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Abstract

We address the problem of prediction in a classical spatial simultaneous au-
toregressive model. The optimality of prediction formulas in non-spatial regression
models is not immediately transposable to the framework of all spatial models. In
the geostatistical literature, much attention has been devoted to this topic, with
the development of the Best Linear Unbiased Prediction formulas. In contrast, in
the spatial econometric literature, the classically used formulas are not always sup-
ported by theoretical optimality results. From the methodological point of view,
we explore the limits of the extension of BLUP formulas in the context of the SAR
models. From an equivalence between SAR and CAR we develop the best prediction
formula and propose a more tractable “almost best” alternative. We consider the
case of in-sample prediction as well as out-of-sample prediction. From an empirical
perspective, we present data-based simulations to compare the efficiency of the most
frequent formulas with the best and almost best predictions.

Very preliminary version

1 Introduction

Whereas prediction is a basic concern in geostatistics (Cressie, 1993), it has not
been paid as much attention in the econometrics literature. Bivand (2002) recog-
nizes the importance of the question: “Prediction for new data ... is a challenge
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for legacy spatial econometric models, raising the question of what a BLUP (best
linear prediction) would look like”. Even though the components of the following
arguments can mostly be found in the literature, nobody seem to have put them
together in this fashion and we will demonstrate that the formulas used for predic-
tion in the main softwares can thus be improved upon substantially. The reason is
the aparent computational burden of these formulae. An example of application of
prediction for new data is the following. Until 1999, the French population census
was exhaustive and realized by the French statistical institute (INSEE) approxi-
mately every ten years. Since 2004, this exhaustive census has been replaced by a
census survey which consists in annual samples and which delivers an up-to-date
information. In particular, the communes with less than 10000 inhabitants at the
1999 census (called small communes) are sampled exhaustively every five year at the
rate of one fifth per year. The sampling design of these small communes is stratified
by region and inside each region, the small communes are partitioned into five rota-
tional groups by using a balanced sample design taking into account some auxiliary
socio-economics variables given by the 1999 census. Between 2004 and 2009, polling
organizations needed an estimate of the population for all the small communes and
of its evolution since the previous complete census of 1999. The population of all
the small communes would not be delivered by the INSEE before 2009 but data sets
containing the population of the two first rotational groups, corresponding to 2004
and 2005, were already known and could be used to predict the population of the
other three rotational groups. In that case, out-of-sample prediction formulae were
necessary for spatial models (see Lesne et al., 2008).

2 A bridge between CAR and SAR

2.1 The CAR-SAR debate

The geostatistics literature favors conditional autoregressive models (CAR) over
simultaneous autoregressive models (SAR) whereas the reverse is true in the econo-
metrics literature. Let us briefly review the arguments on both sides. The stumbling
blocks of this debate are the identifiability problems, the inconsistency of OLS esti-
mation and the modeling of spillovers.

The geostatistics literature raises identifiability issues but we would like to point
out that they are only relevant to models on infinite networks: in the case of a finite
network there is no problem for identification of the coefficients of a SAR model. On
an infinite network equivalent to Zd identification of a CAR model is always possible
but identification of a SAR cannot be done without some constraints if d > 2.
Stochastic models on an infinite network have been studied almost exhaustively by
Guyon (1995). He points out the differences between Z and Zd with d > 2 for the
simultaneous and conditional formulation. In one dimension, any AR model admits
a finite causal equivalent representation and the set of Conditional AR models and
the set of AR models are equal. These two properties are not true when d > 2 and
in particular the set of Conditional AR models is strictly larger than the set of AR
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models. If a Conditional AR model can be identified by properties of its covariance,
this is not the case for the AR and ARMA models if d > 2 because the set of models
with rational spectra is strictly larger than the set of ARMA models in that case.

Concerning the inconsistency of OLS, the method of Ordinary Least Squares
(OLS) is consistent for a CAR model but it is not in the case of a SAR model.
For an infinite network, the consequence of the non-equivalence between AR causal
representation and AR representation also results in the non-consistency of solvin
he solution of the Yule-Walker equations to estimate a non-causal SAR model when
d > 2. In the case of a finite network the inconsistency of OLS remains for a SAR
when it is consistent for a CAR model. This property comes from the fact that in
the case of a SAR (centered and without covariate here) :

Yu =
∑
v

avYv + εu

εu is independent of εv when v 6= u but it is correlated with Yv v 6= u. In the case
of a CAR, the residual εu is correlated with εv but uncorrelated with Yv v 6= u. In
fact the OLS procedure is just a pseudo-likelihood procedure in the Gaussian case.

The spillover effect that economists would like to model is the fact that the
characteristics of a spatial unit may be influenced by random shocks on neighboring
spatial units. The CAR model does not model this effect since in this model the
partial derivatives of the expected value of the dependent variable on a given spatial
unit is independent of the values of the exogenous variables measured on neighboring
(or any other) spatial units. For SAR models, Pace and LeSage (2006) define
measures of this spillover effect through the direct, indirect and total impact.

2.2 CAR representation of a SAR model

On a finite network, since the set of CAR model and SAR model are equal, we
can always transform a SAR model into a CAR model. As we know the expression
of the best predictor in the CAR case, expressing the SAR model into its CAR
representation yields a very simple and efficient way to define a prediction. In the
general gaussian linear model the dependent variable Y

Y ∼ N (µ,Σ) , (1)

has a multivariate Gaussian distribution with mean µ ≡ (µ1, . . . , µn)′ and (n ×
n) variance-covariance matrix Σ. In the case of the CAR model, an additional
assumption is introduced in (1) namely that Σ takes on a special form:

Σ = (I − C)−1M , (2)

where C = (cij), cii = 0; i = 1, . . . , n, and M = diag(τ2
1 , . . . , τ

2
n) are parameters in

the conditional distributions,

Yi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn) ∼ N (µi +
n∑
j=1

cij(Yj − µj), τ2
i ) , (3)
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for i = 1, . . . , n. The {cij} are spatial-dependence parameters and the {τ2
i } are

heteroskedasticity parameters that together satisfy (Besag, 1974):

M−1C is symmetric (symm.) ;

M−1(I − C) is positive-definite (p.d.) .
(4)

The covariates are included in the model linearly through µ = Xβ, where β is
a (p × 1) vector of regression parameters; p < n. It is usual to assume that the
conditional variances τ2

1 , . . . , τ
2
n are known up to a normalizing constant ; that is,

M = Φτ2, where Φ ≡ diag(φ1, . . . , φn) is a known (n× n) diagonal matrix. Usually
C is a function C(γ) of a (q × 1) vector of spatial-dependence parameters γ.
In conclusion, the CAR model is

Y ∼ N (Xβ, (I − C(γ))−1Φτ2). (5)

From (3), it is easy to compute the conditional expectation of Y at a given site
given its values at neighboring sites by

E(Yi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn)) = µi +
n∑
j=1

cij(Yj − µj), (6)

or equivalently in terms of the elements of the precision matrix Q = Σ−1

E(Yi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn)) = µi −
n∑
j=1

qij
qii

(Yj − µj). (7)

Given a spatial weight matrix W , the gaussian SAR model can be written

Y = ρWY +Xβ + ε (8)

or equivalently

Y = (I − ρW )−1Xβ + (I − ρW )−1ε (9)

where ε ∼ N (0, σ2I). The ensuing covariance structure is then given by

Σ = ((I − ρW ′)(I − ρW ))−1σ2 (10)

Note that the corresponding precision matrix is then given by

Q = Σ−1 =
1
σ2

((I − ρW ′)(I − ρW )) (11)

Table 2.2 summarizes the correspondence between these two models and shows how
to make the correspondence.
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Mean Variance matrix Precision matrix
CAR Xβ (I − C(γ))−1Φτ 2 1

τ2 (I − C(γ))Φ−1

SAR (I − ρW )−1Xβ ((I − ρW ′)(I − ρW ))−1σ2 1
σ2 (I − ρW ′)(I − ρW )

3 Best prediction and competitors

In the general linear gaussian model when µ = Xβ, the Gauss Markov theorem
establishes an optimality of the predictor Ŷ T = Xβ̂ where β̂ is the ordinary least
squares estimator.
In the CAR model framework, it is usual to derive from (6) the following best linear
unbiased predictor (see for example Guyon and Gaetan(2008))

Ŷ = µ̂−Diag(Q)−1[Q](Y − µ̂) (12)

where Diag(Q) denotes the diagonal matrix containing the diagonal of Q and [Q] =
Q−Diag(Q).
Using the correspondence summarized in Table 2.2, it is then easy to write the best
predictor in a SAR model as

ŶBP = (I − ρW )−1Xβ̂ −Diag(Q)−1[Q](Y − (I − ρW )−1Xβ̂), (13)

where Q = 1
σ2 (I − ρW ′)(I − ρW ).

Similar arguments were used in LeSage and Pace (2004) but in a different perspec-
tive.

We are mainly concerned by two types of prediction problems: the in-sample and
out-of-sample cases. In the in-sample prediction problem, we have n spatial units
for which we observe the dependent variable Y as well as the independent variables
X and we want to predict the value of Y at the observed sites after fitting the model
(even though we know their values)which is the same as computing the fitted value
of Y . These predicted values can be used to compute a goodness of fit crietrion.
In the out-of-sample case, we have two types of spatial units: the in-sample units
for which we observe the dependent variable YO as well as the independent variable
X0 and the out-of-sample units for which we only observe the independent variable
X0 and we want to predict the variable YO from the knowledge of YS , XS and XO.
These two situations are illustrated in Figures 1 and 2.
In the case of in-sample prediction, we derive from (13) the predictor Ŷ BP

Ŷ BP = Ŷ TC −Diag(Q)−1 × [Q]× (y − Ŷ TC) (14)

with Q = I − ρ̂(W ′ +W ) + ρ̂2W ′W .
We compare this predictor to the one Ŷ TN derived from the trend-signal-noise
representation of the data introduced in Haining (1990) and detailed in Bivand
(2004). Note that this predictor does not have any optimality property.
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Prediction in sample

x,y known
y to predict (x,y, known)
weight used in prediction = 1/10

Prediction out of sample : 1 unobserved site

x,y known
y to predict (x known)
weight used in prediction = 1/10

not used for fitting the model

Figure 1: In and out of sample single prediction problem

Prediction out of sample : more than 1 unobserved site (1st case)

●

●

●

●

x,y known
y unknown, x known
y to predict (x known)
weight used in prediction = 1/7

not used for fitting the model

Prediction out of sample : more than 1 unobserved site (2nd case)

●

●

●

●

x,y known
y unknown, x known
y to predict (x known)
weight used in prediction = 1/10

not used for fitting the model

Figure 2: Out of sample multiple predictions
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Ŷ TN = Xβ̂ + ρ̂WY, (15)

where y is the vector of observed dependent variables which is available in the
in-sample case.

We also compare them with the “trend-corrected” predictor Ŷ TC obtained by
just using the estimated mean, which is the one most often used by practitioners.

Ŷ TC = (I − ρ̂W )−1Xβ̂ (16)

In the case of out-of-sample prediction, we first need to partition the weight matrix
W into

W =
(
WS WSO

WOS WO

)
(17)

where WS is the (n − p) × (n − p) submatrix corresponding to the neighborhood
structure of the (n−p) in-sample sites, WO the p×p submatrix corresponding to the
neighborhood structure of the out-of-sample sites, WOS the p × (n − p) submatrix
indicating the neighbors of the out-of-sample units among the in-sample units and
WSO the (n−p)×p submatrix indicating the neighbors of the in-sample units among
the out-of-sample units.
We assume that there is a unique model corresponding to (8) with a normalized
matrix W for the n observations and that the model driving the subset XS , YS has
the same expression but using submatrix WS renormalized.

For the best prediction, it clear that if (I−ρ̂W ) =
(
A B
C D

)
=
(
In−p − ρ̂WS −ρ̂WSO

−ρ̂WOS Ip − ρ̂WO

)
the best predictor Ŷ BP

O of the out-of-sample units is given by

Ŷ BP
O = Ŷ TC

O −Q−1
O QOS × (YS − Ŷ TC

S ) (18)

with Q = I − ρ̂(W ′ +W ) + ρ̂2W ′W =
(
QS QSO
QOS QO

)
(19)

The computational difficulty of this formula lies in the inversion of the matrix QO
and hence increases with the number of out-of-sample units.

It is clear that the trend-signal-noise predictor Ŷ TN cannot be defined in that
case since it requires the value of Y0 which is unobserved. However one can see that
the trend-corrected strategy can be applied here because the diagonal of the weight
matrix contains zeros and we have

Ŷ TC = (I − ρ̂W )−1β̂X =
(
Ŷ TC
S

Ŷ TC
O

)
(20)

and that

Ŷ TC
O = −(D − CA−1B)−1CA−1XS β̂ + (D − CA−1B)−1XOβ̂ (21)
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4 Almost best prediction

In the out-of-sample prediction problem, the complexity of the computations is very
different depending upon the number of out-of-sample units to predict. In the case
of a single out-of-sample unit to predict, the formulas are quite easy to implement,
even for the best strategy. When formulas will be applied simultaneously to the p
out-of-sample units we will call the strategy M1. Taking advantage of this fact, if p
out-of-sample units have to be predicted, we introduce a new strategy M2 consisting
in applying the single “out-of-sample unit to predict” formula to each of the out-of-
sample unit separately, ignoring at this stage the remaining p− 1 units. Note that
strategy M2 can be applied to the trend corrected Ŷ TC and best Ŷ BP predictors
but not to the trend-signal-noise one Ŷ TS .

5 Comparing the predictors

5.1 Simulation framework

In order to compare the different predictors, we design a simulation study. We use
the Midi-Pyrénées region divided into n = 283 cantons for our study region. We
construct a weight matrix W using the 10 nearest neighbors scheme (distance is
based on the distance between centroids of the cantons).

We simulate three explanatory variables as follows:

• X1 ∼ N (15, 3)

• X2 ∼ B(100, 0.45)/100

• X3 ∼ log(U[0,283])

We use the following spatial autoregressive regression model to generate the depen-
dent variable

Y = (I − ρW )−1(β0 + β1X1 + β2X2 + β3X3 + ε) where ε ∼ N (0, σ2) (22)

The vector of parameters β is fixed to the value β = (0, 1/4, 6, 1) whereas ρ and σ
take a range of values. Some draws are mapped in Figures 3 and 4.

5.2 In sample comparison

For each choice of ρ and σ, we draw 500 samples of the model and we compute the
maximum likelihood estimates of the parameters and the corresponding predictions.

We use the total mean square error of prediction MSEk =
1
n

n∑
i

(yi−Y k
i )2 for each

method k = TS, TC,BP to compare the quality of the predictors. Note that this
criterion includes the statistical error due to parameter estimation.

8



Figure 3: Map of simulated Y for different ρ and σ = 1

Figure 4: Map of simulated Y for different σ and ρ = 0.5
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5.2.1 Results as ρ varies for fixed σ

Table 5.2.1 reports the mean and standard error of the mean square error of predic-
tion for σ = 1 and ρ = (0.05, 0.2, 0.35, 0.65, 0.8, 0.9). We see that the variances are
stable across the different ρ. The means tend to increase as ρ increases for formula
TC, to be stable for formula TS and to decrease for formula BP. Figure 5 displays

¯MSETS se(MSETS) ¯MSETC se(MSETC) ¯MSEBP se(MSEBP )
ρ = 0.05 0.9720 0.0833 0.9754 0.0838 0.9707 0.0832
ρ = 0.2 0.9884 0.0835 1.0006 0.0852 0.9850 0.0832
ρ = 0.35 0.9756 0.0841 1.0192 0.0896 0.9646 0.0847
ρ = 0.5 0.9814 0.0803 1.0890 0.1039 0.9597 0.0799
ρ = 0.65 0.9883 0.0799 1.2531 0.1450 0.9494 0.0790
ρ = 0.8 0.9871 0.0848 1.6571 0.2738 0.9308 0.0844
ρ = 0.9 0.9878 0.0812 2.8981 0.9635 0.9152 0.0784

the whole distribution of these mean square errors and we see that formula TC
performs very poorly whereas formula TS is almost as good as formula BP.

5.2.2 Results as σ varies for fixed ρ

Table 5.2.2 reports the mean and standard error of the mean square error of pre-
diction for ρ = 0.5 and σ = (1, 5, 10, 15) and shows a stability of the results across
the variance levels. The same hierarchy between the three estimators is observed.

¯MEQTS se(MSETS) ¯MSETC se(MSETC) ¯MSEBP se(MEQBP )
σ = 1 0.9814 0.0803 1.0890 0.1039 0.9597 0.0799
σ = 5 0.9840 0.0854 1.0948 0.1083 0.9612 0.0855
σ = 10 0.9863 0.0864 1.0988 0.1092 0.9632 0.0853
σ = 15 0.9847 0.0844 1.0946 0.1045 0.9616 0.0837

5.3 Out of sample comparison

We now consider the out-of-sample prediction problem. To evaluate the performance
of the different predictors, we use the same model as before to generate the samples
and compute the predictive mean-square error score as follows. The number of
replications is smaller than before (100 instead of 500) due to the length of the
ensuing computations. We distinguish between the case when there is only one
point to predict and the case of several points.
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Figure 5: Boxplots of the mean square error of prediction for different values of ρ and
σ = 1
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5.4 Case of a single prediction

For each spatial unit i, we fit a sub-model of model (22) on the sample deprived from
sample unit i. Note that there is a unique weight matrix W for the n spatial unit
and we use the submatrix of dimension n− 1× n− 1 obtained by deleting row and
column i from W for fitting the sub-model. We then predict the value of Yi from the
knowledge of the corresponding explanatory variables using the formulas of section

3. The predictive mean-square error score is then PMSEk =
1
n

n∑
i

(yi − Y k
i )2 for

each method k = TS, TC,BP Note that this score is comparable to a leave-one-out
cross-validation score in a model selection procedure. Here we use it in a different
perspective to evaluate the average ability of the model to predict a unique point.

5.4.1 Results as ρ varies for fixed σ

Table 5.4.1 reports the empirical mean and standard error of the PMSE criterion for
σ = 1 and ρ = (0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.9). Figure ?? summarizes the boxplots
of the corresponding criterion across replications for each set of parameters.

The mean and standard deviations of the PMSE criterion are stable across the
values of the parameter ρ, for formula TS whereas they increase for formula TC and
decrease for formula BP. Formula TC becomes very bad for large values of ρ and
the gap between TS and BP gets larger as ρ increases. The efficiency of formula TS
with respect to formula BP decreases to 0.953 for ρ = 0.9 and that of formula TC
goes down as low as 0.2.

¯PMSETS se(PMSETS) ¯PMSETC se(PMSETC) ¯PMSEBP se(PMSEBP )
ρ = 0.05 1.0152 0.0862 1.0148 0.0857 1.0177 0.0871
ρ = 0.2 1.0061 0.0838 1.0182 0.0859 1.0046 0.0856
ρ = 0.35 1.0067 0.0798 1.0529 0.0891 0.9970 0.0806
ρ = 0.5 1.0251 0.0878 1.1445 0.1152 1.0029 0.0901
ρ = 0.65 1.0132 0.0842 1.3096 0.1576 0.9764 0.0855
ρ = 0.8 1.0011 0.0767 1.9147 0.3801 0.9514 0.0803
ρ = 0.9 1.0066 0.0872 5.1272 1.4629 0.9594 0.0971

5.4.2 Results as σ varies for fixed ρ

Table 5.4.2 reports the empirical mean and standard error of the PMSE criterion
for ρ = 0.5 and σ = (1, 5, 10, 15). Figure 7 summarizes the boxplots of the corre-
sponding criterion across replications for each set of parameters. The efficiency of
formula TS with respect to formula BP is stable no matter σ and is around 0.98.
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Figure 6: Parallel boxplots of PMSE criterion across replications for σ = 1 and different
values of ρ.
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Figure 7: Parallel boxplots of PMSE criterion across replications for ρ = 0.51 and different
values of σ
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¯PMSETS se(PMSETS) ¯PMSETC se(PMSETC) ¯PMSEBP se(PMSEBP )
σ = 1 1.0251 0.0878 1.1445 0.1152 1.0029 0.0901
σ = 5 1.0276 0.0815 1.1401 0.1035 1.0029 0.0814
σ = 10 1.0156 0.0737 1.1353 0.0986 0.9907 0.0757
σ = 15 1.0113 0.0880 1.1149 0.1077 0.9889 0.0876

5.5 Case of simultaneous predictions

We consider two situations: in the first situation, the out-of-sample units are scat-
tered in the area of interest whereas in the second case, the out-of-sample units are
aggregated in some areas. The corresponding configurations of out-of-sample units
is shown in Figures 5.5 and 5.5. In this last section, we apologize for the missing
standard errors in the tables: there was an error in their computation that we did
not have time to fix before the deadline but that will be fixed during the month of
june for the next version of the preprint.

Figure 8: Configuration of out-of-sample units in the scattered case

5.5.1 Case of scattered out-of-sample units

In the case of scattered out-of-sample units, we compare formulas TS, TC and BP
in their site-by-site version. We see that the trend-signal-noise predictor is around
98 per cent efficient, that strategies M1 and M2 have the same efficiency for the
best predictor. The trend-corrected predictor is less efficient (from 80 to 90 pre cent
efficency).
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Figure 9: Configuration of out-of-sample units in the aggregated case

We suspect that the number of out-of-sample units in the neighborhood of a
prediction-point should influence the quality of prediction. Figure 5.5.1 shows the
distribution of the number of out-of-sample units in the neighborhood of prediction-
points in the above scattered configurations.

5.5.2 Case of aggregated out-of-sample units

For the five configurations with aggregated out-of-sample units, Figure 5.5.2 presents
the distribution of the number of out-of-sample units in the neighborhood of prediction-
points. The following five tables display the results for configurations 1 through 5.
As expected, the discrepancy between best and almost best strategy is larger in the
aggregated case, decreasing as low as 60 per cent efficiency. The higher the number
of out-of-sample neighbors for aa given out-of-sample points, the lower the efficiency
but this effect is not as strong as the differences between formulae.

6 Conclusion

From these simulations, we conclude that, at least in the case of this particular
model, the performance of the almost best predictor is almost as good as the one
of the best predictor and it is much simpler to compute. We also see that the
performance of the trend-signal-noise predictor is not so bad and this one is also
very easy to compute. Of course, these results should also be confronted to a larger
variety of parameter values and the comparison with bayesian predictors should be
included. A mathematical investigation od the relative efficiency of the almost best
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Figure 10: Distribution of the number of out-of-sample units in the neighborhood of
prediction-points for the scattered configurations
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Figure 11: Distribution of the number of out-of-sample units in the neighborhood of
prediction-points for the aggregated configurations
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Scattered sample units case
¯PMSETS se(PMSETS) ¯PMSETC se(PMSETC) ¯PMSEBP se(PMSEBP )
M1 M1 M1 M2 M1 M2 M1 M2 M1 M2

p = 1 1.19 1.38 1.38 1.10 1.10
p = 5 1.02 1.12 1.12 1.00 1.00
p = 10 1.07 1.19 1.18 1.05 1.05
p = 25 1.04 1.15 1.15 1.03 1.03
p = 50 1.03 1.12 1.12 1.01 1.01
p = 75 1.03 1.13 1.12 1.01 1.01

ρ = 0.5, Aggregated case - Configuration 1
missing number ¯MEQTS se(MEQTS) ¯MEQTC se(MEQTC) ¯MEQBP se(MEQBP )

M1 M1 M1 M2 M1 M2 M1 M2 M1 M2

0 1 0.98 1.01 1.01 0.99 1
1 1 1.09 1.23 1.22 1.55 1.03
2 0 . . . . . . . . .
3 3 1.02 1.10 1.09 1.00 1.00
4 4 0.97 1.07 1.08 0.97 0.97
5 3 1.28 1.34 1.28 1.31 1.23

Total 12 1.08 1.15 1.14 1.07 1.05

predictor with respect to the best would also be of interest although it seem difficult
at first sight. The same problems arise in other spatial models and since prediction
is ubiquitous, it is an important problem for spatial econometrics.

References

[1] R. Bivand (2002) Spatial econometrics functions in R: Classes and methods.
Journal of Geographical Systems, 4, 405-421.

[2] X. Guyon (1995) Random field on a network: modeling, statistics and appli-
cations. Probability and its applications series. Springer-Verlag, 255p.

[3] C. Gaetan and X. Guyon (2008) Modélisation et statistique spatiales, Springer.

[4] R.P. Haining (1990) C. Gaetan and X. Guyon (2008) Spatial data analysis in
the social and environmental sciences, Cambridge university Press.

[5] J.L. Jensen, H. Kunsch (1992) On asymptotic normality of pseudo likelihood
estimate for pairwise interaction processes. Annals of the Institute of Statis-
tical Mathematics, 46(3), 475-486.

[6] J.P. LeSage and R.K. Pace (2004) Models for spatially dependent missing
data, Journal of Real Estate Finance and Economics, 29:2, 233-254.

18



ρ = 0.5, σ = 1, Aggregated case - Configuration 2
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ρ = 0.5, σ = 1, Aggregated case - Configuration 4
missing number ¯MEQTS se(MEQTS) ¯MEQTC se(MEQTC) ¯MEQBP se(MEQBP )

M1 M1 M1 M2 M1 M2 M1 M2 M1 M2

1 4 0.90 1.03 1.03 0.88 0.88
2 10 0.97 1.06 1.05 0.96 0.95
3 17 1.06 1.17 1.14 1.05 1.03
4 11 1.10 1.20 1.14 1.08 1.05
5 12 1.08 1.22 1.14 1.06 1.03

Total 54 1.05 1.16 1.12 1.03 1.01

ρ = 0.5, σ = 1, Aggregated case - Configuration 5
missing number ¯MEQTS se(MEQTS) ¯MEQTC se(MEQTC) ¯MEQBP se(MEQBP )

M1 M1 M1 M2 M1 M2 M1 M2 M1 M2

2 2 1.25 1.33 1.32 1.23 1.23
3 4 1.02 1.16 1.11 0.99 0.97
4 21 1.09 1.20 1.18 1.06 1.06
5 11 1.11 1.23 1.20 1.10 1.08
6 8 1.11 1.22 1.15 1.10 1.06
7 2 1.04 1.16 1.07 1.02 0.96
8 6 1.35 1.39 1.11 1.34 1.04

Total 54 1.12 1.23 1.17 1.11 1.06
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