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SUMMARY 

Recent panel data approaches stress the importance of the location interdependence.  

Little has been done in the Balassa-Samuelson literature accounting for spatial 

dependence in the panel data context that allows for spatial autocorrelation.  By 

utilizing the recently developed Kapoor et al. (2007) spatial panel feasible GLS 

methods, we find that the Balassa-Samuelson effect in the Chinese economy is more 

prominent with the black market exchange rate taken as a proxy of the real rate.  The 

Dynamic Panel Data estimations based on the black market data provide stronger 

results in favour of accepting the theory.   

 

Keywords: Panel data; Spatial econometrics; Error component; Real exchange rate  

 

1.   INTRODUCTION 

Location or, in other words, spatial interactions are important determinants of 

economic activity.  They could be due to competition, net work, spill-over, 

externalities, similar structures of economic activities and legislative issues 

etc.  Ignoring these potentially omitted variables which have strong spatial elements 
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in them might lead to errors in panel data regression models which are not 

independent but instead correlated across space. 

 

According to Anselin (1988), a standard panel data set cannot be treated as 

independently generated due to the existence of similarities among areas that are close 

together.  In fact, location issue have given rise to two major problems, spatial 

dependence and spatial heterogeneity, which causes loss of information and structural 

instability respectively (Anselin 1992).  In the presence of spatial error autocorrelation, 

the OLS method would be inefficient and generate biased covariances.  In addition, 

when the model contains spatially lagged dependent variable, the OLS estimators 

would also become biased.  To overcome these problems, methods have been 

developed such as the maximum likelihood (ML) (see Anselin 1988; Anselin and 

Hudak 1992; Cliff and Ord 1973, 1981), generalized moments (GM) or instrumental 

variables (IV) (Kelejian and Prucha 1998, 1999), and feasible generalized least 

squares (FGLS) (Kapoor et al. 2007).  

  

Following Anselin (1988), estimation of the fixed effects model can be carried out by 

ML that will yield consistent and unbiased estimators if the regularity condition of a 

likelihood function hold.
1
  Estimation of the random effect model by ML is possible 

though complicated - the covariance matrix has unknown parameters which cannot be 

solved from the first-order conditions of the log-likelihood function; restrictions on 

unknown parameters cause difficulties for existing ML algorithms; existing 

algorithms that have solved these problems are often geared to simpler models 

without spatial effects (Elhorst 2001).  Kelejian and Prucha (1999) argue that the ML 

method has substantial computational problems if the number of cross-sectional units 

                                                 
1
 The log-likelihood function must be demeaned.  
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is large.
2
  They suggest that the IV estimator appears to be computationally feasible 

even for large sample size.
3
  In their recent paper, Kapoor et al. (2007) propose an 

alternative method of the FGLS to estimate the random coefficient model extended to 

spatial and time-wise error autocorrelation, as well as heteroskedasticity.
4
  The 

procedure starts with a linear panel model with spatially correlated random effects.  

The GM estimators for estimating the spatial autoregressive parameter and the 

variance components of the error process are established.  They are used in correcting 

for spatial correlation in disturbances and in re-estimating the linear panel model in 

terms of the FGLS estimators.  Finally, Kapoor et al. (2007) have shown that the true 

and feasible GLS estimators have the same large sample distribution.   Thus, the 

FGLS is computationally feasible even in large sample.    

 

This paper presents an empirical application of the recently developed spatial panel 

FGLS techniques by Kapoor et al. (2007) to the traditional Balassa-Samuelson 

literature.
5
  We turn to a panel of 30 Chinese regions observed over 16 years as our 

sample.  China is an interesting example that falls within our scope of study since 

many of its economic fundamentals are strongly spatial in nature.  Table 1 shows a 

regional breakdown of growth rate in China in 1993 and 1999.  The area of rapid 

growth is concentrated in costal areas, which share the border, and the areas without 

much growth are all the outlying areas, such as the west region.         

                                                 
2
 In most spatial literature, a single cross-section is considered. 

3
 Monte carlo results suggest that both the GMM and IV estimators are as efficient as the corresponding 

ML estimator in small sample (Das et al., 2003).   

4
 However, the estimators might still be difficult to compute as they require matrix inversions whose 

orders may be large (Elhorst 2001). 

5
 The main proposition of the Balassa-Samuelson effect (Balassa, 1964; Samuelson, 1964) is that high 

productivity growth of the tradable sector compared to non-tradable one leads to a rise in the relative 

price of non-tradable goods, which puts upward pressure on a country’s real exchange rate.   
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Table 1. Spatial distribution of growth rate in China  

Coastal region 1993 1999 

Beijing 0.12 0.10 

Tianjin 0.12 0.10 

Hebei 0.18 0.09 

Liaoning 0.15 0.08 

Shanghai 0.15 0.10 

Jiangsu 0.21 0.10 

Zhejiang 0.22 0.10 

Fujian 0.25 0.10 

Shandong 0.19 0.10 

Guangdong 0.22 0.10 

Guangxi 0.21 0.08 

Hainan 0.21 0.09 

average growth 0.19 0.10 

   

Central region   

Shanxi 0.12 0.05 

Inner Mongolia 0.11 0.08 

Jilin 0.13 0.08 

Heilongjiang 0.08 0.08 

Anhui 0.21 0.08 

Jiangxi 0.14 0.08 

Henan 0.16 0.08 

Hubei 0.14 0.08 

Hunan 0.13 0.08 

average growth 0.13 0.08 

   

West region   

Sichuan 0.14 0.06 

Guizhou 0.10 0.08 

Yunnan 0.11 0.07 

Shaanxi 0.13 0.08 

Gansu 0.12 0.08 

Qinghai 0.10 0.08 

Ningxia 0.10 0.09 

Xinjiang 0.10 0.07 

Tibet 0.08 0.10 

average growth 0.11 0.08 

                                            Source. China Statistical Yearbook. 
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The empirical evidence we provide, based on two proxies of the real exchange rate, 

namely the Chinese official and black market rate,
6
 suggest that the Balassa-

Samuelson hypothesis seems to fare better when the black market rate is used.  To 

complement our empirical spatial panel studies, we use Dynamic Panel Data 

methods(DPD)
7
 in the application in order to see if the differences in the results are 

more a function of different techniques.  The Dynamic Panel Data estimates based on 

the black market data also provide stronger confirmation of the theory. 

 

Our study is organized in the following fashion.  Section 2 discusses the panel data 

model based on the Kapoor et al. (2007) techniques that are used in the application.  

Section 3 describes the Balassa-Samuelson model that motivates our empirical tests.  

Section 4 presents the data and variable constructions.  Section 5 summarizes our 

empirical evidence.  Section 6 concludes the paper.  

 

2.   A FGLS ESTIMATION OF THE PANEL MODEL WITH SPATIALLY 

CORRELATED RANDOM EFFECTS 

                                                 
6
 China is an example where there exist frequent and complex changes in the exchange rate regimes.  A 

fixed exchange rate regime co-existed with a flexible one during the period 1979 to 1993.  A managed 

floating system has come into effect since 1994.  The representative state rate throughout 1988 to 1993 

was the market swap rate, which then unified with the official rate with the latter becoming the state 

rate instead.  Under such circumstances, the ability to test for our theory might be hindered by the 

exchange rate data itself.  To overcome these problems, we use the black market exchange rate as an 

additional proxy of the real rate in our analysis.  

7
 We make use of the one- and two-step GMM (Arellano and Bond, 1991) and combined GMM 

estimations (Arellano and Bover, 1995; Blundell and Bond, 1998).  Following Hall and Urga (1998), 

when time periods are short and the number of cross-sectional units is large, the GMM estimator is an 

efficient estimator, especially when taking the first differences or orthogonal deviations to eliminate the 

fixed effects. 
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This class of model was introduced by Kapoor et al. (2007).  Such an approach allows 

one to consider random effects specifications assuming spatial and time-wise error 

autocorrelation.  It represents the strand of spatial literature that is concerned with the 

error components.  In particular, it focuses on the computation of the variance 

components of the error process in terms of the generalized moments procedures.  The 

resultant FGLS estimators for the regression model are shown to be suitable in 

dealing with large samples.   

 

The panel model with K parameters and J spatial units observed over the time periods 

Tt ,...,1= can be written as: 

 

JJJ Xy µβ +=         (1) 

JJJTJ WI εµρµ +⊗= )( ,   1<ρ                  (2) 

 

where: 

 

1) JX  is a matrix of realizations on K time-varying explanatory variables assuming to 

be strictly exogenous; β  is a vector of parameters; Jµ  is a vector of unit specific 

errors; ρ  is the spatial autoregressive parameter; JW  is a weighting matrix for the 

variables of each spatial unit. 

 

2) The innovation process Jε  corresponds to an extension of the classical one-way 

error components model (Baltagi 2001).  It is defined in order to allow itself to be 

correlated not just through the spatial units, but also over time: JJJTJ Ie νµε +⊗= )( . 
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3) ;])(),...,1([ ′′′= Tyyy JJJ  ;])(),...,1([ ′′′= TXXX JJJ  

    ;])(),...,1([ ′′′= TJJJ µµµ  ;])(),...,1([ ′′′= TJJJ ννν  

   0=JEµ ; JJJ IE 2

µσµµ =′ ; 0=JEν ; JTJJ IE 2

νσνν =′ ; 

 

The estimators for estimating the spatial autoregressive parameter ρ  and the variance 

components of the error term 2

νσ  and 2

µσ ,
8
 are related as a system of six moment 

conditions: 
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 Or, equivalently, 

2

1σ , where
222

1 µν σσσ T+= , as T is fixed and ∞→J . 
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On the basis of the first three sample moments in eq. (3), the initial GM estimators for 

ρ  and 2

vσ , which are denoted by Jρ
~  and 2

,
~

Jvσ , are defined as the unweighted
9
 

nonlinear least squares estimators, which minimize: 
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 Each of those moments carries equal weights. 
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Jµ̂  is the residuals generated by the OLS on model (1); JJJ W µµ ˆˆ = ; JJJ W µµ ˆˆ 2= ; JQ ,0  

and JQ ,1  are defined in the paper. 

 

And the initial estimator for 2

1σ , denoted by 2

,1
~

Jσ , corresponds to the fourth moment 

conditions in eq. (3), and is defined as: 
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 are defined as the minimizing value of: 
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 The fully weighted GM estimator is based on all six moment conditions with the sample moments 

weighted by an approximation to the inverse of their variance covariance matrix. 
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The above procedures represent an enterprise such that each set of the GM estimators 

corresponds to specific weighting schemes for the moments.  Next, Kapoor et al. 

(2007) use these GM estimators, correct for spatial correlation in disturbances, and re-

estimate the linear panel model in terms of the FGLS estimators.  The FGLS estimator 

is computed as the OLS estimator of eq. (1) after pre-multiplication of (1) with 

)]([ JJJT WII ρ(−⊗ , and then ),( 2
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((( −Ω .
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 The FGLS estimator is:   
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Kapoor et al. (2007) have established that generalization of the GM approach lead to 

consistent estimator of the parameter of the error process.  The FGLS estimators 

based on those consistent estimators have been shown asymptotically equivalent to 

the true GLS, and thus consistent, asymptotically normal and computationally feasible 

in large samples.    

 

3.   THE BALASSA-SAMUELSON EFFECT 

The foundations of productivity-based models of the real exchange rate, such as those 

of Balassa (1964) and Samuelson (1964), suggest that in fast growing countries, 

productivity growth in the tradable sector tends to be much higher than in the 

nontradable sector, and so the relative price of nontradables is expected to rise faster.
12

  

Combining this with the assumption that the prices of tradable goods are equalized 

across countries, the real currency appreciation of the country with high growth is 

derived.  In the past forty years or so this proposition has been the leading principle 

for most real exchange rate studies. 

 

The starting point for a formal representation of the Balassa-Samuelson model is the 

linkage between the real exchange rate and relative price of nontradable goods.  

Suppose that consumers spend a share α of their income on tradable goods (T) and a 

share (1-α) on nontradable goods (N).  The price ( tP ) is characterized by the constant-

returns-to-scale Cobb-Douglas utility function, which takes the form of: 
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 The intuition is as follows.  If we assume that the nontradable sector is relatively more labour 

intensive, then an increase in tradadable sector productivity tends to raise the wages, and so the 

nontradable price must increase relatively more.   
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an asterisk represents the benchmark country.   

 

Assuming *αα = , and taking natural logarithms on both sides of the equation, we 

have: )]ln(ln)ln)[(ln1()lnln(lnln
*** T

t

N
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t
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ttt PPPPPPXRRER −−−−+−+= α  

As the Balassa-Samuelson hypothesis assumes that the Purchasing Power Parity (PPP) 

holds for tradable goods, then, for countries other than the benchmark country, the 

higher the relative price of nontradable goods, the higher the real exchange rate would 

become.  

 

Note that in the Balassa-Samuelson model, it does not matter whether productivity 

disturbances are anticipated or unanticipated, since there is instantaneous factor 

mobility and the real rate is independent of aggregate demand factors.  Thus, a 

perfectly anticipated trend productivity differential translates into a perfectly 

anticipated trend movement in the relative price of tradable goods (Rogoff 1992).  

Substituting out for relative prices yields:   

)]ln)(ln()ln)(ln)[(1()lnln(lnln
**

*

*

* N

t

T

tT

N

N

t

T

t
T

N

T

t

T

ttt PPXRRER θθ
ψ

ψ
θθ

ψ

ψ
α −−−−+−+= , 

where ψ  is the labour share in a Cobb-Douglas production function; θ  is the total 

factor productivity (TFP).  If the first term follows I(0), then, home will experience 

real appreciation if its relative productivity in the tradable sector, which is 

)ln(ln N

t

T

t θθ − , is high relative to the one in the benchmark country, for which 
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)ln(ln
** N

t

T

t θθ −  is given.
13

  

 

In a schematic way, the following panel regression equations will motivate our 

empirical work:   
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N

jt

T

jtjtRERb εθθθθτλ +−−−+= )]ln(ln)ln[(lnln
**

77 ; 

where a letter b denotes the black market; jtε  is the error term; TtJj ,...,1,,...,1 == . 

 

4.   DATA AND VARIABLE CONSTRUCTION 

The empirical tests take into account the cross-sectional nature of the Balassa-

Samuelson model for 30 Chinese regions.  To do this, we turn to annual measures of 

Chinese inflation and industry input on regional and sectoral basis, for the period 

1985 – 2000, which have been especially constructed for this work.  Thus, the details 

                                                 
13

 Most researchers have assumed that the production functions in the tradable and nontradable sectors 

are the same, and so that the ψ s cancel each other out.   
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of the data and the construction of the empirical counterparts to the theoretical 

variables merit some discussion.  

 

China is composed of twenty-two provinces (Anhui, Fujian, Gansu, Guangdong, 

Guizhou, Hainan, Hebei, Heilongjiang, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Jilin, 

Liaoning, Qinghai, Shanxi, Shaanxi, Shandong, Sichuan, Yunnan, and Zhejiang), five 

autonomous regions (Guangxi, Inner Mongolia, Ningxia, Xinjiang, and Tibet), four 

municipalities (Beijing, Chongqing,
14

 Shanghai, and Tianjin), and two special 

administrative regions (Hong Kong and Macau).  Hong Kong and Macau are not 

within our scope of study due to different political and administrative systems 

compared to mainland China.  The data for Chongqing have been integrated with 

those for Sichuan due to the lack of data before 1997.  Thus, our sample consists of 

thirty regions.     

 

We use the U.S. dollar as the numeraire currency since the U.S. is one of China’s 

major trading partners.  The nominal exchange rate is the annual average rate that is 

calculated based on monthly averages, in Chinese RMB yuan per U.S. dollar, from the 

IMF’s International Financial Statistics (IFS).  Following such a definition, a 

decrease in the nominal exchange rate implies appreciation.  The black market 

exchange rate is calculated as an annual average based on end of month rate from the 

World Currency Yearbook and World Bank’s World Development Indicators (WDI).  

The real exchange rate is defined as the bilateral real exchange rate between each 

region of China and the United States, adjusted to the difference in the GDP deflators 

of each region and the United States.  The regional GDP deflator is the ratio of 
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 Chongqing was formerly (until 14 March 1997) a sub-provincial city within Sichuan province. 
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nominal to real GDP index (2000=1000)
15

 for each region.   

    

The prices of tradables and nontradables are proxied by the GDP deflator for the 

Chinese agriculture and industry, and for “other,” which includes construction, 

transportation, storage, postal and telecommunications services, wholesale, retail trade 

and catering services.
16

  These data are calculated as the ratio of the nominal to real 

GDP index,
17

 both at 2000 constant prices for each sector and region.  The relative 

price differential is calculated as the difference in the relative prices of each Chinese 

region and the United States.  

 

The TFPs are computed as the Solow residuals using real GDP, capital stock, 

employment
18

 and factor returns for each sector.  Following China Statistical 

Yearbook (CSYB), the gross output value is the sum of the current value of final 

products produced in a given sector during a given period with the value of 

intermediate goods double counted.  Due to the lack of data on sectoral capital stock, 

all total capital is approximated through investment,
19

 except the one for industry 

                                                 
15

 The real GDP index is obtained through the GDP index with the preceding year treated as 100. 

16
 The tradable and nontradable categorization is on the basis of De Gregorio and Wolf (1994) criteria, 

which classify sectors on the basis of export shares in output for the whole sample of regions with a 

cut-off point of 10% to delineate nontradables.   

17
 The sectoral GDP index (2000=100) is calculated through the real index of GDP (preceding 

year=100) in tradable and nontradable sectors, which is obtained using the fractions representing the 

composition of overall GDP and real GDP index by region and by individual sector. 

18
 Due to the lack of data for labour hours, we follow most studies and use the total employment data as 

a proxy.   

19
 Investment is the capital construction investment in “new projects, including construction of a new 

facility, or an addition to an existing facility, and the related activities of the enterprises, institutions or 

administrative units mainly for the purpose of expanding production activity, covering only projects 

each with a total investment of 500,000 RMB yuan and over” (CSYB). 
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from 1993 to 2002, which is available and refers to “the capital received by the 

industrial enterprises from investors that could be used as operational capitals for a 

long period” (CSYB).  Total employment, according to the definition given by the 

CSYB, is “the number of staff and workers, which refers to a literal translation of the 

Chinese term ‘zhigong’ that includes employees of state-owned units in urban and 

rural areas (including government agencies), of collective-owned units in urban areas, 

of other ownership units in urban areas, and of state-collective joint ownership.”  

Wages necessary to the construction of factor returns are the total wage bills of staffs 

and workers, which are also drawn from CSYB. 

 

On the basis of the current OECD’s STructural ANalysis (STAN) industry list, the De 

Gregorio and Wolf (1994) 10% threshold classifies the U.S. agriculture, hunting, 

forestry and fishing, mining and quarrying, total manufacturing, electricity, gas, and 

water supply sectors as tradables, and the remaining construction, wholesale and retail 

trade, restaurants and hotels, transport, storage, and communication sectors as 

nontradables.  The U.S. tradable and nontradable price deflators are constructed by 

dividing the nominal value added by the real value added (2000=100) for each sector, 

as reported in OECD’s Annual National Accounts – Main Aggregates under the code 

VALU and VALUK respectively.  The sectoral TFPs are computed using the real 

value added, capital stock, employment and factor returns for each sector.  The capital 

stocks are proxied by gross domestic investment data, which are from the World 

Bank’s WDI.  The employment and wage rate necessary to the construction of factor 

returns are drawn from the OECD’s STAN database under the code EMPN and 

WAGE respectively. 

 

5.   EMPIRICAL RESULTS 
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We apply the Kapoor et al. (2007) FGLS estimators to the Balassa-Samuelson 

framework, combined with the Dynamic Panel Data methods in our analysis.  These 

empirical relevance of the long-run predictions is examined by utilizing the Chinese 

Regional Data.  In particular, we use the Chinese black market exchange rate as an 

additional proxy of the real rate in our analysis since there have been frequent changes 

in the exchange rate regimes during our sample period 1985-2000. 

 

5.1.   Kapoor et al. (2007) Spatial Panel Data FGLS estimations 

Table 2 contains the results from regressing relative price on relative productivity.  

There are three alternate FGLS estimators for estimating the regression equation, each 

corresponds to a chosen level of weight to each sample moment in eq. (3).  The 

positive relationship between the two variables as implied by the theory is not well 

confirmed by the data - the FGLS estimator on relative productivity appears to be 

negative with an average magnitude of 0.03.   

 

To test whether the PPP holds for tradable goods, we estimate the slope on the PPP 

exchange rate directly (see Table 3, 4).  The coefficients generated by both initial and 

weighted GM estimation are highly significant, however, far from one.  In terms of 

the black market rate – price relationship, they tend to be smaller, with an average 

magnitude of 0.16.  Thus, the nominal and PPP exchange rates seem not to have a 

unitary theoretical relationship, which suggests that the PPP does not hold for tradable 

goods.  

 

Next, we examine another key component of the Balassa-Samuelson hypothesis – the 

real exchange rate and relative price differential are negatively correlated.   The 
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results (see Table 5, 6) suggest a negative slope in both official and black market cases.  

On average, the slope estimate is -0.28 in the black market case, much greater than -

0.20 in the official rate case in absolute value.  Thus, the Balassa-Samuelson effect 

appears to be supported better by the black market rate. 

 

Finally, following the theory, we would expect the coefficient on relative productivity 

differential to be negative since a fall of the real exchange rate implies an appreciation.  

The FGLS estimators (see Table 7, 8) based on the weighted GM procedures suggest 

the same results for the slope in the two exchange rate cases we consider, which are -

0.03 under the partially weighted GM procedure, and -0.02 under the fully weighted 

one.  However, the difference is that, when we look at the estimators generated by the 

initial GM estimation, the Balassa-Samuelson effect is more prominent when the 

black market rate is taken as a proxy of the real rate:  the slope estimator is -0.01, as 

opposed to -0.004 in the official rate case.  

 

The above analysis suggests that the price and productivity variables (as measured in 

the data) remain statistically insignificant in explaining the long-run cross region 

differences in the level of real exchange rates.  We conclude by pointing out some 

limitation of our work on the empirical side, further work is required to develop a 

better quality panel database coving a longer time period and for a larger number of 

regions. 

 

5.2.   Dynamic Panel Data estimations  

We estimate equations in levels, using one- and two-step GMM (Arellano and Bond, 

1991) and combined GMM estimations (Arellano and Bover, 1995; Blundell and 
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Bond, 1998).
20

  The standard errors and tests are based on the robust variance matrix.  

To select the proper lag length, we estimate equations with different combinations of 

the lag structure of the jtx  matrix.  Among our experiments, we choose to look at the 

results where the residuals pass both the Sargan test
21

 and AR(2) test, but fail the 

AR(1) test.
22
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 The GMM estimation uses the instruments for transformed equations, whereas the combined GMM 

one uses the combination of instruments for both transformed and level equations. 

21
 The dynamic panel data model is given by: jtjtjt

K

k

ktjkjt vxLyy +++′+=∑
=

− ηλβα )(
1

, ,  

),...,1,,...,1( jTqtJj +== , where kα  is the coefficient on lagged jy , )(Lβ  is a vector of 

associated polynomials in the lag operator, jtx  is a 1×K  vector of time-varying explanatory variables 

assumed to be strictly exogenous, tλ  is the time effect, jη  is the fixed individual effect, and jtv  is a 

vector of the independently and identically distributed errors, and q is the maximum lag length in the 

model.   

 

The Sargan (1958, 1988) test tests the over-identifying restrictions.  Define 

1

1

)'
1

( −

=
∑= jj

J

j

jJ ZHZ
J

A , where jZ is a matrix of instrumental variables; jH is a weighting matrix.   

If JA  is optimal for any given jZ , then under the null hypothesis that the instruments in Z  are 

exogenous (i.e. uncorrelated with the individual effect jη ), the test statistic is 

2*

11

* ~)ˆ'()'ˆ( rj

J

j

jJ

J

j

jj vZAZv χ∑∑
==

, where r represents the differences between the number of columns 

in Z and the number of columns in X. 

22
 If the AR(1) model is mean-stationary, then jty∆  will be uncorrelated with jη , which suggests that 

1, −∆ tjy  can be used as instruments in the levels equations (see Arellano and Bover, 1995; Blundell and 

Bond, 1998) 
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When estimating the long-run relationship between relative price and relative 

productivity, we choose the results generated by one-step GMM regression with one 

lag on relative price and productivity (see left panel of Table 9), and by two-step 

combined GMM with one lag on relative price and productivity (see right panel of 

Table 9).  Under such specifications of instruments in GMM estimators, the residuals 

pass all diagnostic tests well.  We find that the positive relationship between the two 

variables is confirmed by the combined GMM regression, however, the coefficient 

remains statistically insignificant (p-value=0.37).   

 

We follow the same lag selection procedure to estimate the slope on the PPP exchange 

rate.  The slope coefficients, in the official rate – price relationship, remain significant 

throughout the two GMM regressions (see Table 10), however, far from one.  They 

appear either non-unity ( 19.03̂ =τ , see left panel of Table 11), or insignificant (p-

value=0.30, see right panel of the same table) in the black market case, which suggest 

that the PPP hypothesis is not well supported by the data.   

 

Tables 12 and 13 contain the dynamic panel results based on the real exchange rates 

and relative price differential.  Regressions using the black market rate generate much 

more favourable results towards accepting the Balassa-Samuelson hypothesis – the 

slope coefficients (see Table 13) are statistically significant and have the expected 

signs.  In contrast, in the official rate case (see Table 12), only the combined GMM 

regression shows a negative coefficient )12.0ˆ( 4 −=τ , which is consistent with the 

theory.   

 

Finally, we examine the real exchange rate – relative productivity differential 

relationship.  The black market rate performs well with the slope coefficients that are 



 

 

21 

statistically significant and of the correct sign at the 5% level (see Table 15).  The 

official rate, however, is shown to have a significant and positive relation with the 

relative productivity differential (see Table 14), which is inconsistent with the 

empirical regularities observed by the theory.    

 

6.   CONCLUSIONS 

In this paper we investigate the relevance of the Balassa-Samuelson effect to the 

determination of regional inflation in China, taking account of spatial dependence in 

the panel data context that allows for spatial autocorrelation.  The Balassa-Samuelson 

hypothesis seems to fare better with the Chinese black market exchange rate.  The 

Dynamic Panel Data estimations based on the black market data, in comparing to its 

spatial panel regressions counterpart, provide stronger results towards accepting the 

Balassa-Samuelson theory.  We conclude by pointing out some limitation of our work 

on the empirical side, further work is required to develop a higher quality database 

coving a longer period and for a larger panel of regions.   

 

In China, the foreign exchange official and black market have co-existed for almost 

half a century with the latter being an important factor in economic activity (Phylaktis 

and Girardin 2001).  One major reason why the black market exchange rate, as 

opposed to the official one, better reflects economic fundamentals, such as price and 

productivity, lies in the fact that the Chinese official rate is state – determined.  Even 

in the recent floating period, the rate is merely allowed to fluctuate within a small 

range according to market forces.  On the other hand, the black market rate is entirely 

market – determined, and so the band of fluctuation is much wider.  The implication 

arising from our findings is that, in the presence of a large black market for foreign 

exchange, we may use the black market rate when carrying out economic studies 
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since it moves more closely with economic fundamentals.  Such a conclusion is 

important as it raises questions regarding the appropriate interpretations of the official 

exchange rate literature in some emerging economies.    
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TABLES 

Table 2     

Panel Data Estimation Assuming Spatially Correlated Errors 

Relative Price and Relative Productivity 

jtN

jt

T

jt

T

jt

N

jt

P

P
ε

θ

θ
τλ ++= lnln 11    ),...,1,,...,1( TtJj ==  

Initial GMM estimators  FGLS estimators  

Jρ
~

 0.26 Constant  
0.13 

(0.30) 

2

,
~

Jvσ  0.06 
1̂τ  

-0.04 

(0.24) 
2

,1
~

Jσ  0.59 2σ  14.12 

Partially weighted GMM estimators  FGLS estimators  

Jρ
(

 0.13 Constant 
0.06 

(0.14) 

2

,Jvσ
(

 0.05 
1̂τ  

-0.03 

(0.22) 
2

,1 Jσ(  0.39 2σ  12.89 

Fully weighted GMM estimators  FGLS estimators  

Jρ̂  0.14 Constant 
0.07 

(0.15) 

2

,
ˆ

Jvσ  0.04 1̂τ  
-0.03 

(0.20) 
2

,1
ˆ

Jσ  0.57 2σ  14.43 

 

For spatial panel model: JJJ Xy µβ += , JJJTJJTJ IeWI νµµρµ +⊗+⊗= )()( ,        

Jρ
~

, 
2

,
~

Jvσ  and 
2

,1
~

Jσ  are the initial GM estimators for the spatial autoregressive parameter ρ  and 

variances of Jv  and Jµ , respectively; Jρ
(

, 
2

,Jvσ
(

 and 
2

,1 Jσ(  are the partially weighted GM estimators 

for ρ  and variances of Jv  and Jµ ; Jρ̂ , 
2

,
ˆ

Jvσ  and 
2

,1
ˆ

Jσ  are the fully weighted GM estimators for 

ρ  and variances of Jv  and Jµ .  Kapoor et al. (2007) use these GM estimators, which correspond to 

different weighting schemes for the sample moment, correct for spatial error correlations and re-

estimate the panel model in terms of the FGLS.  The figures in parentheses refer to the standard errors 

of the coefficients.    
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Table 3     

Panel Data Estimation Assuming Spatially Correlated Errors 

Official Exchange Rate and Relative Price of Tradable Goods 

jtT

jt

T

jt

jt
P

P
XR ετλ ++=

*

22 lnln   ),...,1,,...,1( TtJj ==  

Initial GMM estimators  FGLS estimators  

Jρ
~

 0.25 Constant 
2.11** 

(1.03) 

2

,
~

Jvσ  0.01 
2τ̂  

0.34*** 

(0.10) 
2

,1
~

Jσ  0.09 2σ  15.28 

Partially weighted GMM estimators  FGLS estimators  

Jρ
(

 0.14 Constant 
2.09** 

(1.00) 

2

,Jvσ
(

 0.01 
2τ̂  

0.32*** 

(0.10) 
2

,1 Jσ(  0.06 2σ  16.41 

Fully weighted GMM estimators  FGLS estimators  

Jρ̂  0.13 Constant 
2.10** 

(1.00) 

2

,
ˆ

Jvσ  0.01 2τ̂  
0.33*** 

(0.10) 
2

,1
ˆ

Jσ  0.09 2σ  15.12 

 

For spatial panel model: JJJ Xy µβ += , JJJTJJTJ IeWI νµµρµ +⊗+⊗= )()( ,        

Jρ
~

, 
2

,
~

Jvσ  and 
2

,1
~

Jσ  are the initial GM estimators for the spatial autoregressive parameter ρ  and 

variances of Jv  and Jµ , respectively; Jρ
(

, 
2

,Jvσ
(

 and 
2

,1 Jσ(  are the partially weighted GM estimators 

for ρ  and variances of Jv  and Jµ ; Jρ̂ , 
2

,
ˆ

Jvσ  and 
2

,1
ˆ

Jσ  are the fully weighted GM estimators for 

ρ  and variances of Jv  and Jµ .  Kapoor et al. (2007) use these GM estimators, which correspond to 

different weighting schemes for the sample moment, correct for spatial error correlations and re-

estimate the panel model in terms of the FGLS.  The figures in parentheses refer to the standard errors 

of the coefficients.  Statistical significance at 5% and 0.2% levels are denoted by ** and *** 

respectively. 
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Table 4     

Panel Data Estimation Assuming Spatially Correlated Errors 

Black Market Exchange Rate and Relative Price of Tradable Goods 

jtT

jt

T

jt

jt
P

P
XRb ετλ ++=

*

33 lnln    ),...,1,,...,1( TtJj ==  

Initial GMM estimators  FGLS estimators  

Jρ
~

 0.20 Constant 
2.26† 

(1.50) 

2

,
~

Jvσ  0.01 3̂τ  
0.16* 

(0.10) 
2

,1
~

Jσ  0.03 2σ  16.73 

Partially weighted GMM estimators  FGLS estimators  

Jρ
(

 0.17 Constant 
2.25† 

(1.50) 

2

,Jvσ
(

 0.01 3̂τ  
0.15† 

(0.10) 
2

,1 Jσ(  0.02 2σ  16.08 

Fully weighted GMM estimators  FGLS estimators  

Jρ̂  0.17 Constant 
2.26† 

(1.50) 

2

,
ˆ

Jvσ  0.01 3̂τ  
0.16* 

(0.10) 
2

,1
ˆ

Jσ  0.04 2σ  15.44 

 

For spatial panel model: JJJ Xy µβ += , JJJTJJTJ IeWI νµµρµ +⊗+⊗= )()( ,        

Jρ
~

, 
2

,
~

Jvσ  and 
2

,1
~

Jσ  are the initial GM estimators for the spatial autoregressive parameter ρ  and 

variances of Jv  and Jµ , respectively; Jρ
(

, 
2

,Jvσ
(

 and 
2

,1 Jσ(  are the partially weighted GM estimators 

for ρ  and variances of Jv  and Jµ ; Jρ̂ , 
2

,
ˆ

Jvσ  and 
2

,1
ˆ

Jσ  are the fully weighted GM estimators for 

ρ  and variances of Jv  and Jµ .  Kapoor et al. (2007) use these GM estimators, which correspond to 

different weighting schemes for the sample moment, correct for spatial error correlations and re-

estimate the panel model in terms of the FGLS.  The figures in parentheses refer to the standard errors 

of the coefficients.  Statistical significance at 10% and 20% levels are denoted by * and † respectively. 
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Table 5     

Panel Data Estimation Assuming Spatially Correlated Errors 

Real Exchange Rate and Relative Price Differential 

jt

T

jt

N

jt

T

jt

N

jtjt PPPPRER ετλ +−−−+= )]ln(ln)ln[(lnln
**

44  

),...,1,,...,1( TtJj ==  

Initial GMM estimators  FGLS estimators  

Jρ
~

 0.24 Constant 
2.60 

(2.21) 

2

,
~

Jvσ  0.05 
4τ̂  

-0.24 

(0.22) 
2

,1
~

Jσ  0.28 2σ  12.56 

Partially weighted GMM estimators  FGLS estimators  

Jρ
(

 0.15 Constant 
2.66 

(2.22) 

2

,Jvσ
(

 0.04 
4τ̂  

-0.18 

(0.20) 
2

,1 Jσ(  0.19 2σ  14.54 

Fully weighted GMM estimators  FGLS estimators  

Jρ̂  0.15 Constant 
2.66 

(2.22) 

2

,
ˆ

Jvσ  0.04 4τ̂  
-0.18 

(0.20) 
2

,1
ˆ

Jσ  0.29 2σ  14.28 

 

For spatial panel model: JJJ Xy µβ += , JJJTJJTJ IeWI νµµρµ +⊗+⊗= )()( ,        

Jρ
~

, 
2

,
~

Jvσ  and 
2

,1
~

Jσ  are the initial GM estimators for the spatial autoregressive parameter ρ  and 

variances of Jv  and Jµ , respectively; Jρ
(

, 
2

,Jvσ
(

 and 
2

,1 Jσ(  are the partially weighted GM estimators 

for ρ  and variances of Jv  and Jµ ; Jρ̂ , 
2

,
ˆ

Jvσ  and 
2

,1
ˆ

Jσ  are the fully weighted GM estimators for 

ρ  and variances of Jv  and Jµ .  Kapoor et al. (2007) use these GM estimators, which correspond to 

different weighting schemes for the sample moment, correct for spatial error correlations and re-

estimate the panel model in terms of the FGLS.  The figures in parentheses refer to the standard errors 

of the coefficients.    
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Table 6     

Panel Data Estimation Assuming Spatially Correlated Errors 

Real Parallel Exchange Rate and Relative Price Differential 

jt

T

jt

N

jt

T

jt

N

jtjt PPPPRERb ετλ +−−−+= )]ln(ln)ln[(lnln
**

55  

),...,1,,...,1( TtJj ==  

Initial GMM estimators  FGLS estimators  

Jρ
~

 0.22 Constant 
2.92 

(2.53) 

2

,
~

Jvσ  0.08 5̂τ  
-0.31 

(0.28) 
2

,1
~

Jσ  0.44 2σ  11.82 

Partially weighted GMM estimators  FGLS estimators  

Jρ
(

 0.16 Constant 
2.97 

(2.55) 

2

,Jvσ
(

 0.07 5̂τ  
-0.27 

(0.26) 
2

,1 Jσ(  0.32 2σ  12.68 

Fully weighted GMM estimators  FGLS estimators  

Jρ̂  0.16 Constant 
2.97 

(2.54) 

2

,
ˆ

Jvσ  0.06 5̂τ  
-0.27 

(0.24) 
2

,1
ˆ

Jσ  0.49 2σ  12.99 

 

For spatial panel model: JJJ Xy µβ += , JJJTJJTJ IeWI νµµρµ +⊗+⊗= )()( ,        

Jρ
~

, 
2

,
~

Jvσ  and 
2

,1
~

Jσ  are the initial GM estimators for the spatial autoregressive parameter ρ  and 

variances of Jv  and Jµ , respectively; Jρ
(

, 
2

,Jvσ
(

 and 
2

,1 Jσ(  are the partially weighted GM estimators 

for ρ  and variances of Jv  and Jµ ; Jρ̂ , 
2

,
ˆ

Jvσ  and 
2

,1
ˆ

Jσ  are the fully weighted GM estimators for 

ρ  and variances of Jv  and Jµ .  Kapoor et al. (2007) use these GM estimators, which correspond to 

different weighting schemes for the sample moment, correct for spatial error correlations and re-

estimate the panel model in terms of the FGLS.  The figures in parentheses refer to the standard errors 

of the coefficients.    
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Table 7     

Panel Data Estimation Assuming Spatially Correlated Errors 

Real Exchange Rate and Relative Productivity Differential 

jt

N

jt

T

jt

N

jt

T

jtjtRER εθθθθτλ +−−−+= )]ln(ln)ln[(lnln
**

66  

),...,1,,...,1( TtJj ==  

Initial GMM estimators  FGLS estimators  

Jρ
~

 0.22 Constant 
2.65 

(3.00) 

2

,
~

Jvσ  0.03 6τ̂  
-0.004 

(0.17) 
2

,1
~

Jσ  0.14 2σ  17.84 

Partially weighted GMM estimators  FGLS estimators  

Jρ
(

 0.17 Constant 
2.55 

(2.78) 

2

,Jvσ
(

 0.03 6τ̂  
-0.03 

(0.17) 
2

,1 Jσ(  0.08 2σ  19.19 

Fully weighted GMM estimators  FGLS estimators  

Jρ̂  0.16 Constant 
2.59 

(2.80) 

2

,
ˆ

Jvσ  0.03 6τ̂  
-0.02 

(0.17) 
2

,1
ˆ

Jσ  0.15 2σ  16.98 

 

For spatial panel model: JJJ Xy µβ += , JJJTJJTJ IeWI νµµρµ +⊗+⊗= )()( ,        

Jρ
~

, 
2

,
~

Jvσ  and 
2

,1
~

Jσ  are the initial GM estimators for the spatial autoregressive parameter ρ  and 

variances of Jv  and Jµ , respectively; Jρ
(

, 
2

,Jvσ
(

 and 
2

,1 Jσ(  are the partially weighted GM estimators 

for ρ  and variances of Jv  and Jµ ; Jρ̂ , 
2

,
ˆ

Jvσ  and 
2

,1
ˆ

Jσ  are the fully weighted GM estimators for 

ρ  and variances of Jv  and Jµ .  Kapoor et al. (2007) use these GM estimators, which correspond to 

different weighting schemes for the sample moment, correct for spatial error correlations and re-

estimate the panel model in terms of the FGLS.  The figures in parentheses refer to the standard errors 

of the coefficients.    
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Table 8     

Panel Data Estimation Assuming Spatially Correlated Errors 

Real Parallel Exchange Rate and Relative Productivity Differential 

jt

N

jt

T

jt

N

jt

T

jtjtRERb εθθθθτλ +−−−+= )]ln(ln)ln[(lnln
**

77  

),...,1,,...,1( TtJj ==  

Initial GMM estimators  FGLS estimators  

Jρ
~

 0.20 Constant 
2.99 

(2.50) 

2

,
~

Jvσ  0.05 7τ̂  
-0.01 

(0.22) 
2

,1
~

Jσ  0.15 2σ  18.82 

Partially weighted GMM estimators  FGLS estimators  

Jρ
(

 0.18 Constant 
2.88 

(2.40) 

2

,Jvσ
(

 0.04 7τ̂  
-0.03 

(0.20) 
2

,1 Jσ(  0.09 2σ  19.28 

Fully weighted GMM estimators  FGLS estimators  

Jρ̂  0.17 Constant 
2.96 

(2.50) 

2

,
ˆ

Jvσ  0.05 7τ̂  
-0.02 

(0.22) 
2

,1
ˆ

Jσ  0.16 2σ  17.09 

 

For spatial panel model: JJJ Xy µβ += , JJJTJJTJ IeWI νµµρµ +⊗+⊗= )()( ,        

Jρ
~

, 
2

,
~

Jvσ  and 
2

,1
~

Jσ  are the initial GM estimators for the spatial autoregressive parameter ρ  and 

variances of Jv  and Jµ , respectively; Jρ
(

, 
2

,Jvσ
(

 and 
2

,1 Jσ(  are the partially weighted GM estimators 

for ρ  and variances of Jv  and Jµ ; Jρ̂ , 
2

,
ˆ

Jvσ  and 
2

,1
ˆ

Jσ  are the fully weighted GM estimators for 

ρ  and variances of Jv  and Jµ .  Kapoor et al. (2007) use these GM estimators, which correspond to 

different weighting schemes for the sample moment, correct for spatial error correlations and re-

estimate the panel model in terms of the FGLS.  The figures in parentheses refer to the standard errors 

of the coefficients.    
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Table 9     

Dynamic Panel Data Estimation  

Relative Price and Relative Productivity 

jtN

jt

T

jt

T

jt

N

jt

P

P
ε

θ

θ
τλ ++= lnln 11   ),...,1,,...,1( TtJj ==  

Coefficient  Equation (1) Lags Coefficient  Equation (1) Lags 

1̂τ † 

 

-0.05 

(0.16) 
1 1̂τ †† 

 

0.03 

(0.37) 
1 

Constant  -0.07  Constant  -0.01  

  (0.21)    (0.44)  

Trend -  Trend -  

1 or 2-step GMM 1-step  
1 or 2-step 

combined GMM 
2-step   

Transformation used 1
st
 differences  Transformation used 1

st
 differences  

Wald (joint) 

 

198.00** 

(0.00) 
 

Wald (joint) 

 

131.40** 

(0.00) 
 

Wald (dummy) 

 

695.00** 

(0.00) 
 

Wald (dummy) 

 

0.61 

(0.44) 
 

Sargan test 117.0  Sargan test 29.04  

  (0.18)    (1.00)  

AR(1) test -3.95**  AR(1) test -3.21**  

  (0.00)    (0.00)  

AR(2) test  
0.55 

(0.58) 
 AR(2) test  

0.58 

(0.56) 
 

† The GMM estimation uses the instruments for transformed equations; †† The GMM estimation uses 

the combination of instruments for both transformed and level equations; The figures in parentheses 

refer to p-values; Statistical significance at 5% and 10% levels are denoted by ** and * respectively. 
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Table 10     

Dynamic Panel Data Estimation 

Official Exchange Rate and Relative Price of Tradable Goods 

jtT

jt

T

jt

jt
P

P
XR ετλ ++=

*

22 lnln   ),...,1,,...,1( TtJj ==  

Coefficient  Equation (2) Lags Coefficient  Equation (2) Lags 

2τ̂ † 

 

0.35** 

(0.00) 
3 2τ̂ †† 

 

0.40** 

(0.02) 
1 

Constant  0.05**  Constant  1.08**  

  (0.00)    (0.00)  

Trend -  Trend -  

1 or 2-step GMM 2-step  
1 or 2-step 

combined GMM 
2-step  

Transformation used 
Orthogonal 

deviations 
 Transformation used 1

st
 differences  

Wald (joint) 

 

1993.00** 

(0.00) 
 

Wald (joint) 

 

9100.00** 

(0.00) 
 

Wald (dummy) 

 

35.90** 

(0.00) 
 

Wald (dummy) 

 

55.48** 

(0.00) 
 

Sargan test 29.98  Sargan test 30.00  

  (1.00)    (1.00)  

AR(1) test -5.00**  AR(1) test -4.54**  

  (0.00)    (0.00)  

AR(2) test  1.20  AR(2) test  -0.99  

  (0.23)    (0.32)  

† The GMM estimation uses the instruments for transformed equations; †† The GMM estimation uses 

the combination of instruments for both transformed and level equations; The figures in parentheses 

refer to p-values; Statistical significance at 5% and 10% levels are denoted by ** and * respectively. 
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Table 11     

Dynamic Panel Data Estimation 

Black Market Exchange Rate and Relative Price of Tradable Goods 

jtT

jt

T

jt

jt
P

P
XRb ετλ ++=

*

33 lnln   ),...,1,,...,1( TtJj ==  

Coefficient  Equation (2) Lags Coefficient  Equation (1) Lags 

3̂τ † 
0.19** 

(0.01) 
4 3̂τ †† 

0.09 

(0.30) 
3 

Constant  0.03**  Constant  1.37**  

  (0.03)    (0.00)  

Trend -  Trend -  

1 or 2-step GMM 2-step  
1 or 2-step 

combined GMM 
2-step  

Transformation used 1
st
 differences  Transformation used None  

Wald (joint) 

 

3897.00** 

(0.00) 
 

Wald (joint) 

 

1.55e+005** 

(0.00) 
 

Wald (dummy) 

 

4.63** 

(0.03) 
 

Wald (dummy) 

 

8.90e+004** 

(0.00) 
 

Sargan test 29.75  Sargan test 30.00  

  (1.00)    (1.00)  

AR(1) test -5.27**  AR(1) test -5.15**  

  (0.00)    (0.00)  

AR(2) test  -1.73*  AR(2) test  -0.96  

 (0.08)   (0.34)  

† The GMM estimation uses the instruments for transformed equations; †† The GMM estimation uses 

the combination of instruments for both transformed and level equations; The figures in parentheses 

refer to p-values; Statistical significance at 5% and 10% levels are denoted by ** and * respectively. 
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Table 12     

Dynamic Panel Data Estimation 

Real Exchange Rate and Relative Price Differential 

jt

T

jt

N

jt

T

jt

N

jtjt PPPPRER ετλ +−−−+= )]ln(ln)ln[(lnln
**

44  

),...,1,,...,1( TtJj ==  

Coefficient  Equation (2) Lags Coefficient  Equation (2) Lags 

4τ̂ † 
0.08* 

(0.08) 
1 

4τ̂ †† 
-0.12** 

(0.04) 
1 

Constant  -0.05**  Constant  0.28**  

  (0.00)    (0.00)  

Trend -  Trend -  

1 or 2-step GMM 2-step  
1 or 2-step 

combined GMM 
2-step  

Transformation used 1
st
 differences  Transformation used 1

st
 differences  

Wald (joint) 

 

205.60** 

(0.00) 
 

Wald (joint) 

 

2909.00** 

(0.00) 
 

Wald (dummy) 

 

44.52** 

(0.00) 
 

Wald (dummy) 

 

15.34** 

(0.00) 
 

Sargan test 29.95  Sargan test 29.94  

  (1.00)    (1.00)  

AR(1) test -3.64**  AR(1) test -3.83**  

  (0.00)    (0.00)  

AR(2) test  -0.29  AR(2) test  -0.07  

 (0.77)   (0.94)  

† The GMM estimation uses the instruments for transformed equations; †† The GMM estimation uses 

the combination of instruments for both transformed and level equations; The figures in parentheses 

refer to p-values; Statistical significance at 5% and 10% levels are denoted by ** and * respectively. 
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Table 13     

Dynamic Panel Data Estimation 

Real Parallel Exchange Rate and Relative Price Differential 

jt

T

jt

N

jt

T

jt

N

jtjt PPPPRERb ετλ +−−−+= )]ln(ln)ln[(lnln
**

55  

),...,1,,...,1( TtJj ==  

Coefficient  Equation (2) Lags Coefficient  Equation (1) Lags 

5̂τ † 
-0.44** 

(0.00) 
3 5̂τ †† 

-0.48** 

(0.00) 
1 

Constant  0.05**  Constant  0.25**  

  (0.00)    (0.00)  

Trend -  Trend -  

1 or 2-step GMM 2-step  
1 or 2-step 

combined GMM 
2-step  

Transformation used 
Orthogonal 

deviations 
 Transformation used None  

Wald (joint) 

 

2165.00** 

(0.00) 
 

Wald (joint) 

 

4496.00** 

(0.00) 
 

Wald (dummy) 

 

16.23** 

(0.00) 
 

Wald (dummy) 

 

(33.13)** 

(0.00) 
 

Sargan test 29.81  Sargan test 29.98  

  (1.00)    (1.00)  

AR(1) test -3.52**  AR(1) test 4.10**  

  (0.00)    (0.00)  

AR(2) test  -1.81*  AR(2) test  -0.17  

 (0.07)   (0.87)  

† The GMM estimation uses the instruments for transformed equations; †† The GMM estimation uses 

the combination of instruments for both transformed and level equations; The figures in parentheses 

refer to p-values; Statistical significance at 5% and 10% levels are denoted by ** and * respectively. 
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Table 14     

Dynamic Panel Data Estimation 

Real Exchange Rate and Relative Productivity Differential 

jt

N

jt

T

jt

N

jt

T

jtjtRER εθθθθτλ +−−−+= )]ln(ln)ln[(lnln
**

66  

),...,1,,...,1( TtJj ==  

Coefficient  Equation (1) Lags Coefficient  Equation (1) Lags 

6τ̂ † 

 

0.09** 

(0.00) 
1 6τ̂ †† 

 

0.11** 

(0.00) 
1 

Constant  -0.04**  Constant  -0.06  

  (0.00)    (0.56)  

Trend -  Trend -  

1 or 2-step GMM 2-step  
1 or 2-step 

combined GMM 
2-step  

Transformation used 1
st
 differences  Transformation used 

Orthogonal 

deviations 
 

Wald (joint) 

 

249.70** 

(0.00) 
 

Wald (joint) 

 

2153.00** 

(0.00) 
 

Wald (dummy) 

 

79.38** 

(0.00) 
 

Wald (dummy) 

 

0.35 

(0.56) 
 

Sargan test 29.96  Sargan test 29.97  

  (1.00)    (1.00)  

AR(1) test -3.56**  AR(1) test -3.83**  

  (0.00)    (0.00)  

AR(2) test  0.11  AR(2) test  0.43  

  (0.91)    (0.67)  

† The GMM estimation uses the instruments for transformed equations; †† The GMM estimation uses 

the combination of instruments for both transformed and level equations; The figures in parentheses 

refer to p-values; Statistical significance at 5% and 10% levels are denoted by ** and * respectively. 
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Table 15     

Dynamic Panel Data Estimation 

Real Parallel Exchange Rate and Relative Productivity Differential 

jt

N

jt

T

jt

N

jt

T

jtjtRERb εθθθθτλ +−−−+= )]ln(ln)ln[(lnln
**

77  

),...,1,,...,1( TtJj ==  

Coefficient  Equation (1) Lags Coefficient  Equation (1) Lags 

7τ̂ † 

 

-0.14** 

(0.00) 
3 7τ̂ †† 

 

-0.13** 

(0.00) 
2 

Constant  0.09**  Constant  -1.15**  

  (0.00)    (0.00)  

Trend -  Trend -  

1 or 2-step GMM 2-step  
1 or 2-step 

combined GMM 
2-step  

Transformation used 
Orthogonal  

deviations 
 Transformation used 

Orthogonal 

deviations 
 

Wald (joint) 

 

1291.00** 

(0.00) 
 

Wald (joint) 

 

3065.00** 

(0.00) 
 

Wald (dummy) 

 

36.22** 

(0.00) 
 

Wald (dummy) 

 

16.55** 

(0.00) 
 

Sargan test 29.95  Sargan test 29.87  

  (1.00)    (1.00)  

AR(1) test -3.58**  AR(1) test -3.46**  

  (0.00)    (0.00)  

AR(2) test  -1.53  AR(2) test  0.35  

  (0.13)    (0.73)  

† The GMM estimation uses the instruments for transformed equations; †† The GMM estimation uses 

the combination of instruments for both transformed and level equations; The figures in parentheses 

refer to p-values; Statistical significance at 5% and 10% levels are denoted by ** and * respectively. 
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