst
RMSE forecasts.

5.2 Sensitivity Analysis

5.2.1 The spatial Weight Matrix effect

For the various estimators considered, Tables 9 and 10 report the RMSE
results as Tables 1 and 2 except that the weight matrix is changed from a
W (1, 1) to W (5, 5) , i.e., five neighbors behind and five neighbors ahead.
Except for the magnitudes of the RMSE, the same rankings in terms of
RMSE performance are exhibited as before.

For forecasts accuracy, Tables 11 and 12 report the forecast RMSE results
as Tables 5 and 6 except that the weight matrix is now W (5, 5) rather than
W (1, 1) . Except for the magnitudes of the forecast RMSE, the same rankings
in terms of RMSE performance are exhibited as before. From our limited
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experiments, we conclude that our results are robust to the W matrices
considered.

5.2.2 Stronger correlation across equations

In Table 13, we consider a set of experiments with higher correlation across
equations. In particular, we let ρµ = ρv = 0.9 rather than ρµ = ρv = 0.5 as in
Table 1. The sample size is still fixed at (N, T ) = (50, 10) , the weight matrix
is W (1, 1), i.e., one neighbor behind and one neighbor ahead.; the spatial
coefficients are (ρ

1
, ρ
2
) = (0.5, 0.3) with σ2µ

1

= σ2µ
2

= 1, σ2v1 = σ2v2 = 1. Table
13 gives the RMSE for the various estimators considered when the true DGP
is a SUR panel model with SAR-RE remainder disturbances. Focusing on the
RMSE of the slope coefficient of the first equation (β

1,1), we observe that the
estimators that correct for spatial correlation, individual heterogeneity and
the cross-equation correlation continue to give the lowest RMSE. Comparing
these results with those in Table 1, we find that the RMSE of the SUR-ML
SAR-RE estimator is reduced from 0.01140 in Table 1 to 0.00614 in Table
13, while that of OLS increased from 0.02546 in Table 1 to 0.03048 in Table
13. The former takes into account the stronger cross-equation correlation,
while the latter does not. In fact, the gain in RMSE, as we go from OLS to
SUR-FGLS is more substantial in Table 13 than in Table 1. The former is
a reduction of RMSE from 0.0255 to 0.0223, while the latter is a reduction
of RMSE from 0.0305 to 0.0140. Similar comparisons substantiate this gain,
with RMSE of SUR-FE falling from 0.0177 in Table 1 to 0.0089 in Table 13.
Similar results are obtained had we focused on the slope coefficient of the
second equation β

1,2.
Does this gain in RMSE in the estimates translate into better RMSE

forecasts? Table 14 gives the forecast RMSE results when the true DGP
is a SUR panel model with SAR-RE remainder disturbances, generated by
the corresponding estimates given in Table 13. Comparing the forecasts to
those in Table 5 with weaker cross-equation dependence, we see that better
estimates in terms of RMSE do translate into better RMSE forecasts for all
the homogeneous estimators accounting for spatial effects and heterogeneity.
However, the reduction in RMSE forecasts is not huge. This also is true for
other estimators like FE, RE, SUR-FE, SUR-ML RE and SUR-FGLS RE,
but it does not hold for SUR-FGLS for example.
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6 Conclusion

Our Monte Carlo study finds that when the true DGP is SUR with a SAR-RE
or SMA-RE remainder disturbances, estimators and forecasts that ignore het-
erogeneity/spatial correlation and cross-equation correlation, perform badly
in terms of the RMSE criteria. For our experiments, accounting for het-
erogeneity improves the RMSE forecast performance by a big margin, and
accounting for spatial correlation improves the RMSE forecast performance,
but by a smaller margin. Ignoring both leads to the worst forecasting per-
formance. Heterogeneous estimators based on averaging perform worse than
homogeneous estimators in forecasting performance. These Monte Carlo ex-
periments confirm earlier empirical studies that report similar findings but
now for multiple equations and SUR estimation setting.

19



References

Amemiya, T., 1971, The estimation of the variances in a variance-components model,

International Economic Review 12, 1-13.

Anderson, T., 1984, An Introduction to Multivariate Statistical Analysis, Wiley, New

York.

Anselin, L., 1988a, A test for spatial auto-correlation in seemingly unrelated regressions,

Economics Letters 28, 335-341.

Anselin, L., 1988b, Spatial Econometrics: Methods and Models, Kluwer Academic Pub-

lishers, Dordrecht.

Anselin, L., J. Le Gallo and H. Jayet, 2008, Spatial panel econometrics. Ch. 19 in L.

Mátyás and P. Sevestre, eds., The Econometrics of Panel Data: Fundamentals and

Recent Developments in Theory and Practice, Springer-Verlag, Berlin, 625-660.

Avery, R.B., 1977, Error components and seemingly unrelated regressions, Econometrica

45, 199-209.

Baltagi, B.H., 2008, Econometric Analysis of Panel Data, Wiley and Sons, Chichester.

Baltagi, B.H., 1980, On seemingly unrelated regressions with error components, Econo-

metrica 48, 1547-1551.

Baltagi, B.H., J.M. Griffin and D. Rich, 1995, Airline deregulation: The cost pieces of

the puzzle, International Economic Review 36, 245-258.

Baltagi, B.H. and D. Rich, 2005, Skilled-biased technical change in U.S. manufacturing:

A general index approach, Journal of Econometrics 126, 549-570.

Beierlein, J.G., J.W. Dunn and J.C. McConnon, Jr., 1981, The demand for electricity and

natural gas in the Northeastern United States, Review of Economics and Statistics

63, 403-408.

Brown, P., A.W. Kleidon and T.A. Marsh, 1983, New evidence on the nature of size-

related anomalies in stock prices, Journal of Financial Economics 12, 33-56.

Egger, P. and M. Pfaffermayr, 2004, Distance, trade and FDI: A Hausman-Taylor SUR

approach, Journal of Applied Econometrics 19, 227-246.

20



Fiebig, D.G., 2001, Seemingly unrelated regression, Chapter 5 in Baltagi, B.H. (ed.), A

Companion to Theoretical Econometrics, Blackwell, Massachusetts.

Fingleton, B., 2007a, A generalized method of moments estimator for a spatial model

with endogenous spatial lag and spatial moving average errors, forthcoming Spatial

Economic Analysis.

Fingleton, B., 2007b, A generalized method of moments estimator for a spatial model

with moving average errors with application to real estate prices, forthcoming in

Empirical Economics.

Howrey, E.P. and H.R. Varian, 1984, Estimating the distributional impact of time-of-day

pricing of electricity, Journal of Econometrics 26, 65-82.

Kapoor, M., H.H. Kelejian and I.R. Prucha, 2007, Panel data models with spatially

correlated error components, Journal of Econometrics 140, 97-130.

Kelejian, H.H. and I.R. Prucha, 1999, A generalized moments estimator for the autore-

gressive parameter in a spatial model, International Economic Review 40, 509-533.

Kinal, T. and K. Lahiri, 1990, A computational algorithm for multiple equation models

with panel data, Economics Letters 34, 143—146.

Magnus, J.R., 1982, Multivariate error components analysis of linear and nonlinear re-

gression models by maximum likelihood, Journal of Econometrics 19, 239—285.

Pesaran, M.H. and R. Smith, 1995, Estimating long-run relationships from dynamic

heterogenous panels, Journal of Econometrics 68, 79—113.

Prucha, I.R., 1984, On the asymptotic efficiency of feasible Aitken estimators for seem-

ingly unrelated regression models with error components, Econometrica 52, 203—

207.

Sickles, R.C., 1985, A nonlinear multivariate error components analysis of technology

and specific factor productivity growth with an application to U.S. airlines, Journal

of Econometrics 27, 61-78.

Srivastava, V.K. and T.D. Dwivedi, 1979, Estimation of seemingly unrelated regression

equations: A brief survey, Journal of Econometrics 10, 15-32.

Srivastava, V.K. and D.E.A. Giles, 1987, Seemingly unrelated regression equations mod-

els: estimation and inference, Marcel Dekker, New York.

21



Verbon, H.A.A., 1980, Testing for heteroscedasticity in a model of seemingly unrelated

regression equations with variance components (SUREVC), Economics Letters 5,

149-153.

Wan, G.H., W.E. Griffiths and J.R. Anderson, 1992, Using panel data to estimate risk

effects in seemingly unrelated production functions, Empirical Economics 17, 35-49.

Wang, X. and K.M. Kockelman, 2007, Specification and estimation of a spatially and

temporally autocorrelated seemingly unrelated regression model: application to

crash rates in China, Transportation 34, 281-300.

Zellner, A., 1962, An efficient method of estimating seemingly unrelated regression equa-

tions and tests for aggregation bias, Journal of the American Statistical Association

57, 348-368.

22



Homogeneous estimators

(without spatial)

OLS 0.02546 0.00214 0.02655 0.00109      
RE 0.01776 0.00579 0.01464 0.00320   0.57852 0.27427 0.54896 0.16645

FE 0.02019 0.00832 0.01566 0.00492     0.55235 0.16874

SUR-FGLS 0.02234 0.00083 0.02332 0.00117      
SUR-FE 0.01769 0.00481 0.01477 0.00194     0.39753 0.08118

SUR-ML RE 0.01593 0.00373 0.01432 0.00128   0.56557 0.28513 0.54844 0.16776

SUR-FGLS RE 0.01577 0.00377 0.01417 0.00131   0.57422 0.28732 0.54617 0.16729

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.01140 0.00051 0.01230 0.00041 0.03544 0.03895 0.21047 0.21461 0.06703 0.06530

SUR-ML SMA-RE 0.01599 0.00052 0.01248 0.00042 0.04065 0.03934 0.37615 0.23816 0.33543 0.11636

Table 1 - RMSE of coefficients, standard errors and variances - (ρρρρ1,ρρρρ2) = (0.5,0.3), (ρρρρµµµµ,ρρρρv) = (0.5,0.5), (N,T)=(50,10), SAR data generating process for εεεε, W(1,1), 1000 replications

1,1
β̂

2,1
β̂ 1

ρ̂
2

ρ̂
1,1

ˆˆ
β

σ
2,1

ˆˆ
β

σ 2

1
ˆ µσ 2

2
ˆ µσ 2

1
ˆ

v
σ 2

2
ˆ

v
σ( )1̂λ ( )2λ̂

SUR-ML SMA-RE 0.01599 0.00052 0.01248 0.00042 0.04065 0.03934 0.37615 0.23816 0.33543 0.11636

SUR-ML SAR-FE 0.01308 0.00127 0.01361 0.00059 0.03561 0.03983   0.12174 0.12376

SUR-ML SMA-FE 0.01767 0.00161 0.01512 0.00064 0.05470 0.03958   0.19288 0.06885

SUR-FGLS SAR-RE 0.01123 0.00047 0.01231 0.00042 0.03761 0.04425 0.21307 0.22302 0.06850 0.06661

SUR-FGLS SMA-RE 0.01155 0.00093 0.01336 0.00047 0.10315 0.05350 0.54627 0.24893 0.47524 0.12746

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 0.02602  0.00241 0.02685  0.00127      

Heterogeneous estimators

(with spatial)

Average SUR SAR 0.01855 0.00314 0.02146 0.00214 0.06758 0.05327    
Average SUR SMA 0.01895 0.00384 0.02081 0.00213 0.10453 0.06167    
SUR-FGLS SAR-RE (av.) 0.01116 0.00055 0.01250 0.00047 (1) (1) 0.21215 0.21548 0.07578 0.06757

SUR-FGLS SMA-RE (av.) 0.01213 0.00097 0.01232 0.00052 (2) (2) 0.50194 0.27247 0.42749 0.14235

(1) We have used the average values       and       of average SUR SAR estimator.     (2) We have used the average values      et      of average SUR SMA estimator.
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Homogeneous estimators

(without spatial)

OLS 0.02488 0.00258 0.02497 0.00133      
RE 0.01475 0.00533 0.01532 0.00317   0.28950 0.24350 0.15034 0.08454

FE 0.01747 0.00727 0.01685 0.00468     0.15245 0.08576

SUR-FGLS 0.02136 0.00101 0.02124 0.00096      
SUR-FE 0.01564 0.00416 0.01476 0.00182     0.08210 0.09430

SUR-ML RE 0.01336 0.00321 0.01369 0.00122   0.28952 0.24251 0.15174 0.08527

SUR-FGLS RE 0.01343 0.00324 0.01364 0.00124   0.28950 0.24350 0.15034 0.08454

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.01052 0.00053 0.01219 0.00043 0.04559 0.04016 0.30281 0.22340 0.22305 0.10913

SUR-ML SMA-RE 0.01044 0.00043 0.01225 0.00046 0.03427 0.03805 0.22293 0.21804 0.06961 0.06732

Table 2 - RMSE of coefficients, standard errors and variances - (λλλλ1,λλλλ2) = (0.5,0.3), (ρρρρµµµµ,ρρρρv) = (0.5,0.5), (N,T)=(50,10), SMA data generating process for εεεε, W(1,1), 1000 replications
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SUR-ML SMA-RE 0.01044 0.00043 0.01225 0.00046 0.03427 0.03805 0.22293 0.21804 0.06961 0.06732

SUR-ML SAR-FE 0.01109 0.00114 0.01363 0.00076 0.04500 0.04064   0.29984 0.19095

SUR-ML SMA-FE 0.01065 0.00068 0.01351 0.00069 0.03590 0.04159   0.14357 0.12701

SUR-FGLS SAR-RE 0.01038 0.00052 0.01233 0.00044 0.04043 0.04654 0.25640 0.20979 0.23270 0.11318

SUR-FGLS SMA-RE 0.01025 0.00050 0.01224 0.00046 0.05005 0.04877 0.22611 0.22248 0.07623 0.06928

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 0,02513 0,00281 0,02586 0,00151      

Heterogeneous estimators

(with spatial)

Average SUR SAR 0.01855 0.00169 0.02003 0.00221 0.12443 0.11145    
Average SUR SMA 0.01809 0.00191 0.01991 0.00220 0.15609 0.15127    
SUR-FGLS SAR-RE (av.) 0.01065 0.00066 0.01217 0.00045 (1) (1) 0.25806 0.21525 0.21868 0.11204

SUR-FGLS SMA-RE (av.) 0.01057 0.00073 0.01238 0.00054 (2) (2) 0.22717 0.21401 0.07641 0.06975

(1) We have used the average values       and       of average SUR SAR estimator.     (2) We have used the average values      et      of average SUR SMA estimator.
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Homogeneous estimators

(without spatial)

OLS 0.05013 0.01424 0.02849 0.00376      
RE 0.02888 0.02004 0.01830 0.00620   3.22824 0.57870 3.63262 0.54886

FE 0.03446 0.02443 0.02035 0.00810     3.64291 0.55224

SUR-FGLS 0.04487 0.01112 0.02544 0.00194      
SUR-FE 0.03133 0.01863 0.01782 0.00480     3.17056 0.39762

SUR-ML RE 0.02722 0.01612 0.01667 0.00398   3.19514 0.57676 3.63526 0.54994

SUR-FGLS RE 0.02732 0.01618 0.01673 0.00399   3.22824 0.57870 3.63262 0.54886

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.01099 0.00045 0.01196 0.00047 0.01753 0.03274 0.22834 0.21819 0.06646 0.07006

SUR-ML SMA-RE 0.01247 0.00069 0.01209 0.00051 0.06444 0.04365 1.67204 0.38003 1.78838 0.32833

Table 3 - RMSE of coefficients, standard errors and variances - (ρρρρ1,ρρρρ2) = (0.8,0.5), (ρρρρµµµµ,ρρρρv) = (0.5,0.5), (N,T)=(50,10), SAR data generating process for εεεε, W(1,1), 1000 replications

1,1
β̂

2,1
β̂ 1

ρ̂
2

ρ̂
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β
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ˆˆ
β

σ 2

1
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2
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ˆ
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2
ˆ

v
σ( )2λ̂( )1̂λ

SUR-ML SMA-RE 0.01247 0.00069 0.01209 0.00051 0.06444 0.04365 1.67204 0.38003 1.78838 0.32833

SUR-ML SAR-FE 0.01158 0.00075 0.01389 0.00078 0.01762 0.03445   0.11922 0.12456

SUR-ML SMA-FE 0.01381 0.00129 0.01396 0.00097 0.06343 0.04426   1.51494 0.20143

SUR-FGLS SAR-RE 0.01074 0.00060 0.01217 0.00050 0.03789 0.03958 0.24267 0.22953 0.07599 0.07284

SUR-FGLS SMA-RE 0.01931 0.00399 0.01318 0.00080 0.15000 0.09787 11.9244 0.60358 10.7741 0.47600

Heterogeneous estimator

(without spatial)

Av, Heterogeneous OLS 0.05049 0.01427 0.02871 0.00391      

Heterogeneous estimators

(with spatial)

Average SUR SAR 0.01963 0.00180 0.01999 0.00227 0.06362 0.07497    
Average SUR SMA 0.03237 0.00517 0.02072 0.00248 0.14213 0.11199    
SUR-FGLS SAR-RE (av.) 0.01114 0.00086 0.01205 0.00061 (1) (1) 0.27143 0.23005 0.13520 0.08290

SUR-FGLS SMA-RE (av.) 0.01786 0.00365 0.01287 0.00109 (2) (2) 8.39614 0.49717 8.89330 0.41290

(1) We have used the average values       and       of average SUR SAR estimator.     (2) We have used the average values      et      of average SUR SMA estimator.
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Homogeneous estimators

(without spatial)

OLS 0.02699 0.00803 0.02418 0.00331      
RE 0.01560 0.01107 0.01574 0.00538   0.42318 0.29278 0.33808 0.14859

FE 0.01888 0.01324 0.01700 0.00695     0.34093 0.15069

SUR-FGLS 0.02364 0.00616 0.02188 0.00161      
SUR-FE 0.01765 0.00988 0.01537 0.00399     0.21336 0.08155

SUR-ML RE 0.01511 0.00879 0.01413 0.00331   0.42305 0.28840 0.33971 0.15046

SUR-FGLS RE 0.01509 0.00883 0.01411 0.00333   0.42318 0.29278 0.33808 0.14859

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.00818 0.00295 0.01086 0.00063 0.13047 0.05209 0.46744 0.29246 0.42871 0.22050

SUR-ML SMA-RE 0.00580 0.00035 0.01037 0.00045 0.01797 0.03334 0.22604 0.21937 0.07380 0.06861

Table 4 - RMSE of coefficients, standard errors and variances - (λλλλ1,λλλλ2) = (0.8,0.5), (ρρρρµµµµ,ρρρρv) = (0.5,0.5), (N,T)=(50,10), SMA data generating process for εεεε, W(1,1), 1000 replications
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SUR-ML SMA-RE 0.00580 0.00035 0.01037 0.00045 0.01797 0.03334 0.22604 0.21937 0.07380 0.06861

SUR-ML SAR-FE 0.00897 0.00355 0.01236 0.00123 0.12926 0.05185   0.48573 0.29829

SUR-ML SMA-FE 0.00630 0.00044 0.01178 0.00070 0.01871 0.03529   0.12208 0.12417

SUR-FGLS SAR-RE 0.00757 0.00239 0.01085 0.00057 0.04697 0.04173 0.47380 0.24607 0.47900 0.23567

SUR-FGLS SMA-RE 0.00606 0.00118 0.01029 0.00053 0.07528 0.05362 0.29167 0.22997 0.14846 0.07485

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 0.02742 0.00822 0.02486 0.00348      

Heterogeneous estimators

(with spatial)

Average SUR SAR 0.01322 0.00116 0.01728 0.00161 0.08245 0.07566    
Average SUR SMA 0.01081 0.00106 0.01747 0.00185 0.12439 0.10375    
SUR-FGLS SAR-RE (av.) 0.00783 0.00258 0.01085 0.00073 (1) (1) 0.46123 0.25117 0.46342 0.22262

SUR-FGLS SMA-RE (av.) 0.00636 0.00175 0.01081 0.00076 (2) (2) 0.24400 0.22193 0.11145 0.07949

(1) We have used the average values       and       of average SUR SAR estimator.     (2) We have used the average values      et      of average SUR SMA estimator.
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eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2

Homogeneous estimators

(without spatial)

OLS 1.3768 1.1978 1.5050 1.3082 1.5534 1.3510 1.5791 1.3729 1.5959 1.3881 1.5220 1.3236

RE 1.0324 0.8936 1.1466 0.9924 1.1931 1.0320 1.2184 1.0536 1.2336 1.0675 1.1648 1.0078

FE 1.0367 0.8974 1.1512 0.9966 1.1980 1.0364 1.2234 1.0580 1.2385 1.0718 1.1696 1.0120

SUR-FGLS 1.3776 1.1987 1.5060 1.3089 1.5543 1.3517 1.5799 1.3735 1.5967 1.3886 1.5229 1.3243

SUR-FE 1.0366 0.8972 1.1510 0.9964 1.1977 1.0360 1.2232 1.0577 1.2382 1.0715 1.1693 1.0118

SUR-ML RE 1.0337 0.8954 1.1482 0.9943 1.1946 1.0338 1.2201 1.0555 1.2353 1.0695 1.1664 1.0097

SUR-FGLS RE 1.0324 0.8935 1.1466 0.9924 1.1931 1.0320 1.2184 1.0536 1.2336 1.0675 1.1648 1.0078

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 1.0319 0.8933 1.1462 0.9922 1.1927 1.0318 1.2180 1.0533 1.2331 1.0673 1.1644 1.0076

SUR-ML SMA-RE 1.0322 0.8935 1.1464 0.9923 1.1929 1.0319 1.2182 1.0535 1.2334 1.0674 1.1646 1.0077

SUR-ML SAR-FE 1.0362 0.8970 1.1507 0.9963 1.1974 1.0359 1.2229 1.0575 1.2378 1.0713 1.1690 1.0116

SUR-ML SMA-FE 1.0366 0.8972 1.1510 0.9964 1.1977 1.036 1.2232 1.0577 1.2382 1.0715 1.1693 1.0118

SUR-FGLS SAR-RE 1.0318 0.8933 1.1461 0.9922 1.1926 1.0317 1.2179 1.0533 1.2330 1.0672 1.1643 1.0075

SUR-FGLS SMA-RE 1.0322 0.8933 1.1465 0.9921 1.1929 1.0317 1.2182 1.0533 1.2333 1.0672 1.1646 1.0075

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 1.3768 1.1979 1.5051 1.3083 1.5535 1.3510 1.5792 1.3729 1.5960 1.3881 1.5221 1.3236

Heterogeneous estimators

(with spatial)

Average SUR SAR 1.3779 1.1992 1.5064 1.3096 1.5547 1.3524 1.5801 1.3743 1.5970 1.3893 1.5232 1.3249

Average SUR SMA 1.3785 1.1991 1.5068 1.3095 1.5554 1.3524 1.5807 1.3742 1.5976 1.3893 1.5238 1.3249

SUR-FGLS SAR-RE (av.) 1.0319 0.8933 1.1461 0.9921 1.1926 1.0317 1.2179 1.0533 1.2330 1.0672 1.1643 1.0075

SUR-FGLS SMA-RE (av.) 1.0320 0.8934 1.1463 0.9922 1.1927 1.0317 1.2180 1.0533 1.2331 1.0672 1.1644 1.0075

1st year 2sd year

Table 5 - Forecasts RMSE - (ρρρρ1,ρρρρ2)= (0.5,0.3), (ρρρρµµµµ,ρρρρv)= (0.5,0.5), (N,T)=(50,10), SAR data generating process for εεεε, W(1,1), 1000 replications

3th year 4th year 5th year Average



eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2

Homogeneous estimators

(without spatial)

OLS 1.1803 1.1438 1.292 1.2537 1.3306 1.2934 1.3526 1.3126 1.3674 1.3259 1.3046 1.2659

RE 0.8820 0.8538 0.9806 0.9491 1.0186 0.9871 1.0398 1.0059 1.0526 1.0185 0.9947 0.9629

FE 0.8854 0.8569 0.9841 0.9525 1.0227 0.9907 1.0441 1.0097 1.0567 1.0223 0.9986 0.9664

SUR-FGLS 1.1812 1.1444 1.2928 1.2542 1.3312 1.2939 1.3531 1.3132 1.3680 1.3266 1.3053 1.2665

SUR-FE 0.8850 0.8568 0.9837 0.9524 1.0223 0.9905 1.0436 1.0095 1.0562 1.0221 0.9982 0.9663

SUR-ML RE 0.8819 0.8538 0.9805 0.9492 1.0185 0.9871 1.0396 1.0059 1.0525 1.0185 0.9946 0.9629

SUR-FGLS RE 0.8819 0.8538 0.9804 0.9492 1.0185 0.9871 1.0395 1.0058 1.0524 1.0185 0.9946 0.9629

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.8813 0.8535 0.9799 0.9490 1.0180 0.9869 1.0391 1.0057 1.0520 1.0183 0.9941 0.9627

SUR-ML SMA-RE 0.8812 0.8534 0.9798 0.9489 1.0180 0.9869 1.0391 1.0057 1.0520 1.0183 0.9940 0.9626

SUR-ML SAR-FE 0.8845 0.8567 0.9831 0.9522 1.0219 0.9904 1.0432 1.0093 1.0558 1.0219 0.9977 0.9661

SUR-ML SMA-FE 0.8844 0.8566 0.9830 0.9522 1.0219 0.9904 1.0432 1.0093 1.0558 1.0219 0.9976 0.9660

SUR-FGLS SAR-RE 0.8813 0.8535 0.9798 0.9489 1.0180 0.9869 1.0391 1.0056 1.0519 1.0182 0.9940 0.9626

SUR-FGLS SMA-RE 0.8812 0.8534 0.9797 0.9488 1.0180 0.9868 1.0391 1.0056 1.0519 1.0182 0.9940 0.9626

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 1.1803 1.1438 1.2921 1.2537 1.3306 1.2934 1.3526 1.3126 1.3675 1.3259 1.3046 1.2659

Heterogeneous estimators

(with spatial)

Average SUR SAR 1.1822 1.1447 1.2932 1.2546 1.3318 1.2942 1.3535 1.3135 1.3685 1.3269 1.3058 1.2668

Average SUR SMA 1.1823 1.1447 1.2934 1.2545 1.3320 1.2941 1.3536 1.3134 1.3686 1.3268 1.3060 1.2667

SUR-FGLS SAR-RE (av.) 0.8813 0.8535 0.9798 0.9489 1.0180 0.9869 1.0390 1.0056 1.0519 1.0182 0.9940 0.9626

SUR-FGLS SMA-RE (av.) 0.8813 0.8535 0.9798 0.9489 1.0180 0.9869 1.0391 1.0056 1.0520 1.0182 0.9940 0.9626

1st year 2sd year

Table 6 - Forecasts RMSE - (λλλλ1,λλλλ2)= (0.5,0.3), (ρρρρµµµµ,ρρρρv)= (0.5,0.5), (N,T)=(50,10), SMA data generating process for εεεε, W(1,1), 1000 replications

3th year 4th year 5th year Average



eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2

Homogeneous estimators

(without spatial)

OLS 2.3527 1.3836 2.5796 1.5167 2.6582 1.5641 2.7033 1.5872 2.7335 1.6030 2.6055 1.5309

RE 1.7891 1.0390 1.9849 1.1538 2.0680 1.1998 2.1112 1.2223 2.1350 1.2373 2.0176 1.1704

FE 1.7947 1.0428 1.9905 1.1578 2.0755 1.204 2.1192 1.2267 2.1422 1.2417 2.0244 1.1746

SUR-FGLS 2.3546 1.3842 2.5813 1.5175 2.6598 1.5649 2.7046 1.5880 2.7348 1.6039 2.6070 1.5317

SUR-FE 1.7941 1.0427 1.9897 1.1576 2.0747 1.2038 2.1184 1.2264 2.1414 1.2415 2.0236 1.1744

SUR-ML RE 1.7893 1.0392 1.9850 1.1541 2.0682 1.2000 2.1111 1.2223 2.1352 1.2374 2.0177 1.1706

SUR-FGLS RE 1.7892 1.0392 1.9849 1.1541 2.0681 1.1999 2.1110 1.2223 2.1351 1.2374 2.0177 1.1706

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 1.7868 1.0382 1.9815 1.1533 2.0653 1.1991 2.1082 1.2216 2.1323 1.2366 2.0148 1.1698

SUR-ML SMA-RE 1.7871 1.0383 1.9820 1.1533 2.0657 1.1992 2.1085 1.2216 2.1325 1.2367 2.0152 1.1698

SUR-ML SAR-FE 1.7923 1.0421 1.9877 1.1571 2.0730 1.2032 2.1166 1.2258 2.1396 1.2409 2.0218 1.1738

SUR-ML SMA-FE 1.7925 1.0421 1.9878 1.1571 2.0731 1.2032 2.1167 1.2258 2.1398 1.2409 2.0220 1.1738

SUR-FGLS SAR-RE 1.7867 1.0382 1.9814 1.1532 2.0652 1.1990 2.1082 1.2215 2.1323 1.2366 2.0148 1.1697

SUR-FGLS SMA-RE 1.7897 1.0382 1.9851 1.1531 2.0691 1.1990 2.1122 1.2215 2.1360 1.2366 2.0184 1.1697

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 2.3527 1.3836 2.5797 1.5167 2.6583 1.5641 2.7035 1.5872 2.7336 1.6030 2.6056 1.5309

Heterogeneous estimators

(with spatial)

Average SUR SAR 2.3625 1.3853 2.5856 1.5185 2.6650 1.5656 2.7086 1.5887 2.7389 1.6046 2.6121 1.5325

Average SUR SMA 2.3663 1.3854 2.5888 1.5186 2.6687 1.5657 2.7124 1.5889 2.7425 1.6048 2.6157 1.5327

SUR-FGLS SAR-RE (av.) 1.7867 1.0382 1.9815 1.1532 2.0652 1.1991 2.1082 1.2215 2.1322 1.2366 2.0148 1.1697

SUR-FGLS SMA-RE (av.) 1.7890 1.0383 1.9842 1.1532 2.0682 1.1991 2.1111 1.2216 2.1351 1.2367 2.0175 1.1698

1st year 2sd year

Table 7 - Forecasts RMSE - (ρρρρ1,ρρρρ2)= (0.8,0.5), (N,T)=(50,10), SAR data generating process for εεεε, W(1,1), 1000 replications

3th year 4th year 5th year Average



eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2

Homogeneous estimators

(without spatial)

OLS 1.2754 1.1856 1.3961 1.2999 1.4381 1.3404 1.4622 1.3602 1.4783 1.3739 1.4100 1.3120

RE 0.9550 0.8870 1.0612 0.9860 1.1029 1.0251 1.1260 1.0443 1.1397 1.0572 1.0769 0.9999

FE 0.9584 0.8903 1.0649 0.9895 1.1073 1.0288 1.1307 1.0482 1.1440 1.0611 1.0811 1.0036

SUR-FGLS 1.2764 1.1862 1.3970 1.3005 1.4389 1.3410 1.4628 1.3609 1.4789 1.3746 1.4108 1.3126

SUR-FE 0.9580 0.8902 1.0644 0.9894 1.1068 1.0286 1.1302 1.0479 1.1435 1.0609 1.0806 1.0034

SUR-ML RE 0.9548 0.8870 1.0611 0.9862 1.1028 1.0251 1.1258 1.0442 1.1396 1.0572 1.0768 1.0000

SUR-FGLS RE 0.9548 0.8870 1.0611 0.9862 1.1028 1.0251 1.1258 1.0442 1.1396 1.0572 1.0768 0.9999

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.9538 0.8865 1.0600 0.9857 1.1020 1.0246 1.1250 1.0438 1.1388 1.0568 1.0759 0.9995

SUR-ML SMA-RE 0.9537 0.8863 1.0599 0.9855 1.1018 1.0245 1.1248 1.0437 1.1386 1.0567 1.0758 0.9994

SUR-ML SAR-FE 0.9571 0.8898 1.0635 0.9890 1.1060 1.0282 1.1293 1.0475 1.1427 1.0605 1.0797 1.0030

SUR-ML SMA-FE 0.9570 0.8897 1.0633 0.9889 1.1059 1.0281 1.1292 1.0474 1.1426 1.0604 1.0796 1.0029

SUR-FGLS SAR-RE 0.9537 0.8864 1.0599 0.9856 1.1019 1.0245 1.1249 1.0437 1.1387 1.0567 1.0758 0.9994

SUR-FGLS SMA-RE 0.9537 0.8863 1.0599 0.9855 1.1019 1.0245 1.1249 1.0437 1.1386 1.0567 1.0758 0.9993

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 1.2754 1.1856 1.3962 1.2999 1.4382 1.3404 1.4623 1.3602 1.4783 1.3739 1.4101 1.3120

Heterogeneous estimators

(with spatial)

Average SUR SAR 1.2781 1.1868 1.3980 1.3013 1.4402 1.3415 1.4637 1.3614 1.4800 1.3752 1.4120 1.3132

Average SUR SMA 1.2782 1.1868 1.3983 1.3013 1.4405 1.3415 1.4640 1.3614 1.4802 1.3752 1.4122 1.3132

SUR-FGLS SAR-RE (av.) 0.9537 0.8864 1.0599 0.9856 1.1019 1.0246 1.1249 1.0437 1.1387 1.0567 1.0758 0.9994

SUR-FGLS SMA-RE (av.) 0.9537 0.8864 1.0599 0.9855 1.1018 1.0245 1.1248 1.0437 1.1385 1.0567 1.0757 0.9994

1st year 2sd year

Table 8 - Forecasts RMSE - (λλλλ1,λλλλ2)= (0.8,0.5), (ρρρρµµµµ,ρρρρv)= (0.5,0.5), (N,T)=(50,10), SMA data generating process for εεεε, W(1,1), 1000 replications

3th year 4th year 5th year Average



Homogeneous estimators

(without spatial)

OLS 0.02568 0.00080 0.02282 0.00092      
RE 0.01418 0.00299 0.01536 0.00230   0.25402 0.21979 0.17067 0.07611

FE 0.01582 0.00486 0.01693 0.00418     0.17290 0.07714

SUR-FGLS 0.02254 0.00154 0.02008 0.00225      
SUR-FE 0.01358 0.00187 0.01478 0.00128     0.08980 0.09783

SUR-ML RE 0.01185 0.00102 0.01338 0.00052   0.25333 0.22248 0.17121 0.07682

SUR-FGLS RE 0.01195 0.00104 0.01327 0.00052   0.25402 0.21979 0.17067 0.07611

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.01093 0.00045 0.01325 0.00045 0.06424 0.08307 0.20917 0.21880 0.07061 0.06730

SUR-ML SMA-RE 0.01194 0.00046 0.01329 0.00045 0.19963 0.12298 0.22208 0.21788 0.10631 0.06807

Table 9 - RMSE of coefficients, standard errors and variances - (ρρρρ1,ρρρρ2) = (0.5,0.3), (ρρρρµµµµ,ρρρρv) = (0.5,0.5), (N,T)=(50,10), SAR data generating process for εεεε, W(5,5), 1000 replications
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SUR-ML SMA-RE 0.01194 0.00046 0.01329 0.00045 0.19963 0.12298 0.22208 0.21788 0.10631 0.06807

SUR-ML SAR-FE 0.01231 0.00073 0.01430 0.00087 0.06177 0.08205   0.12443 0.12537

SUR-ML SMA-FE 0.01355 0.00092 0.01485 0.00092 0.06060 0.08089   0.08143 0.10947

SUR-FGLS SAR-RE 0.01110 0.00043 0.01314 0.00043 0.06974 0.08956 0.21846 0.21887 0.07044 0.06726

SUR-FGLS SMA-RE 0.01205 0.00049 0.01311 0.00048 0.36022 0.23681 0.23914 0.21366 0.11497 0.07473

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 0.02634 0.00081 0.02282 0.00088      

Heterogeneous estimators

(with spatial)

Average SUR SAR 0.02143 0.00226 0.02029 0.00272 0.26700 0.11192    
Average SUR SMA 0.02179 0.00228 0.02039 0.00267 0.47592 0.40932    
SUR-FGLS SAR-RE (av.) 0.01081 0.00045 0.01325 0.00044 (1) (1) 0.21326 0.21480 0.07674 0.06658

SUR-FGLS SMA-RE (av.) 0.01096 0.00052 0.01320 0.00050 (2) (2) 0.23240 0.21811 0.10860 0.07259

(1) We have used the average values       and       of average SUR SAR estimator.     (2) We have used the average values      et      of average SUR SMA estimator.
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Homogeneous estimators

(without spatial)

OLS 0.02422 0.00072 0.02374 0.00094      
RE 0.01414 0.00240 0.01516 0.00219   0.24020 0.22444 0.07397 0.06911

FE 0.01554 0.00413 0.01653 0.00405     0.07485 0.06944

SUR-FGLS 0.02099 0.00187 0.02027 0.00231      
SUR-FE 0.01340 0.00129 0.01401 0.00118     0.10170 0.11453

SUR-ML RE 0.01250 0.00059 0.01253 0.00049   0.24540 0.22703 0.07454 0.06980

SUR-FGLS RE 0.01249 0.00061 0.01263 0.00050   0.24020 0.22444 0.07397 0.06911

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.01246 0.00041 0.01239 0.00046 0.14452 0.09942 0.22648 0.21964 0.07437 0.07020

SUR-ML SMA-RE 0.01242 0.00041 0.01254 0.00047 0.12224 0.11156 0.22454 0.22175 0.06624 0.06683

Table 10 - RMSE of coefficients, standard errors and variances - (λλλλ1,λλλλ2) = (0.5,0.3), (ρρρρµµµµ,ρρρρv) = (0.5,0.5), (N,T)=(50,10), SMA data generating process for εεεε, W(5,5), 1000 replications
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SUR-ML SMA-RE 0.01242 0.00041 0.01254 0.00047 0.12224 0.11156 0.22454 0.22175 0.06624 0.06683

SUR-ML SAR-FE 0.01311 0.00073 0.01389 0.00090 0.14090 0.09387   0.14845 0.13283

SUR-ML SMA-FE 0.01314 0.00070 0.01387 0.00088 0.12736 0.11480   0.11823 0.12111

SUR-FGLS SAR-RE 0.01234 0.00041 0.01231 0.00045 0.14528 0.08202 0.21945 0.21855 0.07578 0.07057

SUR-FGLS SMA-RE 0.01237 0.00042 0.01221 0.00047 0.14403 0.13633 0.22383 0.22322 0.06521 0.06814

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 0.02450 0.02380 0.00072 0.00088      

Heterogeneous estimators

(with spatial)

Average SUR SAR 0.02080 0.00225 0.02046 0.00272 0.20462 0.06256    
Average SUR SMA 0.02113 0.00227 0.02047 0.00265 0.34952 0.30770    
SUR-FGLS SAR-RE (av.) 0.01252 0.00041 0.01236 0.00045 (1) (1) 0.22012 0.21598 0.07297 0.06913

SUR-FGLS SMA-RE (av.) 0.01260 0.00047 0.01264 0.00049 (2) (2) 0.23060 0.22370 0.06672 0.07143

(1) We have used the average values       and       of average SUR SAR estimator.     (2) We have used the average values      et      of average SUR SMA estimator.
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eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2

Homogeneous estimators

(without spatial)

OLS 1.1821 1.1379 1.2910 1.2430 1.3341 1.2835 1.3581 1.3050 1.3716 1.3178 1.3074 1.2574

RE 0.8861 0.8479 0.9858 0.9419 1.0260 0.9793 1.0488 0.9989 1.0630 1.0124 1.0019 0.9561

FE 0.8894 0.8509 0.9895 0.9453 1.0298 0.9828 1.0525 1.0023 1.0668 1.0159 1.0056 0.9594

SUR-FGLS 1.1830 1.1386 1.2918 1.2434 1.3350 1.2840 1.3588 1.3057 1.3722 1.3184 1.3082 1.2580

SUR-FE 0.8892 0.8506 0.9893 0.9449 1.0295 0.9824 1.0523 1.002 1.0665 1.0156 1.0054 0.9591

SUR-ML RE 0.8861 0.8478 0.9857 0.9416 1.0260 0.9791 1.0488 0.9987 1.0629 1.0122 1.0019 0.9559

SUR-FGLS RE 0.8861 0.8478 0.9857 0.9416 1.0260 0.9791 1.0487 0.9987 1.0628 1.0122 1.0019 0.9559

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.8859 0.8478 0.9855 0.9416 1.0258 0.9790 1.0485 0.9987 1.0626 1.0122 1.0016 0.9559

SUR-ML SMA-RE 0.8861 0.8478 0.9857 0.9416 1.0259 0.9791 1.0487 0.9987 1.0627 1.0122 1.0018 0.9559

SUR-ML SAR-FE 0.8890 0.8506 0.9892 0.9449 1.0294 0.9824 1.0521 1.0019 1.0663 1.0155 1.0052 0.9591

SUR-ML SMA-FE 0.8892 0.8506 0.9893 0.9449 1.0295 0.9824 1.0523 1.0020 1.0665 1.0156 1.0054 0.9591

SUR-FGLS SAR-RE 0.8859 0.8477 0.9855 0.9416 1.0257 0.9790 1.0484 0.9986 1.0625 1.0121 1.0016 0.9558

SUR-FGLS SMA-RE 0.8859 0.8477 0.9854 0.9416 1.0257 0.9790 1.0484 0.9986 1.0625 1.0121 1.0016 0.9558

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 1.1821 1.1379 1.2910 1.2430 1.3342 1.2835 1.3582 1.3050 1.3716 1.3178 1.3074 1.2575

Heterogeneous estimators

(with spatial)

Average SUR SAR 1.1832 1.1385 1.2920 1.2433 1.3354 1.2839 1.3590 1.3056 1.3723 1.3184 1.3084 1.2580

Average SUR SMA 1.1831 1.1386 1.2920 1.2433 1.3353 1.2839 1.3590 1.3056 1.3723 1.3184 1.3083 1.2580

SUR-FGLS SAR-RE (av.) 0.8859 0.8477 0.9855 0.9416 1.0257 0.9790 1.0485 0.9986 1.0625 1.0121 1.0016 0.9558

SUR-FGLS SMA-RE (av.) 0.8859 0.8478 0.9855 0.9416 1.0258 0.9790 1.0485 0.9986 1.0626 1.0122 1.0626 1.0122

1st year 2sd year

Table 11 - Forecasts RMSE - (ρρρρ1,ρρρρ2)= (0.5,0.3),  (ρρρρµµµµ,ρρρρv)= (0.5,0.5), (N,T)=(50,10), SAR data generating process for εεεε, W(5,5), 1000 replications

3th year 4th year 5th year Average



eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2

Homogeneous estimators

(without spatial)

OLS 1.1256 1.1231 1.2325 1.2300 1.2688 1.2693 1.2895 1.2884 1.3039 1.3015 1.2441 1.2425

RE 0.8418 0.8378 0.9369 0.9311 0.9737 0.9689 0.9937 0.9877 1.0059 1.0002 0.9504 0.9452

FE 0.8448 0.8410 0.9398 0.9345 0.9773 0.9724 0.9974 0.9914 1.0094 1.0039 0.9538 0.9486

SUR-FGLS 1.1265 1.1243 1.2333 1.2307 1.2695 1.2700 1.2901 1.2890 1.3045 1.3021 1.2448 1.2432

SUR-FE 0.8447 0.8407 0.9396 0.9342 0.9771 0.9721 0.9972 0.9912 1.0092 1.0037 0.9535 0.9484

SUR-ML RE 0.8419 0.8379 0.9370 0.9312 0.9737 0.9689 0.9937 0.9878 1.0059 1.0002 0.9504 0.9452

SUR-FGLS RE 0.8419 0.8378 0.9370 0.9311 0.9737 0.9689 0.9936 0.9877 1.0059 1.0002 0.9504 0.9452

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.8418 0.8378 0.9368 0.9311 0.9736 0.9689 0.9935 0.9877 1.0057 1.0002 0.9503 0.9451

SUR-ML SMA-RE 0.8418 0.8378 0.9368 0.9311 0.9736 0.9689 0.9935 0.9877 1.0057 1.0002 0.9503 0.9451

SUR-ML SAR-FE 0.8446 0.8407 0.9395 0.9341 0.9770 0.9721 0.9971 0.9912 1.0092 1.0037 0.9535 0.9484

SUR-ML SMA-FE 0.8446 0.8407 0.9395 0.9341 0.9770 0.9721 0.9971 0.9912 1.0092 1.0037 0.9535 0.9484

SUR-FGLS SAR-RE 0.8417 0.8377 0.9367 0.9310 0.9735 0.9688 0.9935 0.9877 1.0057 1.0001 0.9502 0.9451

SUR-FGLS SMA-RE 0.8417 0.8377 0.9367 0.9310 0.9735 0.9688 0.9935 0.9877 1.0057 1.0001 0.9502 0.9451

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 1.1255 1.1232 1.2325 1.2301 1.2688 1.2694 1.2895 1.2884 1.3039 1.3015 1.2440 1.2425

Heterogeneous estimators

(with spatial)

Average SUR SAR 1.1264 1.1242 1.2333 1.2306 1.2696 1.2699 1.2902 1.289 1.3044 1.3021 1.2448 1.2432

Average SUR SMA 1.1263 1.1242 1.2332 1.2306 1.2695 1.2699 1.2901 1.2889 1.3044 1.3020 1.2447 1.2431

SUR-FGLS SAR-RE (av.) 0.8417 0.8377 0.9367 0.9310 0.9735 0.9688 0.9935 0.9877 1.0057 1.0001 0.9502 0.9451

SUR-FGLS SMA-RE (av.) 0.8418 0.8378 0.9369 0.9311 0.9736 0.9689 0.9935 0.9877 1.0058 1.0002 0.9503 0.9451

1st year 2sd year

Table 12 - Forecasts RMSE - (λλλλ1,λλλλ2)= (0.5,0.3), (ρρρρµµµµ,ρρρρv)= (0.5,0.5), (N,T)=(50,10), SMA data generating process for εεεε, W(5,5), 1000 replications

3th year 4th year 5th year Average



Homogeneous estimators

(without spatial)

OLS 0.03048 0.00948 0.02529 0.00652      
RE 0.01758 0.01194 0.01577 0.00930   0.57098 0.26661 0.54502 0.16850

FE 0.01899 0.01380 0.01808 0.01123     0.54840 0.17083

SUR-FGLS 0.01396 0.00137 0.01168 0.00048      
SUR-FE 0.00885 0.00272 0.00765 0.00142     0.39421 0.08077

SUR-ML RE 0.00860 0.00223 0.00681 0.00089   0.56050 0.26195 0.54721 0.17099

SUR-FGLS RE 0.00861 0.00233 0.00680 0.00097   0.57098 0.26661 0.54502 0.16850

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 0.00614 0.00022 0.00614 0.00025 0.02687 0.03251 0.22599 0.21840 0.06541 0.06684

SUR-ML SMA-RE 0.00618 0.00023 0.00637 0.00023 0.03845 0.03611 0.38920 0.24003 0.33120 0.11613

Table 13 - RMSE of coefficients, standard errors and variances - (ρρρρ1,ρρρρ2) = (0.5,0.3), (ρρρρµµµµ,ρρρρv) = (0.9,0.9), (N,T)=(50,10), SAR data generating process for εεεε, W(1,1), 1000 replications
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SUR-ML SMA-RE 0.00618 0.00023 0.00637 0.00023 0.03845 0.03611 0.38920 0.24003 0.33120 0.11613

SUR-ML SAR-FE 0.00690 0.00024 0.00650 0.00043 0.02869 0.03429   0.11896 0.12038

SUR-ML SMA-FE 0.00665 0.00027 0.00661 0.00050 0.03850 0.03714   0.20541 0.06757

SUR-FGLS SAR-RE 0.00618 0.00024 0.00618 0.00025 0.04030 0.04226 0.23223 0.21482 0.06484 0.06779

SUR-FGLS SMA-RE 0.00657 0.00039 0.00650 0.00032 0.09695 0.05089 0.59845 0.26265 0.47097 0.12411

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 0.03048 0.00961 0.02565 0.00683      

Heterogeneous estimators

(with spatial)

Average SUR SAR 0.01094 0.00043 0.01149 0.00087 0.07297 0.05234    
Average SUR SMA 0.01125 0.00042 0.01175 0.00067 0.10214 0.09126    
SUR-FGLS SAR-RE (av.) 0.00621 0.00033 0.00612 0.00026 (1) (1) 0.22593 0.21481 0.07742 0.06687

SUR-FGLS SMA-RE (av.) 0.00668 0.00040 0.00655 0.00037 (2) (2) 0.50394 0.24588 0.41528 0.12441

(1) We have used the average values       and       of average SUR SAR estimator.     (2) We have used the average values      et      of average SUR SMA estimator.
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eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2 eq. 1 eq. 2

Homogeneous estimators

(without spatial)

OLS 1.3787 1.1977 1.5087 1.3118 1.5542 1.3517 1.5791 1.3735 1.5968 1.3878 1.5235 1.3245

RE 1.0319 0.8922 1.1465 0.9936 1.1915 1.0326 1.2162 1.0539 1.2309 1.0668 1.1634 1.0078

FE 1.0354 0.8954 1.1501 0.9970 1.1959 1.0364 1.2210 1.0578 1.2353 1.0706 1.1676 1.0114

SUR-FGLS 1.3816 1.1997 1.5111 1.3136 1.5563 1.3536 1.5814 1.3755 1.5989 1.3896 1.5259 1.3264

SUR-FE 1.0345 0.8948 1.1493 0.9961 1.1950 1.0355 1.2200 1.0569 1.2343 1.0697 1.1666 1.0106

SUR-ML RE 1.0313 0.8918 1.1461 0.9932 1.1910 1.0320 1.2157 1.0533 1.2304 1.0662 1.1629 1.0073

SUR-FGLS RE 1.0313 0.8918 1.1460 0.9932 1.1910 1.0320 1.2157 1.0533 1.2303 1.0662 1.1629 1.0073

Homogeneous estimators

(with spatial)

SUR-ML SAR-RE 1.0309 0.8915 1.1455 0.9929 1.1907 1.0318 1.2154 1.0531 1.2301 1.0660 1.1625 1.0071

SUR-ML SMA-RE 1.0310 0.8915 1.1456 0.9929 1.1907 1.0318 1.2154 1.0531 1.2301 1.0660 1.1625 1.0071

SUR-ML SAR-FE 1.0344 0.8947 1.1492 0.9960 1.1950 1.0353 1.2200 1.0568 1.2342 1.0696 1.1666 1.0105

SUR-ML SMA-FE 1.0344 0.8947 1.1492 0.9960 1.1950 1.0353 1.2199 1.0568 1.2342 1.0696 1.1665 1.0105

SUR-FGLS SAR-RE 1.0309 0.8914 1.1454 0.9928 1.1906 1.0317 1.2153 1.0530 1.2300 1.0659 1.1624 1.0070

SUR-FGLS SMA-RE 1.0310 0.8915 1.1455 0.9928 1.1907 1.0318 1.2154 1.0531 1.2301 1.0660 1.1625 1.0070

Heterogeneous estimator

(without spatial)

Av. Heterogeneous OLS 1.3787 1.1978 1.5087 1.3120 1.5542 1.3519 1.5790 1.3736 1.5968 1.3879 1.5235 1.3246

Heterogeneous estimators

(with spatial)

Average SUR SAR 1.3814 1.1995 1.5109 1.3135 1.5560 1.3536 1.5809 1.3756 1.5985 1.3897 1.5255 1.3264

Average SUR SMA 1.3816 1.1993 1.5111 1.3133 1.5562 1.3533 1.5811 1.3753 1.5987 1.3895 1.5257 1.3262

SUR-FGLS SAR-RE (av.) 1.0309 0.8914 1.1454 0.9928 1.1906 1.0317 1.2153 1.0530 1.2300 1.0659 1.1624 1.0070

SUR-FGLS SMA-RE (av.) 1.0310 0.8915 1.1456 0.9929 1.1907 1.0318 1.2154 1.0531 1.2301 1.0660 1.1625 1.0070

1st year 2sd year

Table 14 - Forecasts RMSE - (ρρρρ1,ρρρρ2)= (0.5,0.3), (ρρρρµµµµ,ρρρρv)= (0.9,0.9), (N,T)=(50,10), SAR data generating process for εεεε, W(1,1), 1000 replications

3th year 4th year 5th year Average


