
Spatial structures in spatial autoregressive models and

one-directional adjacency matrices

Takahisa YOKOI: Tohoku University, Japan

Asao ANDO: Tohoku University, Japan

In the context of spatial econometrics, we propose a new idea, the specification
of one directional effects, not mutual dependencies, and try to utilize this
concept in a land price model. Spatial (or network) interdependency should
exist almost everywhere in the real world. We rarely use econometric models
with spatial autoregressive structures, however. Using an empirical study
(maximum likelihood estimations of a spatial autoregressive model of land
price data in Miyagi Prefecture, Japan), we show that the spatial dependencies
may not be recognized if we assume that such dependencies are reciprocal.
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1 Introduction

Spatial autoregressive models, which were applications of time-series models at first, are

with some modeling of spatial (network) covariance structure, which is often neglected.

We generally assume mutual interdependencies in a spatial autoregressive model. In some

cases, it is rather natural to think there are only one-directional dependencies, not mutual

dependencies. Some researches, land price spillover model Ando and Uchida (2004) for an

example, adopted concepts similar to one-directional dependencies. In this paper, we first

categorize adjacency matrices which were used in existing researches. We then propose

a new idea, specifications of one directional effect, not mutual dependencies and try to
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utilize the concept to a land price model. Using an empirical study (maximum likelihood

estimations of a spatial autoregressive model of land price data in Miyagi Prefecture,

Japan), we show that the spatial dependencies may not be recognized if we assume that

such dependencies are reciprocal.

2 Spatial autoregressive models and spatial adjacency

matrices

2.1 One-directional adjacency matrices

There is an implicit assumption that the interdependency is mutual. Anselin and Bera

(1998, p.245) pointed out that,

While no inherently invalidating estimation or testing procedures, the uncon-

nected observations imply a loss of degrees of freedom, since, for all practical

purposes, they are eliminated from consideration in any “spatial” model.

The model becomes just an ordinal regression model, because the isolated sample have

no effects on others.

We think it is natural to assume that some of sample affect others and are not be af-

fected. For example, the land price in the CBD of a large metropolitan area is determined

independently and these of other area of the metropolitan area depend on that of CBD.

Rincke (2006) pointed out possibilities of such relationships.

We apply this idea of one-directional influence on a land price model. Land prices

are determined mainly by the location attributes. Other important factor is the prices

in surrounding areas. Speculations determine some part of land prices. Forecasts of the

price of land will receive big influences from prices of land in neighborhood. However, if a

price of land is relatively low, it may be disregarded as a judging material of the forecast.
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Figure 1: Land price interaction and it’s threshold h

We introduce a simple economic model of land prices. There are n locations. We

assume interdependency in land prices of the locations ȳi. We also assume there is a

threshold h in the interdependency. The influence on location i from location j exists if

the relative price of j (ȳj/ȳi) is higher than h.

3 An empirical application

In this section, we utilize the idea of one-directional adjacency matrices to an example of

empirical analysis, a land price model in a Japanese region (Miyagi prefecture in north-east
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part of Japan). We assume land prices are determined by two aspects. The first aspect

represents real economy attributes, floor-area-ratio for example. The second represents

psychological or speculative one, land prices in neighboring areas. It is more natural to

assume that the land price in a location is affected not by every price in surrounding

area, but only by higher prices. We assume that the relative price in the previous year

determines whether there is influence from one location to another. Land prices in the

previous year are exogenous variables.

3.1 Data and model

We use land price notification statistics provided by Japanese national government (http:

//nlftp.mlit.go.jp/ksj/). Explained variables are notified housing land price in Miyagi

prefecture at 2005. 452 locations, whose data for both 2004 and 2005 are available, are

chosen as our sample. We employ following variables for each location i.

yi: Notified housing land prices at 2005 (Yen/m2)

ȳi: Notified housing land prices at 2004 (Yen/m2)

xi1 = 1: Constant term

xi2: Distance from the prefectural center (m)

xi3: Distance from the nearest railroad station (m)

xi4: Upper limit of floor-area-ratio (%)

xi5: Dummy variable of gas supply

Descriptive statistics for each variable are shown in Table 1.

Our spatial autoregressive model is represented in matrix form as,

y = ρWy + Xβ + ε, ε ∼ IIN(0,σ2). (1)
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Table 1: Descriptive statistics

Variable Mean S.D. Min Max Unit

yi Land price at 2005 56760 28390 4000 183000 Yen/m2

ȳi Land price at 2004 60482 29576 4100 188000 Yen/m2

xi2 Distance from the prefectural center 18120 19800 0 101300 m

xi3 Distance from the nearest station 2982 4115 90 36600 m

xi4 Floor-area-ratio 162.8 58.86 60 400 %

xi5 Gas supply 0.677 0.4681 0 1

The Log likelihood function is derived as

Ay = Xβ + ε, A = I − ρW , (2)

L = −n

2
log(2π) + log |detA|− n

2
log σ2 − 1

2σ2

∑
(Ay − Xβ)′ (Ay − Xβ). (3)

3.2 Specification of W

We adopt an inverse-distance matrix as the spatial adjacency matrix W and its elements

wij are calculated by following equations (α > 0, i, j = 1, · · · , N).

w1ij =






1
/
dα

ij if i #= j

0 otherwise

(4)

w0ij = w1ij

/
N∑

k=1

w1ik (5)

wij =






w0ij if i #= j, ȳj/ȳi ≥ h and dij < 40km

0 otherwise

(6)

dij is the distance between location i and j. α is a parameter for the distance decay. h

is a threshold parameter of land price influences. Equation(4) represents the assumption

that magnitudes of influence between two areas depend on their distances. Equation(5)

represents the assumption that the total amount of influence one area received is fixed.
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Table 2: Estimation results(α = 0.5)

theMaxDistance = 40* 1000;

results20090501Max40km =

Table@

Table@

Print@"alpha = ", theAlpha, "\t", "h = ", hD;

"LandPrice H17 Miyagi Housing" êê

numericalMLEstimation@vY@#D, mXWithConstantTerm = mX@#D êê HPrepend@#, 1D & êü #L &,

mXWithConstantTerm êê Dimensions êê #@@2DD & êê Array@beta, #D &, rho,

mW1@theAlpha, h, theMaxDistanceD, 0, mW1@theAlpha, h, theMaxDistanceD, sigma2D & êê

Join@8"alpha" Ø theAlpha, "h" Ø h<, # êê shallowNormalizeD & êê Shallow,

8h, 0, 2, 1 ê 4<

D,

8theAlpha, 1 ê 2, 2, 1 ê2<

D;

Save@dataFileFullPath, 8results20090501Max40km<D

H8"alpha", "h", numericalMLEstimationResult@"Likelihood"D,

numericalMLEstimationResult@"Estimator Table"D< ê.

Map@shallowNormalize, results20090501Max40km, 82<DL êê oneWSummary;

8!,a,h<*=9-4444.71, 1
ÅÅÅÅ
2
,

5
ÅÅÅÅ
4
=

a h ! r s2 b1 b2 b3 b4 b5

0.5 0. -4931.79 0.00127517 3.51366µ 108 38023.1 -0.66706 -1.25435 127.512 20292.5

H0.00643L H15.03L H2.495L H-4.569L H-5.624L H7.891L H7.8L
0.5 0.25 -4918.04 0.696549 3.2917µ 108 -10766.5 -0.230505 -0.949157 130.858 18738.5

H5.736L H15.03L H-1.123L H-2.302L H-4.322L H8.366L H7.805L
0.5 0.5 -4840.52 0.996932 2.32227µ 108 -11930.4 -0.0892403 -0.0112522 99.6394 7907.73

H22.06L H15.03L H-2.585L H-1.475L H-0.05772L H7.571L H3.764L
0.5 0.75 -4704.13 1.1225 1.27708µ 108 15995.2 -0.177404 0.0110566 29.9112 -422.042

H33.08L H15.03L H6.337L H-4.563L H0.07836L H2.899L H-0.2548L
0.5 1. -4542.29 1.28818 6.27012µ 107 37126. -0.321311 -0.278352 -3.18277 -1008.07

H46.14L H15.03L H21.98L H-12.71L H-2.887L H-0.4297L H-0.886L
0.5 1.25 -4444.71 1.58306 4.07156µ 107 45445.7 -0.410882 -0.539491 -3.67978 2927.76

H58.47L H15.03L H33.3L H-20.52L H-7.011L H-0.6201L H3.289L
0.5 1.5 -4496.6 1.93625 5.12255µ 107 46977.5 -0.481577 -0.715901 14.8825 6919.23

H52.22L H15.03L H30.64L H-21.65L H-8.335L H2.27L H7.05L
0.5 1.75 -4591.74 2.38825 7.8039µ 107 46254.5 -0.523631 -0.840652 33.3742 10449.9

H41.56L H15.03L H24.43L H-19.15L H-7.953L H4.164L H8.731L
0.5 2. -4661.02 2.88121 1.0603µ 108 45012.5 -0.563357 -0.913729 51.4696 12736.7

H34.77L H15.03L H20.42L H-17.73L H-7.428L H5.578L H9.209L

0 0.5 1 1.5 2
h

-4900

-4800

-4700

-4600

-4500

!

a=0.5

sea_estimation_090525.nb 6

Note：Numbers in parentheses are t values.

In Equation(6), the threshold of relative price determines there is influence or not in each

pair. Please notice that row totals of W may be 0 in some cases. But row totals of the

matrix A = I − ρW are always non-zero.

3.3 Estimation results

We estimate our empirical model with the maximum likelihood method. 1 Although α

is fixed at 0.5, we examine several values of threshold h, 0 through 2. In other words,

we estimate several empirical models for each W . Table 2 shows the log-likelihood and

estimators for each W (h). Each row corresponds to a different value of h. Please pay

your attention to two cases, every pairs have a interdependent relationship (h = 0) and

locations are affected only by the location where land prices are at least same level (h = 1).

The former, h = 0, is widely assumed implicitly in the literature. In our result, the latter,

1 See Anselin (1988) for the derivation of the estimated covariance matrix here.
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theMaxDistance = 40* 1000;

results20090501Max40km =

Table@

Table@

Print@"alpha = ", theAlpha, "\t", "h = ", hD;

"LandPrice H17 Miyagi Housing" êê

numericalMLEstimation@vY@#D, mXWithConstantTerm = mX@#D êê HPrepend@#, 1D & êü #L &,

mXWithConstantTerm êê Dimensions êê #@@2DD & êê Array@beta, #D &, rho,

mW1@theAlpha, h, theMaxDistanceD, 0, mW1@theAlpha, h, theMaxDistanceD, sigma2D & êê

Join@8"alpha" Ø theAlpha, "h" Ø h<, # êê shallowNormalizeD & êê Shallow,

8h, 0, 2, 1 ê 4<

D,

8theAlpha, 1 ê 2, 2, 1 ê2<

D;

Save@dataFileFullPath, 8results20090501Max40km<D

H8"alpha", "h", numericalMLEstimationResult@"Likelihood"D,

numericalMLEstimationResult@"Estimator Table"D< ê.

Map@shallowNormalize, results20090501Max40km, 82<DL êê oneWSummary;

8!,a,h<*=9-4444.71, 1
ÅÅÅÅ
2
,

5
ÅÅÅÅ
4
=

a h ! r s2 b1 b2 b3 b4 b5
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H0.00643L H15.03L H2.495L H-4.569L H-5.624L H7.891L H7.8L
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H5.736L H15.03L H-1.123L H-2.302L H-4.322L H8.366L H7.805L
0.5 0.5 -4840.52 0.996932 2.32227µ 108 -11930.4 -0.0892403 -0.0112522 99.6394 7907.73

H22.06L H15.03L H-2.585L H-1.475L H-0.05772L H7.571L H3.764L
0.5 0.75 -4704.13 1.1225 1.27708µ 108 15995.2 -0.177404 0.0110566 29.9112 -422.042

H33.08L H15.03L H6.337L H-4.563L H0.07836L H2.899L H-0.2548L
0.5 1. -4542.29 1.28818 6.27012µ 107 37126. -0.321311 -0.278352 -3.18277 -1008.07

H46.14L H15.03L H21.98L H-12.71L H-2.887L H-0.4297L H-0.886L
0.5 1.25 -4444.71 1.58306 4.07156µ 107 45445.7 -0.410882 -0.539491 -3.67978 2927.76

H58.47L H15.03L H33.3L H-20.52L H-7.011L H-0.6201L H3.289L
0.5 1.5 -4496.6 1.93625 5.12255µ 107 46977.5 -0.481577 -0.715901 14.8825 6919.23
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0.5 1.75 -4591.74 2.38825 7.8039µ 107 46254.5 -0.523631 -0.840652 33.3742 10449.9

H41.56L H15.03L H24.43L H-19.15L H-7.953L H4.164L H8.731L
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Figure 2: h and log-likelihood

h = 1, is with much higher log-likelihood. Figure 2 depicts the relationship between h

and likelihoods. The log likelihood becomes larger with h until h = 1.25.

There are remarkable differences in estimators of β’s. In the case of a ordinal spatial

weight matrix, h = 0, each coefficients of parameters are significant and have theoretically

correct signs. β2: the coefficient of “distance from the prefectural center” is significantly

negative. β3: the coefficient of “distance from the nearest railroad station” is also

significantly negative. The coefficients of β4: “upper limit of floor-area-ratio” and β5:

“dummy variable of gas supply” are significantly positive. In the case of a one-directional

spatial weight matrix, h > 0, some of β’s are not significant.

It is clear that the significance of ρ, the coeficient of spatial term, depends on h. It is

not significantly non-zero in the case of a ordinal spatial weight matrix, h = 0. But it is

significantly positive for a larger value of h.

This empirical example shows that the implicit assumption of mutual dependency may

be too strong. The explanatory powers of models are larger and results about significances

of parameter become different in cases of a one-directional spatial weight matrix, h > 0.
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4 Conclusion

In the context of spatial econometrics, we propose a new idea, the specification of one

directional effects, not mutual dependencies, and try to utilize this concept in a land

price model. Using an empirical study (maximum likelihood estimations of a spatial

autoregressive model of land price data in Miyagi Prefecture, Japan), we show that the

spatial dependencies may not be recognized if we assume that such dependencies are

reciprocal.
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