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Abstract

Kelejian (2008) introduces a J-type test for the situation in which a
null linear regression model, Model0, is to be tested against one or more
rival non-nested alternatives, Model1, ..,Modelg, where typically the com-
peting models possess endogenous spatial lags and spatially autoregressive
error processes. The original J test of Davidson and MacKinnon (1981), in
which g = 1, is constructed by augmenting the right-hand side of Model0
with a vector of fitted values from Model1. Under appropriate conditions
the conventional t - ratio on the estimated coefficient on these fitted values
converges in distribution to N(0, 1) when Model0 is true. In simulations
of the finite-sample distribution of this t ratio, it is common to observe
that Model0 is over-rejected, for the reasons studied in detail in Davidson
and MacKinnon (2002a). If the tests are to be relied upon, any such size-
distortion must be controlled either by modifying the test statistic or by
correcting the reference distribution, for example by the use of resampling.
Concentrating on the case, g = 1, in this paper we examine the finite sam-
ple properties of a spatial J statistic that is asymptotically χ22 under the
null, and an alternative version that is conjectured to be approximately
χ21 both introduced by Kelejian (2008). We demonstrate numerically that
the tests are excessively liberal in some leading cases using the relevant
Chi-square asymptotic approximations, and explore how far this may be
corrected using a simple bootstrap resampling method. In our experi-
ments we vary the degree of correlation between the regressors of rival
models, the strength of lag and error dependence, the spatial weight ma-
trices, and the choice of instruments. We find the asymptotic tests often
perform very well, but they are either very liberal or lack power in some
parts of the parameter space. The bootstrap approach, whilst not perfect,
is demonstrated to be clearly superior to reliance on the asymptotic χ21 or
χ22 critical values in most cases.
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1 Introduction
In Kelejian (2008), spatial extensions of the J-test of Davidson and MacKinnon
(1981) are introduced for testing a null model, Model0 against g alternative
models in the situation in which the g + 1 models are non-nested. This test-
ing problem is an important and long-standing issue in spatial econometrics,
rendered difficult by the widely acknowledged need to capture in such models
patterns of spatial interaction that are not directly observed. One of Kelejian’s
test statistics has 2g degrees of freedom, and he shows that under suitable con-
ditions, it has an asymptotic χ22g distribution under the null hypothesis that
Model0 is true. A second form of the test has g degrees of freedom, and can
be conjectured to have an asymptotic χ2g distribution under the same or similar
conditions yet to be established. Experience in the non-spatial setting, such
as in the studies by Godfrey (1998) and by Davidson and MacKinnon (2002a),
suggests on the one hand that use of critical values based on large-sample ap-
proximations may make J-type tests too liberal, and on the other that this
problem may be cured by the use of resampling. Further, to implement the
tests in the form proposed by Kelejian, which requires intrumental variable esti-
mation of the competing models, users will need to choose which instruments to
use, and also decide whether to use a test with g or 2g degrees of freedom. We
therefore explore these issues. In the following we focus on the case of a single
alternative, g = 1, and we will refer to the spatial J tests implemented using χ21
or χ22 critical values as the asymptotic tests, and tests using p− values obtained
by a simple parametric bootstrap, described below, as simple bootstrap tests.
We find that in some leading cases the empirical significance level of the

asymptotic tests is affected by the choice of instruments, while the simple boot-
strap tests are not affected to the same extent. Further, there appears to be
no general loss of power in using the simple bootstrap beyond that attributable
to bringing the significance level down to its nominal value. However, the as-
ymptotic tests can be too liberal to be relied upon in applications, while the
simple bootstrap corrects the empirical significance level of the tests for most
but not all regions of the parameter space. Whilst it is possible in many settings
to improve upon the performance of the simple bootstrap by implementing a
fast double bootstrap of the kind studied by Davidson and MacKinnon (2002b)
we find that the extreme cases remain problematic in the present application.
However the bootstrap is implemented, its feasibility depends on the properties
of the parameter estimates obtained, in particular when the alternative model
is true. This sensitivity, which is not shared by the asymptotic tests, may limit
the value of the parametric bootstrap in this context, and suggests a line of
enquiry for future work.
The next section describes the spatial models between which the tests are

designed to discriminate and defines the test statistics, while in Section 3 pre-
vious related work is reviewed and in Section 4 the bootstrap is introduced.
Section 5 presents our experimental evidence, and Section 6 concludes.
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2 The models and the J-type tests

2.1 Null and alternative models

Following Kelejian (2008), we use the SARAR(1,1) model set-up. Under the
null hypothesis, Model0 is true:

Y = X0β0+λ0W0Y+u0 (1)

u0 = ρ0M0u0+v0.

Here, the n× k0 matrix of observations of exogenous variables, X0, and the
n × 1 vector of observations of the dependent variable, Y, are each measured
without error, the n × n matrices of fixed weights, W0 and M0 are assumed
known, and the unobserved shock vector, v0 ∼ IID(0, σ20In) independent of the
regressors, X0. The parameters to be estimated are the slope coefficients, β0,
the spatial lag and error coefficients, λ0, and ρ0, and the variance, σ

2
0. Under

the alternative, the data are generated by a similar structure, Model1:

Y = X1β1+λ1W1Y+u1 (2)

u1 = ρ1M1u1+v1.

Kelejian’s detailed assumptions about this specification are reproduced in
the Appendix. In fact, Kelejian allows for some finite number, g ≥ 1, of non-
nested alternatives of the same type.

2.2 Kelejian’s J-tests for the case g=1

Because of the number of modelling choices that must be made in order to
implement the tests, it is essential to describe them in some detail here. We
follow Kelejian, but comment on some features of the estimation problem on
the way.
Step 1.

Define Z0 = [X01

...X02

...W0Y] and γ0 = [β
0
0, λ0]

0 to write the null model as

Y = X0β0+λ0W0Y+u0

= Z0γ0 + u0. (3)

Since ordinary least squares (OLS) would be inconsistent applied to (3), we
define the matrix,

L0,r = [X01

...X02

...W0X02..
...Wr

0X02]

for some small integer r, and construct a matrix of instruments,

H0,r = [L0,r
...M0L0,r]LI
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in which the subscript, LI denotes a spanning set of linearly independent
columns from H0,r. This instrument set yields the projection matrix,

P0,r =H0,r(H
0
0,rH0,r)

−1H0
0,r

leading to the instrumental variable (IV) estimator,

γ̂0r = [Z
0
0P0,rZ0]

−1Z00P0,rY.

Similarly, for Model1 we have Z1 = [X11

...X12

...W1Y], γ1 = [β
0
1, λ1]

0,

L1,r = [X11

...X12

...W1X12..
...Wr

1X12]

and H1,r = [L1,r
...M1L1,r]LI , giving the projector, P1,r, and IV estimator,

γ̂1r = [Z
0
1P1,rZ1]

−1Z01P1,rY.

For convenience, we also define the hybrid matrices

L01,r = [[X0

...X1]
...W0[X0

...X1]..
...Wr

0[X0

...X1]]LI

H01,r = [L01,r
...M0L01,r]LI

As always with IV estimators, there will in general be other instrument
choices available; Kelejian comments that "typically one would take r ≤ 2", so
we explore the relationship, if any, between r and J-test size and power in the
numerical experiments below.
Step 2.
Define the vector of residuals from the null model,

û0 = Y − Z0γ̂0
and use this to estimate ρ0 in (1) by some consistent method, such as the

GMM procedure of Kelejian and Prucha (1999), outlined below.
We implement Kelejian and Prucha’s non-linear GMM method for estimat-

ing ρ from the residuals, û0, in preference to QML because of the numerical diffi-
culty of calculating accurately the eigenvalues of even moderately sized matrices,
as discussed by those authors. It is defined as follows. In (1) the disturbances
satisfy the following moment conditions:

E{n−1v00v0} = σ2

E{n−1v00M0
0M0v0} = σ2n−1Tr{M0

0M0}
E{n−1v00M0

0v0} = σ2n−1Tr{M0
0) = 0

which are easily converted into statements about the moments of u0 using
the fact that

v0 = u0 − ρ0M0u0.
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Thus we have

E{n−1u00(I−ρ0M0
0)(I−ρ0M0)u0} = σ2

E{n−1u00(I−ρ0M0
0)M

0
0M0(I−ρ0M0)u0} = σ2n−1Tr{M0

0M0}
E{n−1u00(I−ρ0M0

0)M
0
0(I−ρ0M0)u0} = 0

which is a set of three non-linear equations in σ2, ρ0 and ρ20. Re-arranging
these into a more convenient form, we have, imitating Kelejian and Prucha’s
notation,

E{G
⎡⎣ ρ
ρ2

σ2

⎤⎦− g} = 0
where

G =

⎡⎣ 2u00M0u0 −u00M0
0M0u0 n

2u00M0
0M

2
0u0 −u00[M0

0]
2M2

0u0 Tr{M0
0M0}

u00[M0
0M0 +M

0
0M

2
0]u0 −u00M0

0M
2
0u0 0

⎤⎦
g =

⎡⎣ u00u0
u00M0

0M0u0
u00M0u0

⎤⎦
To obtain estimates ρ̂ and σ̂2 we can therefore replace the expectations with

sample averages and take

(ρ̂, σ̂2) = argmin{G
⎡⎣ ρ̂
ρ̂2

σ̂2

⎤⎦− g}0{G
⎡⎣ ρ̂
ρ̂2

σ̂2

⎤⎦− g}. (4)

Kelejian and Prucha show that this estimator is consistent under suitable
conditions, and report experiments suggesting that its efficiency is similar to
that of the computationally much more expensive QMLE. In the experiments
we have used (4) with u0 replaced by the residual, û0.
Defining the vector of residuals from the alternative,

û1 = Y − Z1γ̂1
we estimate ρ in similar fashion to get ρ̂1, say.
Step 3.
Using ρ̂0 from Step 2, construct the spatially lag-transformed regression

(I − ρ̂0M0)Y = (I − ρ̂0M0)(Z0γ0 + u0) (5)

Y ∗(ρ̂0) = Z∗0(ρ̂0)γ0 + v
∗(ρ̂0) say

and estimate this equation by IV using the same instruments as before, H0;
the result is the generalised spatial 2SLS procedure suggested in Kelejian and
Prucha (1998) that yields, say,
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Y ∗(ρ̂0) = Z
∗
0(ρ̂0)γ̂0(ρ̂0) + v̂

∗(ρ̂0). (6)

Use the residual vector, v̂∗(ρ̂0), to estimate the variance of the shocks, σ̂
2
0 =

v̂∗(ρ̂0)0v̂∗(ρ̂0)/n.
Similarly, using ρ̂1 from Step 2, construct the alternative spatially lag-

transformed regression

(I − ρ̂1M1)Y = (I − ρ̂1M1)(Z1γ1 + u1) (7)

Y∗(ρ̂1) = Z∗1(ρ̂1)γ1 + v
∗(ρ̂1) say

and estimate it by IV using the instruments, H1 to obtain

Y∗(ρ̂1) = Z
∗
1(ρ̂1)γ̂1(ρ̂1) + v̂

∗(ρ̂1). (8)

Let Ŷ∗(ρ̂1) denote the fitted value from (8). At this point we are in possession
of an approximation to the forecast value of (I − ρ1M1)Y obtained from the
alternative model. We can now augment the RHS of (5) to generate a test of
the hypothesis that Model0 is true. Kelejian defines two tests:
Step 4a.(conjectured χ21 version)
Using the fitted value from (8), set up the augmented equation

Y∗(ρ̂0) = Z∗0(ρ̂0)γ0 + Ŷ
∗(ρ̂1)δ + v

∗(ρ̂0) (9)

= Z∗∗γ∗∗+v∗∗

and the augmented matrix of instruments

H∗∗r = [H0,r

...H01,r]LI (10)

with projection matrix P∗∗r , say, obtaining the IV estimator

γ̂∗∗ = (Z0∗∗P∗∗r Z
∗∗)−1Z0∗∗P∗∗r Y

∗(ρ̂0)

with estimated asymptotic covariance matrix,

V̂ =σ̂20(Z
0∗∗P∗∗r Z

∗∗)−1

which is used to extract a Wald test statistic for δ = 0 in (9) in the usual
way. That is, when Model0 is true, letting l denote the number of elements
in γ∗∗, so that γ̂∗∗(l) is the last estimated coefficient, and V̂(l, l) its estimated
variance, we conjecture that,

(γ̂∗∗(l))2

V̂(l, l)
→d χ2(1). (11)

This remains a conjecture, but a proof that ρ̂1 from Step 2 converges to a
constant under the null under appropriate conditions would be sufficient - see
the first Remark under Kelejian’s Equation 9. The specification of H01,r in the
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instrument set, (10), is as given by Kelejian (2008); however, in our experiments
we found that test power improved dramatically in some cases if H1,r was used
in place of H01,r at this point. See discussion of "Case 2" below.
Step 4b.(χ22 version)
Use the first step estimates, γ̂1, to augment the RHS of (5) with both Z1γ̂1

and M1Z1γ̂1, in place of the single forecast value, Ŷ
∗(ρ̂1), and augment the

instrument vector as before. Following the same line of development leads to a
statistic that is asymptotically χ2(2). That is, now estimate the equation

Y∗(ρ̂0) = Z∗0(ρ̂0)γ0 + Z1γ̂1δ1 +M1Z1γ̂1δ2 + v
†(ρ̂0) (12)

= Z†γ†+v†

using the instruments, H∗∗r , as above, obtaining the IV estimator

γ̂† = (Z0†P∗∗r Z
†)−1Z0†P∗∗r Y

∗(ρ̂0)

with estimated asymptotic covariance matrix

V̂†=σ̂20(Z
0†P∗∗r Z

†)−1.

Writing the matrix that selects the final two elements of γ† in the usual way
as

R =

∙
0 · · · 0 1 0
0 · · · 0 0 1

¸
the hypothesis to be tested becomes H0 : Rγ

† = 0 and a Wald test statistic
is

γ̂0†R0[RV̂
†
R0]−1Rγ̂† →d χ2(2). (13)

Kelejian proves the asymptotic Normality of γ̂† that is sufficient, together
with convergence of V̂†, for (13) while the alternative one degree-of-freedom
form, (11), is introduced in a remark that also raises the question of the relative
efficiency of the two tests. We give some evidence on this issue in the experiments
reported below.

3 History of the problem
Anselin (1986) discusses the problem of discriminating between competing spa-
tial interaction matrices in linear regression models, reporting some experimen-
tal results for the simple model,

Yi = α+ ρ

j=nX
j=1

wijYj + ui (14)

where the disturbance, ui is either independent Normal, log-Normal, or spa-
tially correlated and Normal, and in which the n×n weight matrix,W = {wij},
takes one of three different forms,WA,WB orWC say, and ρ = 0.25 or 0.75.
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TakingWA as null hypothesis, he considers J-type statistics based on separately
augmenting the right-hand side of (14) with the fitted value from the model with
weights WB or fitted value from the model with weights WC . This results in
12 comparisons in which each model plays the role of null or alternative. The
sample sizes considered are quite small, n = 24, n = 38, theW matrices relat-
ing to planning districts in Columbus, Ohio. While his experimental design is
thus quite narrow, nonetheless the most striking feature of the results reported
by Anselin is that the tests he implements are severely over-sized in all cases.
Evidently some means would have to be found to control significance levels
were such tests to be used more widely, as was immediately recognised: Haining
(1986 p.795) commenting, "... each researcher is probably going to have to carry
out his own simulation experiments anyway in order to identify such things as
critical values...". Haining also doubts whether the model with spatially autore-
gressive lag structure is necessarily the best way to fit the presumed pattern of
autocorrelation in the disturbance. Suppose we write (14) in an obvious matrix
notation as,

(I−ρW)Y = 1α+ u (15)

and assume that (I−ρW) is non-singular, so that

Y = (I−ρW)
−1
(1α+ u) (16)

= β + ε, say.

Then we see that if u ∼ N(0, σ2In) as often assumed, the covariance matrix of
ε in (16) is

Ω = E{εε0} = σ2{(I−ρW0
)(I−ρW)}−1

while the mean function of Y is obviously

β = E{Y} = (I−ρW)
−1
1α.

The point is that it is far from obvious that we should impose so much
structure on β and Ω at the outset, and that procedures designed to test one
form of W against another may be applied to seriously misspecified models.
Supposing, on the contrary, that there really were several competing models
that differed solely in the form taken byW, then Haining advocates use of an
information criterion to choose among them as this would remove the need to
interpret 2g! model comparisons; he reports no evidence that such an approach
would lead to better model choices than the J-type tests however.
More recently, Leenders (2002) has placed the specification ofW orM in a

model of the form (1) at the heart of a discussion of the formulation of network
autocorrelation models for social interaction. Differing influence mechanisms
lead to distinct forms forW orM leading to a need for discrimination between
these alternatives. As Leenders notes, there may be a material difference be-
tween the situation in which one competing model, Model0, is being subjected
to specification testing using the remaining models in the set to generate suit-
able diagnostics, and the situation in which all the competing models have the
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same status and we wish to select one. He advocates a non-nested hypothesis
test for the former and the use of an information criterion for the latter, in
neither case giving any evidence about the properties such procedures will have
in finite samples. For the specification testing problem, he takes (1) as null and
(2) as alternative, with ρ0 = ρ1 = 0 maintained apriori. To extend this to g
alternatives he writes down an auxiliary regression of the form,

Y = (1−
gX
i=1

αi)(λ0W0Y +X0β0) +

gX
i=1

αi(λ̂iWiY +Xiβ̂i) + e (17)

in which λ̂i and β̂i (i = 1, ..., g) are maximum likelihood estimates of the
parameters of Models 1 to g and the test has null hypothesis αi = 0, i = 1, ..., g

(Leenders 2002, p.40). If we ignore (1−
gP
i=1

αi), the first factor on the right-

hand side, then (17) is essentially the augmented regression that would replace
(9) if it were maintained a priori that ρj = 0, j = 0, ..., g and all parameters
were estimated by maximum likelihood rather than via instrumental variables.
For the model selection problem, the superficial appeal of using an information
criterion is obvious. Once the criterion has been chosen, so the argument runs,
the procedure delivers a unique best model. Unfortunately different information
criteria will in general lead to the selection of different models, so that the
uniqueness of the chosen model relies on the investigator first selecting which
criterion to adopt. Leenders does not discuss such issues.
A recent formal implementation of a J-type test on a spatial model is Fingle-

ton (2007) in which two non-nested wage equations are estimated. Fingleton’s
approach is intermediate in the sense that the J-tests he calculates by instru-
mental variable regression are applied to models without a spatially correlated
disturbance but which have endogenous "potential"-type variables present, and
he uses a bootstrap to evaluate the significance of the resulting statistics. In
a parallel exercise he estimates and tests an artificial nesting model that does
have a spatially correlated disturbance, and which is estimated by the 2sls/GMM
methods of Kelejian and Prucha, again using resampling to generate reference
distributions for the test statistics. There may be other studies implementing
such tests on spatial models of which we are unaware, but it seems to us that
formal testing of non-nested models should be more widespread than it is, and
so it is desirable to investigate the issues that arise in the practical implemen-
tation of such tests in order that they may be used with confidence in empirical
studies.

4 The bootstrap
The purpose of our resampling experiments is to establish whether bootstrap
p− values may be used to match nominal and empirical significance levels of the
non-nested hypothesis tests described in Section 2, given that in many cases, as
we shall demonstrate, such tests are either conservative or liberal if asymptotic
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χ2 critical values are used. In the case of the original J-tests of Davidson and
MacKinnon (1981), a great deal is known about the properties of resampling-
based p− values and, in particular, Davidson and MacKinnon (2002a p.168) are
able to conclude that "the bootstrap J test works extraordinarily well in almost
every case in which a non-nested test is worth doing". This strong conclusion,
relating to the closeness of the nominal and empirical sizes of the tests, rests
heavily on the exact analysis of the J test statistic made possible by the linearity
of the underlying family of models and the estimators defined on them. In the
leading case considered by Davidson and MacKinnon the null and alternative
models may be written

Y = X0β0+u0 (null) (18)

and (19)

Y = X1β1+u1 (alternative)

and the disturbances are taken to be independent N(0,σ2I) in each model.
Define the projection matrices, Pi = Xi[X

0
iXi]

−1X0
i i = 0, 1 and Qi = I−Pi

then (see Davidson and MacKinnon 2002a, p. 169) the J statistic for testing
(18) is the ordinary t statistic for α = 0 in the regression

Y=X0b0+α̂P1Y + e

and they show that a key quantity is ||θ||2 = ||Q0P1X0β0||2/σ2. When
this is held at zero, for example when P1X0 lies in the space spanned by the
columns of X0 or, indeed, when X0

1X0 = 0, or β0/σ
2 = 0 then the J statistic

does not have the same distribution as it does elsewhere. The significance of this
is that the sampling variability in ||θ̂0||2, the estimate of this quantity under
the null, will prevent the bootstrap distribution from coinciding with the true
sampling distribution. However, Davidson and MacKinnon are able to show
that in the situation of (18) the size distortions will be quite small, of the order
of a few percentage points even in the worst cases. In more general models,
for example a time series model with a lagged dependent variable, the size
distortions can be very large (see for example Davidson and MacKinnon 2002b
Figure 1). Unfortunately, the presence of the spatial dependence in our models
and the non-linear estimator of ρ that results, makes an exact analysis of any
generality intractable. However, we will be able to demonstrate numerically
conditions under which a simple bootstrap is relatively reliable or unreliable.
Our implementation of the simple bootstrap is as follows. Under Kelejian’s

assumptions, the "spatial 2SLS" estimator, (5), is consistent under the null, and
so therefore is (7) when the alternative is true.

4.1 The simple resampling scheme:

Compute the J test statistics as above, then
(i) Use v̂∗ from estimation of (5) as the building block. Draw a random

sample from v̂∗ using sampling with replacement; call this random sample, e∗
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(ii) Using ρ̂0 from Step 2, generate

u∗ = [I−ρ̂0M0]
−1e∗

(iii) Recall that in (5)
γ0 = [β

0
0, λ0]

0

and generate
Y∗ = [I− λ̂0W0]

−1(X0β̂0 + u
∗)

(iv) Calculate the J statistic using the Y∗ sample
(v) Repeat (ii)-(iv) the designated number of times, m, to create a sample

from the bootstrap distribution of the relevant J statistic.
(vi) If the proportion of the m bootstrap replicates that exceed the observed

J statistic is less than the chosen significance level, reject the null hypothesis at
that level.

4.2 Evaluating empirical size or power

In the experiments, we create a large number, s, of samples from each data
generation process, either Model0 to investigate test empirical size, or Model1
to study power, and for each sample we perform steps (i)-(vi) above with the
chosen value of m. The empirical size of the test at nominal significance level, α,
is then the proportion of the s samples on which the null is true, but is rejected
at step (vi) above. Similarly the empirical power at nominal significance level α
for some specified alternative is the proportion of the s samples on which that
alternative is true and on which the null is rejected at step (vi). We note that
the need for resampling from the fitted model residuals, rather than importing
Normal pseudo-random numbers, isn’t established here - if the tests’ behaviour
were robust to variations in the distribution of the shocks, then the bootstrap
could as well use imported pseudo-random numbers. However, we would still
need to simulate the distributions of the test statistics under Model0 using the
estimated parameters and spatial structure, and it is no harder to do that by
resampling from the residuals.

5 Experimental Results
Evidently, a great variety of cases are possible in this framework, such as (a)
different regressors, same spatial weights, (b) same regressors, different spatial
weights, and (c) both different regressors and different spatial weights. We have
some results for (a), preliminary indications for (b) and as yet no numerical
results for (c). We designate the first as Case 1, the second as Case 2, below.
Case 1. We implement this with a single explanatory variable other than the

constant, that is, we have X0= [X01

...X02] where X01= 1, the constant vector,
and X02 is, a draw from N(0, In), and the two spatial weight matrices are
equal,M0 =W0, while for the alternative, we have the same spatial structure,
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M1 = W1 = W0, but the explanatory variable, X02 is replaced by another
that is in general correlated with it, constructed in our experiments as, X12 =
ρxX02 + (1− ρ2x)

1/2 ×N(0, I) for various ρx values, including zero.
Case 2. We implement by having the explanatory variables, X0 and X1, the

same in the two models, but the spatial structures differ, so that W1 6= W0

and/or M1 6=M0; for simplicity we have set, as before, M0 =W0 and M1 =
W1.
Obviously these two cases do not exhaust the possibilities, but it is important

to establish whether or not the procedure can provide good discrimination in
these quite straightforward circumstances before letting it loose on wider model
comparisons.

5.1 The set up

We consider two spatial frameworks, the 26 counties of Ireland, with weight ma-
trix as employed in Cliff and Ord (1973, p. 164), and a set of 200 EU NUTS-2
regions with weight matrixW0 based on a matrix of 1s and 0s denoting contigu-
ous and non-contiguous regions respectively, subsequently normalised so that
rows sum to 1,as used by Fingleton (2007). Under Case 2, the 26 county alter-
native weight matrix, W1, is defined by replacing the non-zero elements of row i
of the correspondingW0 by n

−1
i. the reciprocal of the number of non-zero entries

in the ith row. For the 200 EU regions, with wij = d−2ij for dij ≤ 300km and
dij = 0 otherwise, where dij is the straight line (Euclidean) distance between
regions i and j, W1ij =

wij

j wij
. Thus the tests are being asked to discriminate

between really quite similar weight matrices. For Case 1, we restrict attention
to the original weight matrices, but of course vary the explanatory regressors,
as described further below. For Case 1 we also vary the instrument set, us-
ing r ∈ (0, 1, 2) that is, a minimal, intermediate, and a rich set. In Case 2
only r ∈ (1, 2) is relevant. We will eventually use s = 40000 replications of
each model comparison, using m = 399 bootstrap samples formed as described
above. We report results for a nominal significance level of 5%. With this
number of replications, s = 40000, the standard error of an estimate, π̂, of
a true π equal to 0.05 is 0.001. However, the non-linear nature of the GMM
estimation step means that the algorithm takes significant time to run, and
so in the indicative results reported below we have used either a smaller m
(99) or s (as noted where relevant). Setting the number of simple bootstrap
replications equal to a quite small number, 99, had no detectable effect on test
power. In a non-experimental setting one would of course use a very much
larger number to secure the maximum possible power, as discussed by David-
son and MacKinnon (2000). We have evaluated the J tests at the following
parameter values (ρ0, λ0) ∈ (0.0, 0.3, 0.6, 0.9, 0.95) × (0.0, 0.3, 0.6, 0.9, 0.95) and
set (ρ0, λ0) = (ρ1, λ1) so that empirical significance levels and powers reflect
solely differences between the explanatory variables (Case 1) or weight matrices
(Case 2); in Case 1 the explanatory variables observed for region i, X02i and
X12i (i = 1, ..., n) are drawn from a bivariate Normal distribution with variances
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unity and correlation ρx ∈ (−0.5, 0.0, 0.5, 0.9, 0.95); the shocks are independent
standard Normal, v0 ∼ IIDN(0, In) and similarly v1 in each case. We exper-
imented with other shock distributions, centred χ21, lognormal, and a Student
t with 5 degrees of freedom but found no major differences from the results we
report below. In all cases the W and M matrices have non-negative elements
satisfying wii = 0, mii = 0,

Pj=n
j=1 wij =

Pj=n
j=1 mij = 1, and the real constants

λi and ρi satisfy 0 ≤ |λi|, |ρi| < 1 so the matrices, (I−λiWi) and (I−ρiMi) are
non-singular, i = 0, 1.

5.2 Overall performance using critical values from the rel-
evant Chisquared distributions

We first describe the performance of the two forms of test statistic, which here
have either 1 or 2 degrees of freedom, when referred to critical values from the
relevant χ2 distribution, by which we mean the asymptotic sampling distribution
that the 2 degree-of-freedom test statistic is shown by Kelejian (2008) to have
under the conditions he gives (χ22), and the asymptotic sampling distribution
that the 1 degree-of-freedom test statistic is conjectured to have under similar
but as yet unspecified conditions (χ21).

5.2.1 Case 1

For the small spatial lattice our parameter settings for Case 1 generate 375
sets of empirical size and power estimates. For this reason we first give some
summary results, then describe in more detail the situations in which the tests
run into difficulties. Summary statistics for the small lattice, with sample size,
n = 26, and s = 40, 000 appear in Table 1.

Table 1
Case 1 Small Lattice χ2 Critical Values

Empirical Size r Mean Median Max Min
1d.f. 0 .043 .040 .076 .019
1d.f. 1 .072 .067 .188 .043
1d.f. 2 .092 .079 .251 .053
2d.f. 0 .030 .027 .047 .016
2d.f. 1 .057 .054 .144 .030
2d.f. 2 .072 .063 .205 .043

Empirical Power r Mean Median Max Min
1d.f. 0 .41 .39 .76 .10
1d.f. 1 .58 .51 .87 .31
1d.f. 2 .67 .60 .93 .33
2d.f. 0 .33 .30 .67 .06
2d.f. 1 .53 .53 .80 .21
2d.f. 2 .65 .71 .89 .22
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Looking at the upper panel we see that there are some cases in which the tests
are quite seriously too liberal, and that in both cases empirical size increases
with the number of instruments used. The presence of the very liberal cases
makes it imperative to look more closely at the pattern of test sizes before
drawing any conclusions. It turns out that the majority of empirical sizes are
close to nominal size, while the excessively liberal cases arise for parameter
combinations in which ρx is small or zero, and λ0 = λ1 is also small (0, 0.3
or 0.6). We experimented with estimating a response surface to describe test
size variations, but while it proved relatively easy to account for much of the
variation in empirical size, fitting the extremely liberal cases proved difficult,
most likely because of the influence of the spatial lattice and weight matrix we
are using; we have therefore adopted a slightly different approach. Table 2 lists
the upper 10 and lower 10 order statistics of the sample of empirical sizes of the 1
degree-of-freedom test and the corresponding values of r, ρx, ρ0 and λ0 and Table
3 gives the corresponding information for the 2 degree-of-freedom test, in each
case using the 95% quantiles of the respective Chisquare distribution as critical
values; evidently these are poor approximations to the true 95% quantiles of the
sampling distributions of the J-type statistics for these parameter values and
this particular lattice/weight matrix.

Table 2: Extreme empirical sizes, small lattice, 1 degree-of-freedom test, Case 1
using χ21 critical value, s = 40, 000

using bootstrap critical value, s = 5, 000, m = 99
Upper extreme sizes Lower extreme sizes

χ21 BS r ρx λ0 ρ0 χ21 BS r ρx λ0 ρ0
.251 .09 2 0.0 0.0 .95 .024 n.a. 0 .95 .95 .90
.248 .08 2 0.0 0.0 .90 .024 n.a. 0 .95 .90 .95
.187 .05 2 0.0 0.3 .90 .023 n.a. 0 -.5 .95 .90
.184 .08 1 0.0 0.0 .95 .023 .05 0 -.50 .90 .95
.178 .05 2 0.0 0.3 .95 .022 .05 0 .50 .90 .95
.177 .07 1 0.0 0.0 .90 .021 n.a. 0 .95 .95 .95
.175 n.a. 2 0.0 0.0 .60 .020 n.a. 0 .00 .95 .95
.170 .07 2 0.5 0.0 .95 .020 n.a. 0 .50 .95 .95
.170 .07 2 -0.5 0.0 .95 .019 n.a. 0 -.50 .95 .95
.163 .06 2 0.5 0.0 .90 .019 n.a. 0 .90 .95 .95

Table 3: Extreme empirical sizes, small lattice, 2 degree-of-freedom test, Case 1
using χ22 critical value, s = 40, 000

using bootstrap critical value, s = 5, 000, m = 99
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Upper extreme sizes Lower extreme sizes
χ22 BS r ρx λ0 ρ0 χ22 BS r ρx λ0 ρ0
.202 .09 2 0.0 0.0 0.95 .018 n.a 0 0.95 0.95 0.90
.187 .08 2 0.0 0.0 0.90 .018 n.a 0 0.95 0.90 0.95
.151 .08 2 0.5 0.0 0.95 .018 .05 0 -0.50 0.90 0.95
.151 .08 2 -0.5 0.0 0.95 .018 .05 0 0.50 0.90 0.95
.145 .05 2 0.0 0.3 0.90 .017 n.a 0 0.00 0.95 0.95
.143 .08 1 0.0 0.0 0.95 .017 n.a 0 0.50 0.95 0.95
.142 .07 2 0.5 0.0 0.90 .016 n.a 0 -0.50 0.95 0.90
.142 .05 2 0.0 0.3 0.95 .016 n.a 0 0.95 0.95 0.95
.136 .08 2 -0.5 0.0 0.90 .016 n.a 0 -0.50 0.95 0.95
.132 .07 1 0.0 0.0 0.90 .016 n.a 0 0.90 0.95 0.95

For the larger lattice, with sample size, n = 200, we find the corresponding
results in Tables 4 and 5. Again, this is one particular lattice and weight matrix,
but the overall pattern is quite similar to that observed for the smaller lattice,
except that the most liberal cases are now much worse.

Table 4: Extreme empirical sizes, n = 200 lattice, 1 degree-of-freedom test,
Case 1

using χ21 critical value, s = 40, 000
using bootstrap critical value, s = 3, 000, m = 99

Upper extreme sizes Lower extreme sizes
χ21 BS r ρx λ0 ρ0 χ21 BS r ρx λ0 ρ0
.639 .45 2 0.0 0.0 0.95 .030 .045 0 -0.5 .90 .90
.557 .41 2 0.0 0.3 0.95 .030 n.a. 0 -0.5 .95 .90
.507 .37 1 0.0 0.0 0.95 .030 n.a. 0 0.5 .90 .90
.467 .30 2 0.0 0.0 0.90 .029 n.a. 0 0.0 .95 .90
.440 .35 1 0.0 0.3 0.95 .046 n.a. 0 -0.5 .90 .95
.410 .29 2 0.0 0.3 0.90 .028 n.a. 0 -0.5 .95 .95
.352 .23 1 0.0 0.0 0.90 .028 n.a. 0 0.0 .90 .95
.342 .27 2 -0.5 0.0 0.95 .028 n.a. 0 0.0 .95 .95
.322 .28 2 0.5 0.0 0.95 .027 n.a. 0 0.5 .90 .95
.313 .22 1 0.0 0.3 0.90 .027 n.a. 0 0.5 .95 .95

Table 5: Extreme empirical sizes, n = 200 lattice, 2 degree-of-freedom test,
Case 1

using χ22 critical value, s = 40, 000
using bootstrap critical value, s = 3, 000, m = 99
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Upper extreme sizes Lower extreme sizes
χ22 BS r ρx λ0 ρ0 χ22 BS r ρx λ0 ρ0
.598 .47 2 0.0 0.0 .95 .024 n.a. 0 0.9 .95 0.90
.510 .40 2 -0.5 0.0 .95 .023 n.a. 0 -0.5 .90 0.95
.500 .41 2 0.0 0.3 .95 .023 n.a. 0 -0.5 .95 0.95
.486 .41 2 0.5 0.0 .95 .023 n.a. 0 0.0 .90 0.95
.470 .38 1 0.0 0.0 .95 .023 n.a. 0 0.5 .95 0.90
.410 .35 2 -0.5 0.3 .95 .023 n.a. 0 0.95 .90 0.95
.410 .34 2 0.0 0.0 .90 .023 n.a. 0 0.95 .95 0.95
.403 .34 2 0.5 0.3 .95 .022 n.a. 0 0.5 .95 0.95
.402 .34 1 -0.5 0.0 .95 .022 n.a. 0 0.9 .90 0.95
.400 .34 1 0.5 0.0 .95 .021 n.a. 0 0.9 .95 0.95

The upper extreme sizes in Tables 4 and 5 are much more liberal than is
the case for the smaller sample size, suggesting the possibility that the test
statistics may not in fact have limiting Chisquare distributions for these cases.
For this to be so, at least one of the conditions introduced by Kelejian must
be violated, of course. We conjecture that the answer is to be found in the
analysis of Davidson and MacKinnon (2002a) described above. The key feature
of our excessively liberal cases is that both ρx and λ0 are small while ρ0 is large;
together, these parameter values act to keep us close to the exact condition,
||θ|| = 0, studied by Davidson and MacKinnon, and, if maintained while the
sample size increases without limit, the condition, ρx = 0 would also violate
Kelejian’s Assumption A6(b). Of course, the J-type tests we are implementing
lack the exact representation that Davidson and MacKinnon studied, and so
the implications of the condition, ||θ|| = 0, must be taken as at best indicative
pending further analysis.

5.2.2 Case 2

Tables 6a and 6b are based on 3000 replications of the same ρ and λ combinations
as were used in Tables 1a and 1b, with the same explanatory variable in both
null and alternative models, that is, a single draw from the n-dimensional IID
N(0, I) distribution for each replication, but with the weight matrices differing
as described above. It is evident that the test performs quite poorly here.

Table 6a
Case 2 n = 26. χ2 Critical Values
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Empirical Size r Mean Median Max Min
1d.f. 1 .08 .07 .19 .04
1d.f. 2 .09 .08 .19 .05
2d.f. 1 .10 .10 .14 .06
2d.f. 2 .09 .07 .21 .04

Empirical Power r Mean Median Max Min
1d.f. 1 .05 .04 .08 .03
1d.f. 2 .13 .15 .17 .07
2d.f. 1 .04 .04 .06 .03
2d.f. 2 .09 .09 .16 .05

Table 6b
Case 2 n = 200. χ2 Critical Values

Empirical Size r Mean Median Max Min
1d.f. 1 .13 .05 .43 .04
1d.f. 2 .13 .06 .42 .04
2d.f. 1 .13 .08 .36 .04
2d.f. 2 .15 .07 .48 .04

Empirical Power r Mean Median Max Min
1d.f. 1 .09 .09 .18 .04
1d.f. 2 .23 .23 .40 .05
2d.f. 1 .07 .06 .13 .03
2d.f. 2 .20 .16 .42 .04

Even for the larger sample size, the tests appear to be biased at many para-
meter combinations. As yet we have no full explanation for this, but replacing
H01,r in the augmented instrument set, (10), by H1,r dramatically improves
performance, as illustrated for thesample size, n = 26 in Table 6c and for sam-
ple size, n = 200, in Table 6d. Subsequent tables and discussion are therefore
based on the use of H1,r.

Table 6c
Case 2 n = 26. χ2 Critical Values

Use of H1,r in place of H01,r in augmented instrument set
Empirical Size r Mean Median Max Min

1d.f. 1 .06 .06 .10 .04
1d.f. 2 .08 .08 .13 .05
2d.f. 1 .06 .05 .11 .04
2d.f. 2 .07 .07 .13 .04

Empirical Power r Mean Median Max Min
1d.f. 1 .21 .22 .33 .06
1d.f. 2 .32 .33 .50 .08
2d.f. 1 .15 .15 .23 .05
2d.f. 2 .26 .26 .43 .07

Table 6d
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Case 2 n = 200. χ2 Critical Values
Use of H1,r in place of H01,r in augmented instrument set

Empirical Size r Mean Median Max Min
1d.f. 1 .08 .05 .23 .04
1d.f. 2 .09 .06 .28 .03
2d.f. 1 .10 .05 .34 .04
2d.f. 2 .11 .06 .38 .04

Empirical Power r Mean Median Max Min
1d.f. 1 .45 .44 .97 .05
1d.f. 2 .53 .57 .99 .06
2d.f. 1 .47 .50 .96 .05
2d.f. 2 .56 .67 .97 .06

Now let’s turn to the extreme cases. Because the regressor is the same under
null and alternative, these no longer arise from the same source as in Case 1. The
upper and lower 10 empirical significance levels for the sample of size n = 26
are given in Tables 7 and 8 (in these tables λ0 = λ1 ∈ (0.0, 0.3, 0.6, 0.9, .95),
while ρ0 = ρ1 ∈ (0.0, 0.3, 0.6, 0.9, 0.95)). Similarly, the upper and lower 10
empirical significance levels for the sample of size n = 200 are given in Ta-
bles 9 and 10 (in these tables λ0 = λ1 ∈ (0.0, 0.3, 0.6, 0.9), while ρ0 = ρ1 ∈
(0.0, 0.3, 0.6, 0.9, 0.95)). It is notable that the size distortions of the asymptotic
tests are much smaller than for Case 1; however, it remains true that such dis-
tortions are greater for the larger sample size, which is unexpected. Of course,
the particular weight matrices used play a part here, but in each case the pat-
tern is similar, with the tests being liberal when λ is small and ρ large, and
more-or-less correctly sized when λ is large, or when both λ and ρ are small.
For the smaller sample the empirical sizes of the 1 and 2 d.f. tests are similar,
while the 2 d.f. tests are more liberal for the larger sample.

Table 7: Extreme empirical sizes, n = 26 lattice, 1 degree-of-freedom test,
Case 2

Upper extreme sizes Lower extreme sizes
χ21 BS r λ0 ρ0 χ21 BS r λ0 ρ0
.13 .09 2 0.0 .95 .05 .05 1 .90 0.6
.11 .08 2 0.0 .90 .05 .05 1 .90 0.0
.11 .09 2 0.3 .95 .05 .05 1 .90 0.3
.10 .08 2 0.3 .90 .05 .05 1 .95 0.6
.10 .09 1 0.0 .95 .04 .06 1 .95 0.9
.10 .08 1 0.0 .90 .04 .05 1 .95 0.3
.09 .08 1 0.3 .95 .04 .05 1 .90 .95
.09 .08 1 0.3 .90 .04 .05 1 .95 0.0
.09 .07 2 0.6 .90 .04 .05 1 .90 0.9
.09 .06 2 0.3 .60 .04 .05 1 .95 .95

Table 8: Extreme empirical sizes, n = 26 lattice, 2 degree-of-freedom test,
Case 2
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Upper extreme sizes Lower extreme sizes
χ22 BS r λ0 ρ0 χ22 BS r λ0 ρ0
.13 .10 2 0.0 .95 .04 .04 2 .90 0.0
.12 .10 2 0.0 .90 .04 .06 1 .95 .90
.11 .11 1 0.0 .95 .04 .06 1 .90 .90
.11 .10 1 0.0 .90 .04 .06 1 .90 .95
.11 .09 2 0.3 .95 .04 .05 2 .95 0.0
.11 .09 2 0.3 .90 .04 .05 1 .90 .30
.10 .10 1 0.3 .95 .04 .05 1 .95 0.0
.09 .09 1 0.3 .90 .04 .05 1 .95 .95
.08 .06 2 0.0 .60 .04 .05 1 .95 .60
.08 .06 2 0.3 .60 .04 .04 1 .95 .30

Table 9: Extreme empirical sizes, n = 200 lattice, 1 degree-of-freedom test,
Case 2

Upper extreme sizes Lower extreme sizes
χ21 BS r λ0 ρ0 χ21 BS r λ0 ρ0
.28 .23 2 0.0 .95 .05 .05 1 0.6 0.0
.23 .20 1 0.0 .95 .05 .04 2 0.0 0.6
.22 .18 2 0.3 .95 .05 .05 1 0.9 0.3
.20 .17 1 0.3 .95 .05 .05 1 0.9 0.6
.18 .15 2 0.3 .90 .04 .05 2 0.9 0.9
.17 .14 2 0.0 .90 .04 .05 1 0.9 0.0
.14 .13 1 0.3 .90 .04 .05 1 0.9 0.9
.14 .12 1 0.0 .90 .04 .05 1 0.9 .95
.12 .11 1 0.6 .95 .04 .04 2 0.9 0.6
.11 .10 2 0.6 .90 .03 .05 2 0.9 .95

Table 10: Extreme empirical sizes, n = 200 lattice, 2 degree-of-freedom test,
Case 2

Upper extreme sizes Lower extreme sizes
χ22 BS r λ0 ρ0 χ22 BS r λ0 ρ0
.38 .31 2 0.0 .95 .05 .05 1 0.6 0.6
.34 .29 1 0.0 .95 .05 .05 1 0.3 0.0
.29 .24 2 0.3 .95 .05 .05 1 0.9 0.6
.28 .25 1 0.3 .95 .05 .05 1 0.3 0.6
.26 .20 2 0.0 .90 .05 .05 1 0.9 0.3
.23 .18 2 0.3 .90 .04 .06 2 0.9 0.9
.22 .19 1 0.0 .90 .04 .04 2 0.9 0.6
.20 .18 1 0.3 .90 .04 .05 1 0.9 0.9
.14 .14 2 0.6 .95 .04 .05 2 0.9 .95
.14 .14 1 0.6 .95 .04 .05 1 0.9 .95
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5.3 Overall performance of the simple bootstrap

5.3.1 Case 1

Notice immediately from the second columns of Tables 2-5 that the simple boot-
strap tests have sizes much closer to nominal 5% than do either of the asymptotic
tests in the cases in which the latter are too liberal. Elsewhere in the parameter
space, when the asymptotic tests are closer to their nominal sizes we still find
the bootstrap empirical sizes are often closer to the nominal values, though not
uniformly so. With better size control comes a reduction in empirical power,
but if we restrict attention to cases in which empirical size is close to nominal
size, there is no loss of power associated with the bootstrap as shown in the
figures (see presentation). However, the simple bootstrap does not control test
size everywhere in the parameter space, and so some refinement is required.

5.3.2 Case 2

That the simple bootstrap is superior to the asymptotic tests in this setting
is not obvious from the rather marginal improvements visible in Tables 7 - 10.
However, we anticipate that a refinement could prove effective here also.

5.4 Power of 1 vs 2 degree-of-freedom tests

See figures to be presented at the meeting

5.5 Choice of instruments

See figures to be presented at the meeting

5.6 Implementation problems associated with the boot-
strap

Because the parametric bootstrap resampling scheme requires both [I−ρ̂0M0]
and [I− λ̂0W0] to be non-singular, we need to respond appropriately when
one or other of these conditions fails. We have considered three approaches in
the experiments, (i) discard the sample, and ignore the effect of doing so on
estimated test size or power, (ii) constrain ρ̂ to lie in a suitable interval, such
as [−.97,+.97], and similarly constrain λ̂ so that the matrix, [I− λ̂0W0] was
never singular, (iii) discard the sample but record it as a failure to reject the
null hypothesis, thus lowering the reported empirical power of the bootstrap
test. The second approach has the merit that it leads to a test outcome on each
sample, which is what the user cares about. We found that the estimator of λ̂0
was very badly behaved, and so the values at the end of the range were often
imposed, even when the true value was zero. This seems an obvious area for
improvement, and seems to be the reason why the fast double bootstrap will
not solve the size-distortion problem in the present setting.
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In each of Cases 1 and 2, we believe the performance of the J tests would
most likely improve if better estimators are developed, particularly of λ. It is
possible that quasi-maximum likelihood estimators would be more robust here,
but we have no evidence as yet.

6 Conclusions
We have experimented with the J type tests introduced by Kelejian (2008)
only in rather limited cases, namely a single alternative model, so g = 1, and a
single non-constant explanatory variable, and either different weight matrices or
different regressors, but not both. The weights were taken from real examples
that have been used in empirical research. The tests are clearly subject to
implementation problems that are not entirely eliminated by use of a simple
bootstrap resampling procedure, and merit further study.
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Appendix
We now list the assumptions, adapted from Kelejian (2008 Appendix A) to

the case of a single alternative model..
A.1 All diagonal elements of the spatial weight matrices, Wi and Mi are

zero, i = 0, 1.
A.2 The matrices (I−λW0) and (I−ρM0) are non-singular for all |λ| < 1

and |ρ| < 1.
A.2a The matrices (I−λW1) and (I−ρM1) are non-singular for all |λ| < 1

and |ρ| < 1.
A.3 The row and column sums of the matricesW0M0W1M1 (I−λW0)

−1

and (I−ρM0)
−1 are bounded uniformly in absolute value.

A.4 The regressor matrices, X0 and X1 have full column rank for large
enough n and their elements are uniformly bounded in absolute value.
A.5 The vector v0 has elements that are independently and identically dis-

tributed with mean 0 variance σ20 and finite fourth moment.
A.6 The following limiting sample second moment matrices exist and are

finite and non-singular:
(i) QH0rH0r = limn→∞ n−1H0

0,rH0,r

(ii) QH1rH1r = limn→∞ n−1H0
1,rH1,r

(iii) QH∗∗r H∗∗r = limn→∞ n−1H∗∗0r H∗∗r
The following exist and are finite
(iv) QH0rZ0 = p limn→∞ n−1H0

0,rZ0
(v) QH1rZ1 = p limn→∞ n−1H0

1,rZ1
(vi) QH1rZ0 = p limn→∞ n−1H0

1,rZ0
(vii) QH0rM0Z0 = p limn→∞ n−1H0

0,rM0Z0
(viii) QH∗∗r Z†∗ = limn→∞ n−1H∗∗0r Z†∗

where Z†∗r = [(I−ρM0)Z0
...Z1φ1r

...M1Z1φ1r]
in which
φ1r = p limn→∞ γ̂1r = [Q

0
H1rZ1

Q−1H1rH1r
QH1rZ1 ]

−1Q0
H1rZ1

Q−1H1rH1r
QH1rZ0γ

and QH0rZ0 QH1rZ1 QH∗∗r Z†∗ and QH0rM0Z0 have full column rank.
It is further assumed that the matrix,
QH0rZ0 − ρQH0rM0Z0 = p limn−1H0

0,r(I−ρM0)Z0
has full column rank for all |ρ| < 1.
(ix) ΦH = limn→∞ n−1H0

0,r(I−ρM0)
−1(I−ρM0

0)
−1H0,r

and ΦH∗∗r = limn→∞ n−1H0∗∗
r (I−ρM0)

−1(I−ρM0
0)
−1H∗∗r

are finite and nonsingular for all |ρ| < 1.
A.7 The smallest eigenvalue of the matrix, Γ0Γ is bounded away from zero,

where Γ =E{n−1G}. The matrix, G is as defined in the discussion of the non-
linear GMM estimator of ρ.
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