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Abstract

This paper investigates the �nite sample properties of estimators for spatial

dynamic panel models in the presence of several endogenous variables. So far, none

of the available estimators in spatial econometrics allows considering spatial dynamic

models with one or more endogenous variables. We propose to apply system-GMM,

since it can correct for the endogeneity of the dependent variable, the spatial lag

as well as other potentially endogenous variables using internal and/or external

instruments. The Monte-Carlo investigation compares the performance of spatial

MLE, spatial dynamic MLE (Elhorst (2005)), spatial dynamic QMLE (Yu et al.

(2008)), LSDV, di¤erence-GMM (Arellano & Bond (1991)), as well as extended-

GMM (Arellano & Bover (1995), Blundell & Bover (1998)) in terms of bias and

root mean squared error. The results suggest that, in order to account for the

endogeneity of several covariates, spatial dynamic panel models should be estimated

using extended GMM. On a practical ground, this is also important, because system-

GMM avoids the inversion of high dimension spatial weights matrices, which can

be computationally demanding for large N and/or T .
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1 Introduction

Although the econometric analysis of dynamic panel models has drawn a lot of attention

in the last decade, econometric analysis of spatial and dynamic panel models is almost

inexistent. So far, none of the available estimators allows to consider a dynamic spatial

lag panel model with one or more endogenous variables (besides the time and spatial lag)

as explanatory variables. Empirically, there are numerous examples where the presence

of a dynamic process, spatial dependence and endogeneity might occur.

This is the case with the analysis of the determinants of complex Foreign Direct Invest-

ment (FDI). Complex FDI is undertaken by a multinational �rm from home country i

investing in production plants in several host countries to explore the comparative ad-

vantages of these locations (Baltagi et al. (2007)). This type of FDI can, thus, feature

complementary/substitutive spatial dependence with respect to FDI to other host coun-

tries. The presence of complex FDI can be tested empirically by estimating a spatial lag

model (as proposed by Blonigen et al. (2007)), which can also include a lagged depen-

dent variable to account for the fact that FDI decisions are part of a dynamic process,

i.e. more FDI in a host country seems to attract more FDI in this same host country.

Additional endogenous variables like environmental stringency, tari¤s or taxes can be

included. These variables in�uence the decision of multinational to invest in a country

but are also determined or in�uenced by the strategic interaction of these multinationals

The inclusion of the lagged dependent variable and additional endogenous variables in

a spatial lag model invalidate the use of traditional spatial maximum likelihood esti-

mators, that is why this model is estimated in several empirical studies (Kukenova &

Monteiro (2009), Madariaga & Poncet (2007)) using the system generalized method

of moments (GMM) estimator, developed by Arellano & Bover (1995) and Blundell &

Bond (1998). The main argument of applying the extended GMM in a spatial context

is that it corrects for the endogeneity of the spatial lagged dependent variable and other

potentially endogenous explanatory variables. In addition, extended GMM is robust to

some econometrics issues such as measurement error and weak instruments. It can also

control for arbitrary heteroskedasticity and autocorrelation in the disturbance error. Its

implementation is computationally tractable as it avoids the inversion of high dimension

spatial weights matrix W and the computation of its eigenvalues.
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Going beyond this intuitive motivation, we conduct an extensive Monte Carlo study com-

paring performance of extended GMM with performance of several spatial estimators

(Spatial MLE (SMLE), Spatial Dynamic MLE (SDMLE) and Spatial Dynamic QMLE

(SDQMLE)) in terms of bias and root mean squared error criteria. We verify the sen-

sitivity of results to alternative distributional assumptions and alternative speci�cation

of the matrices of spatial weights. Finally, we check robustness of the estimators to

misspeci�cation of the matrices of spatial weights, which is an important issue in spatial

econometrics.

The outline of the paper is as follows. The dynamic spatial lag model is de�ned

in section 2. The Monte Carlo investigation is described and performed in section 3.

Section 4 checks the robustness of the main results. Finally, section 5 concludes.

2 Spatial Dynamic Panel Model

Spatial data is characterized by the spatial arrangement of the observations. Following

Tobler�s First Law of Geography, everything is related to everything else, but near things

are more related than distant things, the spatial linkages of the observations i = 1; :::; N

are measured by de�ning a spatial weight matrix1, denoted by Wt for any year t =

1; :::; T :

Wt =

0BBBBBB@
0 wt(dk;j) � � � wt(dk;l)

wt(dj;k) 0 � � � wt(dj;l)
...

...
. . .

...

wt(dl;k) wt(dl;j) � � � 0

1CCCCCCA

where wt(dj;k) de�nes the functional form of the weights between any two pair of location

j and k. In the construction of the weights themselves, the theoretical foundation for

wt(dj;k) is quite general and the particular functional form of any single element inWt is,

therefore, not prescribed. In fact, the determination of the proper speci�cation of Wt is

one of the most di¢ cult and controversial methodological issues in spatial data analysis.

In empirical applications, geographical distance or economic distance are usually used.

1The modelling of spatial dependence can either be done with lattice models (i.e. weight matrix
(Anselin (1988)) or geostatistical models (i.e. function of separative distances (Chen & Conley (2001)).
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As is standard in spatial econometrics, for ease of interpretation , the weighting matrix

Wt is row standardized so that each row in Wt sums to one. As distances are time-

invariant, it will generally be the case that Wt = Wt+1. However, when dealing with

unbalanced panel data, this is no longer true. Stacking the data �rst by time and then

by cross-section, the full weighting matrix, W , is given by:

W =

0BBB@
W1 0 0

0
. . . 0

0 0 WT

1CCCA

The development of empirical spatial models is intimately linked to the recent

progress in spatial econometrics. The basic spatial model was suggested by Cli¤ &

Ord (1981), but it did not receive important theoretical extensions until the middle of

the 1990s. Anselin (2001, 2006), Elhorst (2003b) & Lee & Yu (2009) provide thorough

surveys of the di¤erent spatial models and suggest econometric strategies to estimate

them.

2.1 Dynamic Spatial Lag Model

A general spatial dynamic panel model, also known as a spatial dynamic autoregressive

model with spatial autoregressive error (SARAR(1,1)), can be described as follows:

Yt = �Yt�1 + �W1tYt + EXt� + ENt + "t (1)

"t = � + �W2t"t + vt; t = 1; :::; T

where Yt is a N � 1 vector, W1t and W2t are N �N spatial weight matrices which are

non-stochastic and exogenous to the model, � is the vector of country e¤ect, EXt is a

N � p matrix of p exogenous explanatory variables (p � 0) and ENt is a N � q matrix

of q endogenous explanatory variables with respect to Yt (q � 0). Finally, vt is assumed
to be distributed as (0;
). By adding some restrictions to the parameters, two popular

spatial model speci�cations can be derived from this general spatial model, namely the

dynamic spatial lag model (� = 0) and the dynamic spatial error model (� = 0)2.

2The analysis of the spatial error panel model and the spatial lag with spatial error model is beyond
the scope of this paper. For further details, see Elhorst (2005), Kapoor et al. (2007), Kelejian & Prucha
(2007), Mutl & Pfa¤ermeier (2008) as well as Lee & Ju (2009).
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The spatial lag model accounts directly for relationships between dependent vari-

ables that are believed to be related in some spatial way. Somewhat analogous to

a lagged dependent variable in time series analysis, the estimated �spatial lag� coef-

�cient3 characterizes the contemporaneous correlation between one cross-section and

other geographically-proximate cross-sections. The following equation gives the basic

spatial dynamic panel speci�cation, also known as the "time-space simultaneous" model

(Anselin (1988, 2001))4:

Yt = �Yt�1 + �WtYt + EXt� + ENt + � + vt (2)

The spatial autoregressive coe¢ cient (�) associated with WtYt represents the e¤ect of

the weighted average (wt (dij) being the weights) of the neighborhood, i.e. [WtYt]i =P
j=1::Nt

wt (dij) �Yjt. The spatial lag term allows to determine if the dependent variable
Yt is (positively/negatively) a¤ected by the Yt from other close locations weighted by a

given criterion (usually distance or contiguity). In other words, the spatial lag coe¢ cient

captures the impact of Yt from neighborhood locations. Let !min and !max be the

smallest and highest characteristic root of the spatial matrix W , then this spatial e¤ect

is assumed to lie between 1
!min

and 1
!max

. Most of the spatial econometrics literature

constrains the spatial lag to lie between -1 and +1. However, this might be restrictive,

because if the spatial matrix is row-normalized, then the highest characteristic root is

equal to unity (!max = 1), but the smallest eigenvalue can be bigger than -1, which

would lead the lower bound to be smaller than -1.

Given that expression (2) is a combination of a time and spatial autoregressive models,

we need to ensure that the resulting process is stationary. The stationarity restrictions

in this model are stronger than the individual restrictions imposed on the coe¢ cients of a

spatial or dynamic model. The process is covariance stationary if
���(IN � �Wt)

�1 �
��� < 1,

or, equivalently, if

j�j < 1� �!max if � � 0
j�j < 1� �!min if � < 0

3The spatial autoregressive term is also referred as endogenous interation e¤ects in social economics
or as interdependence process in political science.

4Beside the "time-space simulatenous" model, Anselin distinguishes three other distinct spatial lag
panel models: the "pure space recursive" model which only includes a lagged spatial lag coe¢ cient;
the "time-space recursive" speci�cation which considers a lagged dependent variable as well as a lagged
spatial lag (see Korniotis (2007)); and the "time-space dynamic" model, which includes a time lag, a
spatial lag and a lagged spatial lag.
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From an econometric viewpoint, equation (2) faces simultaneity and endogeneity prob-

lems, which in turn means that OLS estimation will be biased and inconsistent (Anselin

(1988)). To see this point more formally, note that the reduced form of equation(2)

takes the following form:

Yt = (IN � �Wt)
�1 (�Yt�1 + EXt� + ENt + � + vt)

Each element of Yt is a linear combination of all of the error terms. Moreover, as pointed

out by Anselin (2003), assuming j�j < 1 and each element ofWt is smaller than one imply

that (IN � �Wt)
�1 can be reformulated as a Leontief expansion (IN � �Wt)

�1 = I +

�Wt+�
2W 2

t +:::: Accordingly, the spatial lag model features two types of global spillovers

e¤ects: a multiplier e¤ect for the predictor variables as well as a di¤usion e¤ect for the

error process. Since the spatial lag term WtYt is correlated with the disturbances, even

if vt are independently and identically distributed, it must be treated as an endogenous

variable and proper estimation method must account for this endogeneity.

Despite the fact that dynamic panel models have been the object of recent important

developments (see the survey by Baltagi & Kao (2000) or Phillips & Moon (2000)),

econometric analysis of spatial dynamic panel models is almost inexistent. In fact,

there is only a limited number of available estimators that deal with spatial and time

dependence in a panel setting. Table 1 summarizes the di¤erent estimators proposed in

the literature.

In the absence of spatial dependence, there are three main types of estimators avail-

able to estimate a dynamic panel model. The �rst type of estimators consists of esti-

mating an unconditional likelihood function (Hsiao et al. (2002)). The second type of

procedure corrects the bias associated with the least square dummy variables (LSDV)

estimator (Bun & Carree (2005)). The last type, which is the most popular, relies on

GMM estimators, like di¤erence GMM (Arellano & Bond (1992)), system GMM (Arel-

lano & Bover (1995), Blundell & Bond (1998)) or continuously updated GMM (Hansen

et al. (1996)).

Assuming all explanatory variables are exogenous beside the spatial autoregressive

term, the spatial lag panel model without any time dynamic is usually estimated us-

ing spatial maximum likelihood (Elhorst (2003b)) or spatial two-stage least squares

methods (S2SLS) (Anselin (1988) (2001)). The ML approach consists of estimating the

spatial coe¢ cient by maximizing the non-linear reduced form of the spatial lag model.
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The spatial 2SLS uses the exogenous variables and their spatially weighted averages

(EXt, Wt �EXt) as instruments5. When the number of cross-sections is larger than the
period sample, Anselin (1988) suggests to estimate the model using MLE, 2SLS or 3SLS

in a spatial seemingly unrelated regression (SUR) framework. More recently, Azomahou

(2008) proposes to estimate a spatial panel autoregressive model applying a two-step

minimum distance estimator. In the presence of endogenous variables, Dall�erba &

Le Gallo (2007) suggest to estimate a spatial lag panel model, which includes several

endogenous variables but no lagged dependent variable, by applying spatial 2SLS with

lower orders of the spatially weighted sum of the exogenous variables as instrument for

the spatial autoregressive term6.

In a dynamic context, the estimation of spatial lag panel models is usually based on

a ML function. Elhorst (2003a, 2005) proposes to estimate the unconditional loglikeli-

hood function of the reduced form of the model in �rst-di¤erence. While the absence

of explanatory variables besides the time and spatial lags leads to an exact likelihood

function, this is no longer the case when additional regressors are included. Moreover,

when the sample size T is relatively small the initial observations contribute greatly to

the overall likelihood. That is why the pre-sample values of the explanatory variables

and likelihood function are approximated using the Bhargava & Sargan approximation

or the Nerlove & Balestra approximation. More recently, Yu et al. (2008) provide a the-

oretical analysis on the asymptotic properties of the quasi-maximum likelihood (Spatial

Dynamic QML), which relies on the maximization of the concentrated likelihood func-

tion of the demeaned model. They show that the limit distribution is not centered

around zero and propose a bias-corrected estimator7. Beside the fact that Yu et al.

(2008) do not assume normality, the main di¤erence with Elhorst�s ML estimators lies

in the asymptotic structure. Elhorst considers �xed T and large N (N !1), while Yu
et al. assume large N and T (N !1; T !1). Consequently, the way the individual
e¤ects are taken out di¤ers: Elhorst considers �rst-di¤erence variables, while Yu et al.

5 In a cross-section setting, Kelejian & Prucha (1998) suggest also additional instruments (W 2
t EXt,

W 3
t EXt, ...). Lee (2003) shows that the estimator proposed by Kelejian & Prucha is not an asymp-

totically optimal estimator and suggests a three-steps procedure with an alternative instrument for the

spatial autoregressive coe¢ cient in the last step (Wt �
�
IN � eb�Wt

��1
�EXt

eb�, where eb� and eb� are estimates
obtained using the S2SLS proposed by Kelejian & Prucha (1998)).

6Recently, Fingleton & Le Gallo (2008) propose an extended feasible generalized spatial two-stage
least squares estimator for spatial lag models with several endogenous variables and spatial error term
in a cross-section framework.

7 In two other related working papers, Lee & Yu (2007) and Yu et al.(2007) investigate the presence
of non-stationarity and time �xed e¤ects, respectively, in a spatial dynamicpanel framework.
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demean the variables. Assuming large T avoids the problem associated with initial

values and the use of approximation procedures. Finally, Yu et al�s approach allows

to recover the estimated individual e¤ects, which is not the case with the estimator

proposed by Elhorst.

In a recent paper, Elhorst (2008) analyzes the �nite sample performance of several esti-

mators for a spatial dynamic panel model with only exogenous variables. The estimators

considered are the Spatial MLE, Spatial Dynamic MLE and GMM. His Monte Carlo

study shows that Spatial Dynamic MLE has the better overall performance in terms

of bias reduction and root mean squared errors (RMSE), although the Spatial MLE

presents the smallest bias for the spatial autoregressive coe¢ cient. Based on these re-

sults, Elhorst proposes two mixed estimators, where the spatial lag dependent variable

is based on the spatial ML estimator and the remaining parameters are estimated using

either GMM or Spatial Dynamic ML conditional on the spatial ML�s estimate of the

spatial autoregressive coe¢ cient. These two mixed estimators outperform the original

estimators. The mixed Spatial MLE/Spatial Dynamic MLE estimator shows su-

perior performance in terms of bias reduction and RMSE in comparison with mixed

Spatial MLE/GMM. However, the latter can be justi�ed on a practical ground if the

number of cross-sections in the panel is large, since the time needed to compute Spatial

MLE/Spatial Dynamic MLE is substantial. In a spatial vector autoregression (VAR)

setting, Beenstock & Felsenstein (2007) suggest a two-step procedure. The �rst step

consists of applying LSDV to the model without the spatial lag and computing the �t-

ted values (bYt). Then, in the second step, the full model is also estimated using LSDV,
but with Wt

bYt as instrument for WtYt. Finally, the authors suggest to correct the bias

of the lagged dependent variable by using the asymptotic bias correction de�ned by

Hsiao(1986).

If one is willing to consider some explanatory variables as potentially endogenous

in a dynamic spatial panel setting, then no spatial estimator is currently available. In

many empirical applications, endogeneity can arise from measurement errors, variables

omission or the presence of simultaneous relationship(s) between the dependent and

the covariate(s). The main drawback of applying SMLE, SDMLE or SDQMLE is that,

while the spatial autoregressive coe¢ cient is considered endogenous, no instrumental

treatment is applied to other potential endogenous variables. This can lead to biased

estimates, which would invalidate empirical results. This is con�rmed by the Monte

Carlo analysis performed in the next section.
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2.2 System GMM

Empirical papers dealing with a spatial dynamic panel model with several endogenous

variables usually apply system-GMM (see for example Madriaga & Poncet (2007), Fou-

cault, Madies & Paty (2008), or Hong, Sun & Li (2008)). Back in 1978, Haining proposed

to instrument a �rst order spatial autoregressive model using lagged dependent variables.

While this method is not e¢ cient in a cross-section setting, because it does not use ef-

�ciently all the available information (Anselin (1988)), this is no longer necessarily the

case in a panel framework. The bias-corrected LSDV-IV estimator proposed by Korni-

otis (2007) is in line with this approach and considers lagged spatial lag and dependent

variable as instruments. Accordingly, the use of system GMM might be justi�ed in this

trade-o¤ situation, since the spatial lag would be instrumented by lagged values of the

dependent variable, spatial autoregressive variable as well as exogenous variables8.

For simplicity, equation (2) is reformulated for a given cross-section i (i = 1; ::; N) at

time t (t = 1; ::; T ):

Yit = �Yit�1 + � [WtYt]i + EXit� + ENit + �i + vit (3)

According to the GMM procedure, one has to eliminate the individual e¤ects (�i) cor-

related with the covariates and the lagged dependent variable, by rewriting equation(3)

in �rst di¤erence for individual i at time t:

4Yit = �4Yit�1 + �4 [WtYt]i +4EXit� +4ENit +4vit (4)

Even if the �xed e¤ects (within) estimator cancels the individual �xed e¤cts(�i), the

lagged endogenous variable (4Yit�1) is still correlated with the idiosyncratic error terms
(vit). Nickell (1981) as well as Anderson & Hsiao (1981) show that the within estimator

has a bias measured by O( 1T ) and is only consistent for large T . Given that this condition

is usually not satis�ed, the GMM estimator is also biased and inconsistent. Arellano &

Bond (1991) propose the following moment conditions associated with equation (4):

E (Yi;t��4vit) = 0; for t = 3; :::; T and 2 � � � t� 1 (5)

8Badinger et al. (2004) recommend to apply system GMM, once the data has been spatially �ltered.
This approach can be consider only when spatial depence is viewed as a nuisance parameter.
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But the estimation based only on these moment conditions (5) is insu¢ cient, if the strict

exogeneity assumption of the covariates (EXit) has not been veri�ed. The explicative

variables constitute valid instruments to improve the estimator�s e¢ ciency, only when

the strict exogeneity assumption is satis�ed:

E (EXi�4vit) = 0; for t = 3; :::; T and 1 � � � T (6)

However, the GMM estimator based on the moment conditions (5) and (6) can still be

inconsistent when � < 2 and in presence of inverse causality, i.e. E(EXitvit) 6= 0. In

order to overcome this problem, one can assume that the covariates are weakly exogenous

for � < t, which means that the moment condition (6) can be rewritten as:

E (EXi;t��4vit) = 0; for t = 3; :::; T and 1 � � � t� 1 (7)

For the di¤erent endogenous variables, including the spatial lag, the valid moment con-

ditions are

E (ENi;t��4vit) = 0; for t = 3:::T and 2 � � � t� 1 (8)

E ([Wt��Yt�� ]i4vit) = 0; for t = 3:::T and 2 � � � t� 1 (9)

For small samples, this estimator can still yield biased coe¢ cients. Blundell & Bond

(1998) show that the imprecision of this estimator is bigger as the individual e¤ects are

important and as the variables are persistent over time. Lagged levels of the variables

are weak instruments for the �rst di¤erences in such case. To overcome this limits,

the authors propose the system GMM, which estimate simultaneously equation(3)and

equation (4). The extra moment conditions for the extended GMM are thus:

E (4Yi;t�1vit) = 0; for t = 3; :::; T (10)

E (4EXitvit) = 0; for t = 2; :::; T (11)

E (4ENit�1vit) = 0; for t = 3; :::; T (12)

E (4 [Wt�1Yt�1]i vit) = 0; for t = 3; :::; T (13)

The consistency of the SYS-GMM estimator relies on the validity of these moment

conditions, which depends on the assumption of absence of serially correlation of the

level residuals and the exogeneity of the explanatory variables. Therefore, it is necessary

to apply speci�cation tests to ensure that these assumptions are justi�ed. More gener-

ally, one should keep in mind that the estimation of the spatial autoregressive coe¢ cient
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via SYS-GMM, although "potentially" consistent, is usually not the most e¢ cient one.

E¢ ciency relies on the "proper" choice of instruments, which is not an easy task to

determine. Arellano & Bond suggest two speci�cation tests in order to verify the con-

sistency of the GMM estimator. First, the overall validity of the moment conditions is

checked by the Sargan/Hansen test. Second, the Arellano-Bond test examines the serial

correlation property of the level residuals.

Another issue lies in the fact that the instrument count grows as the sample size

T rises. A large number of instruments can over�t endogenous variables (i.e. fail to

correct for endogeneity) and leads to inaccurate estimation of the optimal weight matrix,

downward biased two-step standard errors and wrong inference in the Hansen test of

instruments validity. Okui (2009) demonstrates that the bias of extended GMM does

not result from the total number of instruments, but from the number of instruments

for each equation. As pointed out by Roodman (2009), it is advisable to restrict the

number of instruments by de�ning a maximum number of lags and/or by collapsing the

instruments9. The collapse option consists of combining instruments through addition

into subsets. For instance, if the instruments are collapsed, the moment condition (5)

becomes:

E (Yi;t��4vit) = 0; for 2 � � � t� 1 (14)

This modi�ed moment condition still imposes the orthogonality of Yi;t�� and 4vit, but
rather to hold for each t and � , it is only valid for each � . Roodman (2009) shows that

collapsed instruments lead to less biased estimates, although the associated standard

errorstend to increase. GMM results for the remaining of the paper are, thus, based on

collapsed instruments10.

3 A Monte-Carlo Study

In this section, we investigate the �nite sample properties of several estimators including

Spatial MLE, Spatial Dynamic MLE and Spatial Dynamic QMLE, LSDV, di¤erence

GMM and extended GMM to account for the endogeneity of the spatial lag as well as an

additional regressor in a dynamic panel data context using Monte-Carlo simulations11.

9This approach has been adopted in several empirical papers, including Beck & Levine (2004).
10See appendix 6.A for further details on extended GMM and appendix 6.B for spatial ML estimators.
11All simulations are performed using Matlab R2008b.
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Simulation studies already showed that the bias associated with the spatial lag is rather

small (Franzese & Hays (2007), Elhorst (2008)), but none analyzes the consequences of

an additional endogenous explanatory variable in a spatial dynamic context. The data

generating process (DGP) is de�ned as follows:

Yit = �Yi;t�1 + � [WYt]i + �EXit + ENit + �i + vit (15)

EXit = �EXi;t�1 + uit (16)

ENit = �ENi;t�1 +  �i + �vit + eit (17)

with �i � N
�
0; �2�

�
; vit � N

�
0; �2v

�
; uit � N

�
0; �2u

�
; eit � N

�
0; �2e

�
.

In order to avoid results being in�uenced by initial observations, the covariates Yi0,

EXi0 and ENi0 are set to 0 for all i and each variable is generated (100 + T ) times

according to their respective DGP. The �rst 100 observations are then discarded. Note

that the dependent variable is generated according to the reduced form of equation (14):

Yit = (1� � [W ]i)
�1 [�Yi;t�1 + �EXit + ENit + �i + vit] (18)

Following Kapoor et al. (2007) and Kelejian & Prucha (1999), we consider four

di¤erent types of spatial weight matrix. In each case, the matrix is row-standardized

so that all non zero elements in each row sum to one. The matrices considered rely

on a perfect "idealized" circular world. More precisely, the three "theoretical" spatial

matrices, referred as "1 ahead and 1 behind", "3 ahead and 3 behind" and "5 ahead

and 5 behind", respectively, are characterized by di¤erent degree of sparseness. Each

are such that each location is related to the one/three/�ve locations immediately before

and after it, so that each nonzero elements are equal to 0:5/0:3/0:1, respectively. In

addition, as a robustness check, we consider real data on the distance between capitals

among 224 countries12. In order to avoid giving some positive weight to very remote

countries (with weaker cultural, political and economic ties), we consider the negative

exponential weighting scheme. This is done by dividing the distance between locations j

and k by the minimum distance within the region r (where location j lies within region

r): w (dj;k) = exp (�dj;k=MINr;j) if j 6= k.

12The data is taken from CEPII database: http://www.cepii.fr/anglaisgraph/bdd/distances.htm.
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The Monte Carlo experiments rely on the following designs:

T 2 f10; 20; 30; 40g ; N 2 f20; 30; 50; 70g ;

� 2 f0:2; 0:4; 0:5; 0:7g ; � 2 f0:1; 0:3; 0:5; 0:7g ;

� = 1; � = 0:65;  = 0:5; � = 0:45;  = 0:25; � = 0:6;

�2u = 0:05 �
2
v = 0:05; �

2
e = 0:05;

In order to ensure stationarity, only designs which respect the restrictions j�j <
1 � �!max if � � 0 or j�j < 1 � �!min if � < 0 are considered. The total number of

designs is restricted to 160. For each of these designs, we performed 1000 trials. Note

that for each design, the initial conditions and spatial weight matrices are generated

once.

As a measure of consistency, we consider the root mean square error (RMSE). Theo-

retically, RMSE is de�ned as the square root of the sum of the variance and the squared

bias of the estimator. Therefore, the RMSE assesses the quality of an estimator in terms

of its variation and unbiasedness. We also consider the approximated RMSE given in

Kelejian & Prucha (1999) and Kapoor et al. (2007), which converges to the standard

RMSE under a normal distribution:

RMSE =

s
bias2 +

�
IQ2

1:35

�2
where the bias is the di¤erence between the true value of the coe¢ cient and the median

of the estimated coe¢ cients, and IQ is the di¤erence between the 75% and 25% quantile.

This de�nition has the advantage of being more robust to outliers that may be generated

by the Monte-Carlo simulations.

The Monte Carlo investigation highlights several important facts13. First, the results

are qualitatively similar with respect to di¤erent spatial weight schemes, that is why for

sake of brevity we only present the results for the "1 ahead and 1 behind" weighting

matrix. Second, the results in terms of bias and e¢ ciency depend on the values as-

signed to the spatial and time lag parameters. Since the results based on RMSE and

approximated RMSE are qualitatively similar, we only present the results associated

with standard RMSE. In order to assess the global properties of the estimators, we �rst

discuss the results obtained by averaging over the parameters values of the time and

spatial lag coe¢ cients..

13The full results are given in appendix 6.C and 6.D.
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3.1 Extended GMM vs. Di¤erence GMM

We �rst investigate the consistency and e¢ ciency of the di¤erence and system GMM

estimators in a spatial dynamic panel framework. We consider two-step GMM based on

a collapsed instruments structure. To avoid imprecise estimate of the optimal weight

matrix (when T > N), we restrict the lags to two and three. In other words, each

endogenous variables (i.e. Yt�1, WYt; ENt) is instrumented with their 2nd and 3rd lags

values (using the collapse option) and the exogenous variables Xt.

.1
.0

5
0

.1
.0

5
0

20 40 60 80 20 40 60 80

T = 10 T = 20

T = 30 T = 40

LSDV DIFFGMM
SYSGMM

N

Figure 1: Bias LSDV vs. GMM

We consider global consistency and e¢ ciency of GMM estimators: the bias and

RMSE results are averaged over the whole range of parameters. For illustrative purpose,

we compare the performance of GMM estimators with respect to LSDV estimator. As

�gure 1 and 2 indicate, system and di¤erence GMM outperform the �xed e¤ect estimator

in terms of bias and e¢ ciency. In fact, LSDV estimator has a negative bias which

does not decrease with the size of the panel, invalidating LSDV as a consistent and

e¢ cient estimator. Consequently, spatial dynamic panel model should de�nitively not

be estimated with LSDV. The di¤erences in terms of performance between di¤erence

15



and system GMM are relatively marginal. Hayakawa(2007) shows that di¤erence and

level GMM estimators can be more biased than system GMM, because the bias of

extended-GMM is the sum of two elements. The �rst one is the weighted sum of the

bias associated with di¤erence and level GMM, while the second one originates from

using the level and di¤erence estimators jointly. Since the bias of di¤erence and level

GMM evolve in opposite direction, the �rst component of the bias of system GMM will

tend to be small due to a partially cancelling out e¤ect. In addition, the weight of the

�rst element plays also a role in the di¤erence of the magnitudes of the biases. The

latter could explain why both GMM estimators performs almost equivalently. However

as depicted in �gure 2, system GMM seems to be more e¢ cient in small sample. That

is why, we decide to focus on extended GMM.

0
.0

2
.0

4
.0

6
0

.0
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.0
4

.0
6

20 40 60 80 20 40 60 80

T = 10 T = 20

T = 30 T = 40

LSDV DIFFGMM
SYSGMM

N

Figure 2: RMSE LSDV vs. GMM
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3.2 Extended GMM vs. Spatial Estimators

In this section, we compare the global performance of extended GMM with respect to

spatial ML estimators14. We consider the average value of the bias and RMSE for the

di¤erent values of the autoregressive and spatial autoregressive coe¢ cient. For each

parameter, �gure 3 plots the averaged bias of the respective estimators over di¤erent

range of cross-sectional dimension, N15. The upper panels of �gure 3 display the average

bias associated with the autoregressive and spatial autoregressive variables respectively,

while the lower panels present the average bias for the endogenous and exogenous vari-

ables. Although the bias associated with the spatial estimators seems to be independent

of the cross-section dimension, it does decrease as the time dimension increases. This

corroborates the �nding in Yu et al., that the spatial estimators remain slightly biased

as the number of cross-section increases (see table 2 and 3 in Yu et al. (2008)). Unlike

spatial maximum likelihood estimators, extended GMM�s bias decreases as N and/or T

increase.

As displayed by the plot on the top left of �gure 3, all estimators tend to under-

estimate the autoregressive parameter, (e.g. positive bias), although extended GMM

exhibits the smallest bias. The opposite happens for the spatial autoregressive parame-

ter. Note that the spatial estimators tend to dominate the extended GMM in relatively

small sample. This is not surprising since spatial estimators explicitly account for the

spatial structure of the data by estimating the reduced form of the model. Still as the

time dimension increases, extended GMM tends to outperform the spatial estimators.

The exogenous variable is also overestimated by all the spatial estimators, although

its estimation with system GMM clearly dominates the other estimators. Most impor-

tantly, the plot on the bottom left of �gure 3 shows how important it is to correct for the

endogeneity. In fact, if not corrected, the bias associated with the endogenous variable

can represent more than 60% of the true value of the parameter, which is unaccept-

able. Moreover, the magnitude of the bias of the endogenous covariate does not seem

to depend on the sample dimension (N and T ). This �nding suggests that estimating

a spatial dynamic panel model with endogenous variables using traditional spatial esti-

mators would not be advisable. Overall, extended GMM exhibits superior performance

in terms of bias. Beside SYS-GMM, spatial dynamic QMLE displays the lower bias for

all coe¢ cients.
14Note that the spatial estimators rely on a numerical optimization which can lead to non-convergent

solution. When convergence is not obtained, the trial is dropped from the analysis. See appendix 6.B
for further details about the implementation of the spatial estimators.
15We take average value of the bias across di¤erent designs of autoregressive and spatial autoregresive

parameters

17



0.02.04.06.08 0.02.04.06.08

20
40

60
80

20
40

60
80

T 
= 

10
T 

= 
20

T 
= 

30
T 

= 
40

S
M

LE
SD

M
LE

SD
Q

M
LE

SY
S

G
M

M

N

Ti
m

e 
la

g 
bi

as

.04.03.02.010 .04.03.02.010

20
40

60
80

20
40

60
80

T 
= 

10
T 

= 
20

T 
= 

30
T 

= 
40

S
M

LE
SD

M
LE

SD
Q

M
LE

SY
S

G
M

M

N

Sp
at

ia
l l

ag
 b

ia
s

.4.3.2.10 .4.3.2.10

20
40

60
80

20
40

60
80

T 
= 

10
T 

= 
20

T 
= 

30
T 

= 
40

S
M

LE
SD

M
LE

SD
Q

M
LE

SY
S

G
M

M

N

En
do

ge
no

us
 b

ia
s

.04.020.02 .04.020.02
20

40
60

80
20

40
60

80

T 
= 

10
T 

= 
20

T 
= 

30
T 

= 
40

S
M

LE
SD

M
LE

SD
Q

M
LE

SY
S

G
M

M

N

Ex
og

en
ou

s 
bi

as

F
ig
ur
e
3:
B
ia
s
E
xt
en
de
d
G
M
M
vs
.
Sp
at
ia
l
E
st
im
at
or
s

18



Figure 4 depicts the performance of the estimators in terms of e¢ ciency according

to RMSE. The results are slightly di¤erent from the ones we obtained in the analysis

of the bias. Despite the fact that spatial ML estimators yield more bias, they tend to

be more e¢ cient than extended GMM in small samples for most parameters, except

the endogenous parameter. This is con�rmed by �gure 5, which plots the histogram

distribution for each estimated parameter based on 1000 trials for N = 70 and T = 20.

However, as the panel size increases, the performance of GMM converges to the same

level of e¢ ciency of the spatial ML estimators. Interestingly, the estimation in moderate

samples of the time lag and exogenous variables with SYS-GMM can be even more

e¢ cient than with spatial estimators. In other words, extended GMM might be more

consistent and e¢ cient than spatial ML estimators. This result might seems to be a

paradox with respect to the accepted notion that ML is more e¢ cient than GMM, but

it is not. Actually, this �nding is an extension to the panel framework of Das et al.�s

(2003) conclusion that FG2SLS can outperform ML estimators in moderate cross-section

samples. The main reason for this seemingly contradictory result is that the spatial ML

approach requires the estimation of more parameters than does extended GMM. ML

involves the estimation of the additional parameter �2. Moreover, Elhorst�s approach

implies the estimation of the initial condition restrictions, while Yu et al�s method is

explicitly designed for large N and T . Therefore, the classical arguments relating to

relative e¢ ciency do not apply here. In addition, as �gures 3 and 4 indicate, the spatial

estimators seem to reach e¢ ciency in relatively small samples (making the slope of

RMSE and bias almost �at), while extended GMM tends to gain e¢ ciency in moderate

sample (the slope of RMSE and bias being more steeper).

As we already mentioned it in the bias analysis, the estimation of the endogenous

covariate is clearly more e¢ cient with extended GMM than with any of the spatial

maximum likelihood estimators. The slope of the RMSE line in �gure 4 is almost

null for the QMLE and MLE, which suggests that increasing the dimension sample

cannot improve e¢ ciency of the estimate of the endogenous variable. In other words,

the use of spatial ML estimators is not recommended in the presence of endogenous

or predetermined variable. Among the spatial estimators, SDQMLE is again the best

one in terms of e¢ ciency. Note, that the estimation of the spatial lag parameter by

simple spatial MLE is as e¢ cient as by the other spatial estimators. This observation

was highlighted by Elhorst (2008) who suggests to estimate a dynamic panel model with

exogenous variables by �rst estimating the spatial lag with SMLE and then estimating

the remaining parameters using either SDMLE or GMM.
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4 Robustness Check

In this section, we investigate the sensitivity of our main results. First, we describe

the results in terms of RMSE response functions. Second, we check if the results are

sensitive to the choice of the spatial matrix W . Additionally, we analyze what happens

when the spatial weight scheme is miss-speci�ed. Third, we drop the assumption of

Gaussian process for the error terms and individual e¤ects. Last, we investigate the

consequence of dealing with spatially dependent endogenous and exogenous variables16.

4.1 RMSE response function

As previously commented, the relationship between the performance of the estimators

and the model parameters is not necessarily easily determined. That is why, we report

the results in terms of response functions. Using the RMSE for each estimator and

parameters of the entire set of designs, the following equation is estimated by OLS:

log
�p

Ni � Ti �RMSEi

�
= a1 + a2

1

Wi
+ a3�i + a4�i + a5 (�i�i) +

a6
Wi

Ni
+ a7

Wi

Ti
+ a8

1

Ni
+ a9

1

Ti
+ �i

where RMSEi is the RMSE of a given parameter obtained using a given estimator in

the i-th design. Note that Wi corresponds to the value attributed to the construction of

the spatial weight matrix and is a measure of the degree of sparseness of the matrix W

(e.g. Wi 2 (1; 3; 5)). Note that the dependent variable is expressed in logarithm in order
to rule out negative predicted RMSE. Therefore, the interpretation of the estimated

coe¢ cients is not straightforward (i.e. a negative coe¢ cient implies a small (close to

zero) e¤ect).

The RMSE response function estimation results are displayed in table 2. Although

some estimations are a¤ected by multicollinearity, the �t of the response functions to the

data is relatively good as suggested by R2. The comments made in the previous section

are con�rmed by the estimation results. As expected, the main factor that contributes

to the e¢ ciency of the GMM estimator is the panel size (N and T ). This is not the case

16To conserve space, we dont display the results tables, but they remain available upon request.
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for the spatial estimators, because the rate of e¢ ciency is only marginally a¤ected by

the panel size. This was already con�rmed by the �gures 3 and 4, where the slope of the

spatial estimators�RMSE were relatively �at. The e¤ects of the autoregressive and spa-

tial autoregressive parameters on the RMSE are clearly non-linear. While the individual

e¤ects of the parameters are negative and signi�cant, the interaction term enters the

RMSE regression positively and signi�cantly in almost all cases. This result means that

it is the combination of the time and spatial lag coe¢ cients which a¤ects the e¢ ciency

of the estimators rather than each parameter taken individually. Another important

�nding relates to the speci�cation of the spatial weight matrix W . The performances of

the spatial estimators are de�nitively more sensitive to the spatial weight matrix than

the extended GMM estimator. The spatial lag parameter is the only parameter where

performance of GMM seemed to be a¤ected by the spatial matrix W . This �nding sug-

gests that spatial estimators are more sensitive to the speci�cation of the spatial weight

matrix than GMM. We address this question in the following analysis.

4.2 Role of the Spatial Weight Matrix

In order to check the sensitivity of our results to the choice of spatial matrix, we re-run

Monte Carlo experiments for three types of spatial matrices: "3 ahead and 3 behind",

"5 ahead and 5 behind" and a negative exponential matrix based on real data distance

for 224 countries17. As in the baseline case, we perform 1000 simulations for each type

of spatial matrix.

The results seems to be qualitatively similar to what we obtained for our baseline

case. Extended GMM outperforms the spatial estimators according to unbiasness crite-

ria. The only exception is the spatial lag parameter which is better estimated by spatial

ML estimators in relatively small samples. As before, all estimators tend to underesti-

mate autoregressive parameter and overestimate the spatial autoregressive parameter.

The coe¢ cients of the endogenous and exogenous variable tend to be overestimated by

spatial ML estimators. As before the bias of the endogenous and exogenous variables do

not seem to decrease with an increase in the sample size (N and/or T ). As highlighted

by the response function analysis, the bias of the spatial estimators seems to increase

with the number of non-zeros elements in the spatial weight matrix. This is not the case

for SYS-GMM, whose performance seems to be not a¤ected by the degree of sparseness

of the matrix W . Note that the spatial estimators� sensitivity to the type of spatial

weight matrix tends to disappear as the panel dimension increases.
17See section 3 for further details.
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Most of the spatial econometrics literature presumes that the spatial weight matrix

is known and well speci�ed. However, in practice, one has to de�ne the spatial weight

matrix. This is usually done based on some underlying theory. But since there is no

formal theoretical guidance on the choice of the matrixW , the latter can be misspeci�ed.

In order to study the consequences of the misspeci�cation of the spatial weight matrix,

we estimate the spatial dynamic panel model using the data generated by the "3 ahead

and 3 behind" spatial matrix, but assuming the spatial weight is "1 ahead and 1 behind"

and "5 ahead and 5 behind". In the �rst case, we assume the spatial dependence to be

more local than it actually is while in the second scenario we presume the opposite.

The results depend on the type of misspeci�cation. In the case of over-spatial de-

pendence, the results are similar to what we obtained in the baseline case, although the

parameters�bias tends to be higher, this is particular true for system GMM. It seems

that assuming more global form of spatial dependence introduces additional noise, which

a¤ects the performance of extended GMM. As found earlier, the autoregressive variable

tends to be underestimated while the spatial autoregressive variable, endogenous and

exogenous variables tend to be overestimated. Moreover, the estimation of the autore-

gressive and endogenous variables by the spatial estimators are dominated by SYS-GMM

according to the unbiasness criterion.

In the case of under-spatial dependence, the results for all estimators are severely

a¤ected. The bias for the spatial autoregressive parameter changes from negative to

positive. In fact, limiting spatial dependence to the close neigbourhood tends to under-

estimate the spatial e¤ect, although it remains the only parameter which is less a¤ected.

The main explanation for this �nding lies in the fact that spatial methods estimate the

reduced form of the model, which means that the entire set of parameters, beside the

spatial lag, are a¤ected by the miss-speci�cation (see equation (18)). As noted pre-

viously, simple SMLE seems to estimate the spatial lag as accurate as SDMLE and

SDQMLE (Elhorst (2008)).

From an applied econometric point of view, these results suggest that spatial dynamic

panel models should not be estimated using only one type of spatial weight matrix.

In fact, di¤erent types of spatial weight matrices (contiguity, geographical distance,

economic distance) should be applied to check the robustness and consistency of the

results.
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4.3 Non-Gaussian Distribution

Most spatial estimators rely on the assumption of normality of the individual e¤ects

and error term. In empirical application, the data does not necessarily follow a normal

distribution. That is why we investigate the consequences of dropping the Gaussian as-

sumption through three modi�cations: student distribution and chi-square distribution

for the error term as well as a non-normal distribution for the individual �xed e¤ects.

First, when the error are generated according to a Student distribution with �ve

degrees of freedom, which is characterized by heavier tails than the normal distribution,

the results remain qualitatively similar. Extended GMM tends to outperform spatial ML

estimators although the rate of convergence seems to be slower. Among the spatial esti-

mators, SDQMLE continues to displays more robustness. This corroborates the �nding

by Lee (2004) that QMLE can be consistent when the disturbances are independently

and identically distributed without normality.

The performance of system GMM deteriorates when the shocks are generated accord-

ing to a chi-square distribution with 1 degree of freedom. The bias reduction associated

with an increase in the panel dimension tends to be smaller than in the baseline case.

Spatial ML estimators tend to outperform extended GMM according to the unbiasness

criterion for the exogenous and spatial autoregressive parameters However, the esti-

mation of the lagged dependent and endogenous variables with SYS-GMM continues to

dominate the spatial ML estimators.

Following Binder et al. (2005), we also investigate the way the individual e¤ects

are generated, since the performance of extended-GMM depends on the ratio of the

individual e¤ect variance with respect to the variance of the error term (Hayakawa

(2006)). Hence, the individual speci�c e¤ects are no longer normally distributed but

generated as follows:

�i =
p
�

�
qi � 1p
2

�
mi; qi

iidv �2 (1) ; mi
iidv N (0; 0:05)

The parameter � measures the degree of cross-section to the time-series variations. Two

values are considered � = 1 and � = 5. As expected, spatial estimators are not a¤ected

by the way the individual speci�c e¤ects are generated. This result is in line with

Binder et al.�s (2005) �nding. The performance of system GMM deteriorates slightly,

but continues to display better results for the endogenous variable than any other spatial

estimators.
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4.4 Additional Spatial Dependence

Finally, we modify the data generating process to account for spatial dependence in the

exogenous and endogenous variables. Each one follows a spatial moving average process

(i.e. the shock in one cross-section a¤ects the neighboring cross-sections):

EXit = �EXi;t�1 + �EX [Wut]i + uit

ENit = �ENi;t�1 +  �i + �vit + �EN [Wet]i + eit

The performance of the spatial estimators and GMM remains relatively robust to the

presence of spatial dependence. The relative performance of system GMM with respect

to the alternative estimators seems to be una¤ected by the introduction of additional

spatial dependence through the endogenous and exogenous covariates. Unlike the main

results, the spatial ML estimators tend to underestimate the spatial lag parameter,

while overestimating the e¤ect of endogenous and exogenous variables. It looks like the

spatial estimators attribute the spatial dependence to the endogenous and exogenous

variables at the expense of the spatial autoregressive variable. Extended GMM is still

less biased and more e¢ cient than the spatial estimators for all variables except the

spatial lag variable. The estimation of the spatial lag with SYS-GMM leads to a negative

bias, which means that extended GMM continues to overestimate the e¤ect of spatial

autoregressive term. In relatively small samples, the spatial estimators continue to

dominate system GMM for the spatial lag variable. However, as sample size increases,

extended GMM reaches the same level of e¢ ciency as spatial estimators. Note that

the bias of exogenous variable for extended GMM tends to be higher compared to the

baseline case. Relative performance of extended GMM remains qualitatively unchanged

according to RMSE criterion, despite the fact that RMSE tends to be higher for all the

estimators in small samples.

Although not reported here, in the presence of positive spatial dependence in the

exogenous and endogenous variables, extended GMM performs even better in terms of

bias and e¢ ciency, when the spatially weighted sum of the exogenous variable (W �EXt)
is included as additional instrument. From a practical viewpoint, this �nding suggests

to include the spatially weighted average of the exogenous variables as instrument, once

the presence of spatial dependence is veri�ed (through a Moran�s I or Geary�s C test for

instance). Note that Kelejian & Prucha (1998) propose to use additional instruments like

W 2 � EXt, which can be interpreted as the spatially weighted average of the exogenous
variables of the neighborhood�s neighborhood.
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5 Conclusion

In the presence of endogenous covariates in a spatial dynamic pane framework, the Monte

Carlo analysis demonstrates that while the simultaneity bias of the spatial lag remains

relatively low, the bias of the endogenous is large if it is not corrected. Proper correction

leads to favour extended GMM. In fact, system-GMM emerges clearly dominant by

an unbiasedness criterion for most variables, including the endogenous variable. Its

RMSE decays at a faster rate as N or T increases and its standard error accuracy

is acceptable. In some cases, system GMM can be even more e¢ cient than spatial

maximum likelihood estimators. Moreover from a viewpoint purely practical, extended

GMM avoids the inversion of a large spatial weight matrix, is easier to implement and

its computation time is de�nitively lower than any maximum likelihood estimators. In

addition, the e¢ ciency of the extended GMM could be improved through iterated GMM

and continuously updated GMM (Hansen et al. (1996)). Another possibility would be

to extend the spatial dynamic MLE and QMLE to a simultaneous equation system

framework.

Recently, a lot of attention has been drawn to the impact of heterogenous and cross-

section error on the bias in dynamic panel estimation with �xed e¤ects. One way

to consider weak cross-section dependence is to allow the error term to be spatially

dependent. This could be done by extending the spatial HAC framework proposed by

Keleijan & Prucha (2007) or Driscoll & Kray�s (1998) approach to the system GMM.
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6 Appendices

6.A GMM Estimators
This appendix section presents the procedure associated with the di¤erent GMM esti-
mators. Let Y , Y�1, WY , U be N � T column vectors, EX, is a N � T � p matrix and
EN is a N � T � q matrix. Note that the data is �rst sorted by time T and then by
cross-section N . Thus, Y = (Y1; Y2; :::; YT )

0, where Yt = (Y1t; Y2t; :::; YNt)
0. The

same structure is applied to the remaining vectors and matrices.

As mentioned previously, the time lag (Yi;t�1), spatial lag ([WYt]i) and endoge-
nous variable (ENit) are treated as endogenous covariates, while the exogenous variable
(EXit) is considered as strictly exogenous. Each endogenous variable is instrumented
by the strictly exogenous variable and the second and third lags of each endogenous
variable. In order to restrict the number of instruments, the instruments matrix is
constructed applying the "collapse" option18.

6.A.1 Di¤erence-GMM

The di¤erence-GMM estimator, proposed by Arellano and Bond (1991), consists of
estimating the model expressed in �rst-di¤erence. More speci�cally, the estimation
steps are:

1. Construct the "collapsed" instruments matrix for each cross-section i:

ZDi =

2664
Yi;0 0 [WY0]i 0 �EXi;1 ENi;0 0
Yi;1 Yi;0 [WY1]i [WY0]i �EXi;2 ENi;1 ENi;0
...

...
...

...
...

...
...

Yi;T�2 Yi;T�3 [WYT�2]i [WYT�3]i �EXi;T ENi;T�2 ENi;T�3

3775
2. Construct the weighting matrix:

AD1 =

�P
i
ZD0i �HD1

i � ZDi
��1

where HD1
i =

266664
1 �0:5 0 � � � 0

�0:5 1 �0:5 � � � 0

0
. . . . . . . . .

...
...

. . . . . . 1 �0:5
0 0 0 �0:5 1

377775
3. Carry out the one-step estimation given by264 b�1b�1b�1b1

375 = �QXZ �AD1 �Q0XZ��1 �QXZ �AD1 �QZY
where QXZ =

P
i
X�0
i � Zi and QZX =

P
i
Z 0i � Y �i

X�
i =

24 �Yi;1 [W�Y2]i �EXi;2 �ENi;2
...

...
...

...
�Yi;T�1 [W�YT ]i �EXi;T �ENi;T

35 and Y �i =
24 �Yi;2

...
�Yi;T

35

18Numerous instruments can lead to two types of small-sample issues. The �rst problem leads to over-
�tting endogenous variables, i.e. failure to remove endogeneity. The second problem concerns imprecise
estimation of the optimal weighting matrix in the two-step procedure. This a¤ects the computation of
two-step standard errors and the validity of the Hansen�s weak instruments (see Roodman (2009)).
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4. The associated variance are computed as follows:bV1 = b�21 � �QXZ �AD1i �Q0XZ
��1

where b�21 = 1
N�4

P
i

�
Y �i �X�

i �
hb�1;b�1; b�1; b1i0�0�Y �i �X�

i �
hb�1;b�1; b�1; b1i0�

5. The robust one-step variance is given by:bV1;Robust = �QXZ �AD1 �Q0XZ��1 �AD1 ��AD2��1 �AD1 �Q0XZ ��QXZ �AD1 �Q0XZ��1
where AD2 =

�P
i
ZD0i �HD2

i � ZDi
��1

HD2
i =

�
Y �i �X�

i �
hb�;b�; b�; bi0��Y �i �X�

i �
hb�;b�; b�; bi0�0

6. The two-step estimates are given by:264 b�2b�2b�2b2
375 = �QXZ �AD2 �Q0XZ��1 �QXZ �AD2 �QZY

7. The associated two-step variance is computed as:bV2 = �QXZ �AD2 �Q0XZ��1

6.A.2 Extended-GMM

The system-GMM estimator, proposed by Arellano and Bover (1995) and Blundell and
Bond (1998), consists of combining the moment conditions from the model in �rst-
di¤erence with the moment conditions from the model in levels. These are the estimation
steps:

1. Construct the "collapsed" instruments matrix for each cross-section i:

Zi=

26666666664

Yi;0 0 0 [WY0]i 0
Yi;1 Yi;0 0 [WY1]i [WY0]i
...

...
...

...
...

Yi;T�2 Yi;T�3 0 [WYT�2]i [WYT�3]i
0 0 0 0 0
0 0 �Y i;1 0 0
...

...
...

...
...

0 0 �Y i;T�1 0 0

0 �EXi;1 EN i;0 0 0
0 �EXi;2 EN i;1 EN i;0 0
...

...
...

...
...

0 �EXi;T EN i;T�2 EN i;T�3 0
0 EXi1 0 0 0

[W�Y2]i EXi2 0 0 �EN i2
...

...
...

...
...

[W�YT�1]i EXiT 0 0 �EN i;T�1

37777777775
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2. Construct the weighting matrix:

A1 =

�P
i
Z 0i �Hi � Zi

��1
where Hi =

�
HD
i 0
0 Ii

�
3. Carry out the one-step estimation given by:264 b�1b�1b�1b1

375 = �QXZ �A1 �Q0XZ��1 �QXZ �A1 �QZY
where QXZ =

P
i
X�0
i � Zi and QZX =

P
i
Z 0i � Y �i

X�
i =

26666664

�Yi;1 [W�Y2]i �EXi;2 �ENi;2
...

...
...

...
�Yi;T�1 [W�YT ]i �EXi;T �ENi;T
Yi;0 [WY1]i EXi;1 ENi;1
...

...
...

...
Yi;T�1 [WYT ]i EXi;T ENi;T

37777775 and Y
�
i =

26666664

�Yi;2
...

�Yi;T
Yi;1
...

Yi;T

37777775
4. The associated variance are computed as follows:bV1 = b�21 � �QXZ �A1i �Q0XZ��1
where b�21 = 1

N�4
P
i

�
Y �i �X�

i �
hb�1;b�1; b�1; b1i0�0�Y �i �X�

i �
hb�1;b�1; b�1; b1i0�

5. The robust one-step variance is given by:bV1;Robust = �QXZ �A1 �Q0XZ��1 �A1 � �A2��1 �A1 �Q0XZ � �QXZ �A1 �Q0XZ��1
where A2 =

�P
i
Z 0i �H2

i � Zi
��1

H2
i =

�
Y �i �X�

i �
hb�;b�; b�; bi0��Y �i �X�

i �
hb�;b�; b�; bi0�0

6. The two-step estimates are given by:264 b�b�b�b
375 = �QXZ �A2 �Q0XZ��1 �QXZ �A2 �QZY

7. The associated two-step variance is computed as:bV2 = �QXZ �A2 �Q0XZ��1
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6.B Spatial Estimators
This appendix section presents the procedure associated with the di¤erent spatial es-
timators. For further details, the reader is referred to Anselin (1988), Elhorst (2003a,
2005, 2008) and Yu et al. (2008). Let Y , Y�1, WY , U be N � T column vectors, EX,is
a N � T � p matrix and EN is a N � T � q matrix. Note that the data is �rst sorted
by time T and then by cross-section N . Thus, Y = (Y1; Y2; :::; YT )

0, where Yt =
(Y1t; Y2t; :::; YNt)

0. The same structure is applied to the remaining vectors and matri-
ces. As initial values for the parameters, the estimates obtained by extended-GMM can
be used.

6.B.1 Spatial MLE

The classical spatial maximum likelihood estimator relies on the concentrated likelihood
in the spatial lag parameter, which is conditional upon the others� coe¢ cient values.
Operationally, "standard" spatial maximum estimation can be achieved in �ve steps:

1. Demean all variables, denoted by ~.

2. Carry out the following OLS regressions:eY = heY�1;gEX;gENi b0 + U0
W eY = heY�1;gEX;gENi bL + UL:

3. Compute the associated residuals bU0 and bUL.
4. Given bU0 and bUL, �nd � that maximizes the following concentrated likelihood:
lnL (�) = �NT

2 ln 2��NT
2 ln�2+T ln jIN � �W j�NT

2 ln

��bU0 � �bUL�0 �bU0 � �bUL�� :
5. Given the estimate b�, the remaining coe¢ cient estimates are computed as follows:" b�b�b

#
= b0 � b�bL and b�2 = 1

NT

�bU0 � b�bUL�0 �bU0 � b�bUL� :
As mentioned in Elhorst (2008), this spatial MLE is inconsistent, because of the

presence of the lag dependent variable.

6.B.2 Spatial Dynamic MLE

The unconditional MLE, proposed by Elhorst (2005, 2008), involves a two-steps iterative
procedure once the data has been �rst-di¤erenced. Note that the initial observations are
approximated using Bhargava and Sargan approach (1983). Estimation should proceed
according to the following steps:

1. Take the �rst-di¤erence of all variables.

2. De�ne some initial values for the parameters �; � and �, where � = �2�=�
2 and �2�

is the variance associated with the approximation of the initial observations.
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3. The two-steps iterative procedure begins here with the computation of the coef-
�cients �i associated with the initial observations�s approximation as well as the
parameters of the exogenous and endogenous covariates, and the variance �2 :2666664
b�1b�2
...b�Tb�b

3777775 =
�
�X 0H�1

V ��X
��1

�X 0H�1
V ��Y and b�2 = �bU 0H�1

V ��
bU

NT

where �X =

264
{N �X1 � � � �XT 0
0 0 � � � 0 �X2
...

... � � �
...

...
0 0 � � � 0 �XT

375 ;

�Y =

2664
(IN � �W )�Y1

(IN � �W )�Y2 � ��Y1
...

(IN � �W )�YT � ��YT�1

3775 ;

HV �

266666664

V� �IN 0 � � � 0 0

�IN 2 � IN �IN
. . . 0 0

0 �IN 2 � IN
. . . 0 0

...
. . . . . . . . .

...
...

0 0 0 � � � 2 � IN �IN
0 0 0 � � � �IN 2 � IN

377777775
;

V� = �IN + IN + (�S � IN )
�
IN � �2SS0

��1
(�S � IN )0

� (�S � IN ) (�S)m�1
�
IN � �2SS0

��1
(�S)m�1 (�S � IN )0

�
�
�2SS0

�m�1
;

S = (IN � �W )�1 ;
�bU = �Y ��X �

�b�1; :::; b�T ; b�0; b0� ;
The parameter m, which represents the number of periods since the process
started, should be de�ned in advance. It must be such that the eigenvalues of
the matrix �S lie inside the unit circle, because otherwise the matrix (�S)m�1

would become in�nite and yield a corner solution. Elhorst (2008) proposes to
include a third step procedure to estimate m. Beside increasing the computation
time, this additional step improves marginally the results.

4. Given the set of parameters obtained in step 3, maximize the unconditional like-
lihood function as follows:

lnL (�; �; �) = �NT
2 ln 2��NT

2 ln�2+T ln jIN � �W j� 1
2 ln jHV �j�

1
2�2
�bU 0H�1

V ��
bU

w.r.t. j�j < 1� �!max and j�j < 1� �!min
5. Repeat step 3, with the estimates obtained in step 4 and so on.., until convergence
is met.

Note that to reduce the computation time the jacobian term, ln jIN � �W j, in the
loglikelihood function is approximation by

PN
i=1 ln (1� �!i), where !i is the eigenvalue

of the matrix W . The inverse of matrix HV � is also estimated using summation opera-
tions instead of matrix calculus.
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6.B.3 Spatial Dynamic QMLE

The QMLE, presented by Yu et al. (2008), requires �rst the maximization of the con-
centrated likelihood and then a bias correction. Note that the original model proposed
by the authors includes a lagged spatial lag and corresponds to a "time-space dynamic"
model (based on Anselin taxonomy (1988, 2001)). The estimation process involves the
following steps:

1. Demean all variables, denoted by ~.

2. Maximize the following concentrated likelihood function in order to estimate b�,b�, b�, b and b�2:
lnL

�
�; �; �; ; �2

�
= �NT

2 ln 2� � NT
2 ln�2 + T ln jIN � �W j � 1

2�2

TP
t=1

~U 0t ~Ut

w.r.t.
TP
t=1

eY 0�1 ~Ut = 0
TP
t=1

�
W eY 0�1�0 ~Ut = tr

�
W (IN � �W )�1

�
TP
t=1

gEX 0 ~Ut = 0

TP
t=1

gEN 0 ~Ut = 0

TP
t=1

~U 0t ~Ut = N�2

where ~Ut = (IN � �W ) eYt � heY�1;gEX;gENi ��; �0; 0�0
3. The bias-corrected estimator is then given by:26664

b�cb�cb�cbcb�2c

37775 =
26664
b�b�b�bb�2

37775� 1
T

�
�b��1b�

where b��1 can be approximated by the empirical Hessian matrix of the concen-
trated log likelihood function (an analytical expression for the matrix � can also
be found in Yu et al.) and the column matrix b is given by:

b =

2666664
1
N tr

��
IN � b� (IN � b�W )�1� (IN � b�W )�1�b�

N tr
�
W (IN � b�W )�1 �IN � b� (IN � b�W )�1� (IN � b�W )�1�+ 1

N tr
�
W (IN � b�W )�1�

0
0
1
2b�2

3777775
4. Finally, the individual e¤ects are recovered as follows:

b� = 1
T

TP
t=1
(IN � b�cW )Yt � [Y�1;EX;EN ] hb�c; b�c0; bc0i0
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6.C Monte Carlo Results: Bias

Time lag variable �: Bias
T N � � SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0.2 0.1 0.1076 0.0860 0.0807 0.0935 0.0588 0.0272
10 20 0.5 0.3 0.0784 0.0633 0.0518 0.0618 0.0472 0.0244
10 20 0.7 0.1 0.0722 0.0562 0.0402 0.0455 0.0762 -0.0561
20 20 0.2 0.1 0.0913 0.0804 0.0784 0.0413 0.0166 0.0180
20 20 0.5 0.3 0.0585 0.0514 0.0467 0.0614 0.0226 0.0115
20 20 0.7 0.1 0.0478 0.0407 0.0352 0.0211 0.0200 -0.0052
30 20 0.2 0.1 0.0857 0.0783 0.0770 -0.0591 0.0122 0.0141
30 20 0.5 0.3 0.0531 0.0483 0.0455 0.0608 0.0141 0.0099
30 20 0.7 0.1 0.0404 0.0362 0.0328 -0.0134 0.0102 -0.0008
40 20 0.2 0.1 0.0819 0.0763 0.0756 0.0803 0.0082 0.0096
40 20 0.5 0.3 0.0500 0.0463 0.0443 -0.0666 0.0081 0.0046
40 20 0.7 0.1 0.0374 0.0343 0.0327 -0.0064 0.0082 0.0004
10 30 0.2 0.1 0.1081 0.0851 0.0821 0.1066 0.0298 0.0284
10 30 0.5 0.3 0.0780 0.0571 0.0506 -0.0066 0.0437 0.0013
10 30 0.7 0.1 0.0716 0.0459 0.0388 0.0651 0.0485 -0.0042
20 30 0.2 0.1 0.0917 0.0807 0.0785 0.0921 0.0122 0.0143
20 30 0.5 0.3 0.0588 0.0514 0.0464 0.0689 0.0148 0.0038
20 30 0.7 0.1 0.0471 0.0404 0.0344 0.0068 0.0119 -0.0082
30 30 0.2 0.1 0.0850 0.0775 0.0763 -0.0514 0.0100 0.0071
30 30 0.5 0.3 0.0525 0.0477 0.0447 0.0345 0.0090 0.0028
30 30 0.7 0.1 0.0398 0.0355 0.0327 -0.0119 0.0081 -0.0059
40 30 0.2 0.1 0.0828 0.0773 0.0762 0.0651 0.0057 0.0059
40 30 0.5 0.3 0.0486 0.0452 0.0432 0.0262 0.0047 0.0044
40 30 0.7 0.1 0.0366 0.0335 0.0320 0.0119 0.0047 -0.0042
10 50 0.2 0.1 0.1070 0.0825 0.0808 0.1064 0.0203 0.0177
10 50 0.5 0.3 0.0795 0.0547 0.0524 0.0601 0.0326 0.0004
10 50 0.7 0.1 0.0706 0.0437 0.0385 0.0589 0.0228 -0.0163
20 50 0.2 0.1 0.0897 0.0786 0.0768 0.0849 0.0091 0.0095
20 50 0.5 0.3 0.0580 0.0492 0.0461 0.0693 0.0087 0.0036
20 50 0.7 0.1 0.0473 0.0377 0.0344 0.0457 0.0090 -0.0106
30 50 0.2 0.1 0.0853 0.0780 0.0767 0.0488 0.0048 0.0051
30 50 0.5 0.3 0.0530 0.0483 0.0453 0.0361 0.0060 0.0007
30 50 0.7 0.1 0.0401 0.0358 0.0327 0.0194 0.0052 -0.0042
40 50 0.2 0.1 0.0818 0.0763 0.0755 0.0588 0.0032 0.0051
40 50 0.5 0.3 0.0499 0.0464 0.0443 0.0596 0.0040 0.0006
40 50 0.7 0.1 0.0369 0.0337 0.0323 -0.0440 0.0044 -0.0051
10 70 0.2 0.1 0.1064 0.0812 0.0802 0.0975 0.0149 0.0136
10 70 0.5 0.3 0.0787 0.0538 0.0515 0.0907 0.0200 0.0048
10 70 0.7 0.1 0.0692 0.0429 0.0375 0.0363 0.0193 -0.0129
20 70 0.2 0.1 0.0907 0.0789 0.0776 0.0910 0.0063 0.0077
20 70 0.5 0.3 0.0583 0.0473 0.0464 0.0628 0.0076 0.0003
20 70 0.7 0.1 0.0468 0.0350 0.0338 0.0352 0.0077 -0.0094
30 70 0.2 0.1 0.0847 0.0773 0.0761 0.0714 0.0034 0.0038
30 70 0.5 0.3 0.0516 0.0461 0.0440 0.0247 0.0036 0.0000
30 70 0.7 0.1 0.0392 0.0336 0.0314 0.0212 0.0041 -0.0025
40 70 0.2 0.1 0.0825 0.0770 0.0760 0.0612 0.0013 0.0020
40 70 0.5 0.3 0.0492 0.0456 0.0434 0.0597 0.0026 0.0019
40 70 0.7 0.1 0.0366 0.0335 0.0309 0.0322 0.0016 -0.0034

-
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Spatial lag variable �: Bias
T N � � SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0.2 0.1 -0.0013 -0.0006 0.0005 -0.0825 -0.0148 -0.0326
10 20 0.5 0.3 -0.0151 -0.0116 -0.0104 -0.0883 -0.0216 -0.0140
10 20 0.7 0.1 -0.0081 -0.0085 -0.0073 -0.0812 -0.0253 -0.0005
20 20 0.2 0.1 -0.0054 -0.0053 -0.0048 -0.0460 -0.0127 0.0020
20 20 0.5 0.3 -0.0152 -0.0130 -0.0124 -0.0482 -0.0125 -0.0164
20 20 0.7 0.1 -0.0073 -0.0066 -0.0065 -0.0665 -0.0036 -0.0009
30 20 0.2 0.1 -0.0045 -0.0042 -0.0041 -0.1479 0.0000 -0.0084
30 20 0.5 0.3 -0.0174 -0.0158 -0.0153 -0.0248 -0.0066 -0.0092
30 20 0.7 0.1 -0.0072 -0.0066 -0.0070 0.0752 -0.0035 0.0063
40 20 0.2 0.1 -0.0046 -0.0041 -0.0043 -0.0222 -0.0014 -0.0046
40 20 0.5 0.3 -0.0161 -0.0151 -0.0147 -0.0150 0.0003 -0.0024
40 20 0.7 0.1 -0.0070 -0.0062 -0.0070 -0.0163 -0.0015 -0.0021
10 30 0.2 0.1 -0.0027 -0.0015 -0.0015 -0.0176 -0.0111 -0.0078
10 30 0.5 0.3 -0.0150 -0.0113 -0.0120 -0.0462 -0.0139 -0.0039
10 30 0.7 0.1 -0.0074 -0.0053 -0.0077 -0.0067 -0.0008 -0.0016
20 30 0.2 0.1 -0.0039 -0.0033 -0.0031 -0.0286 -0.0075 -0.0037
20 30 0.5 0.3 -0.0170 -0.0146 -0.0140 -0.0518 -0.0013 -0.0051
20 30 0.7 0.1 -0.0077 -0.0067 -0.0069 0.0040 -0.0014 -0.0056
30 30 0.2 0.1 -0.0044 -0.0039 -0.0041 0.0948 -0.0056 -0.0016
30 30 0.5 0.3 -0.0173 -0.0158 -0.0153 0.0060 0.0017 -0.0029
30 30 0.7 0.1 -0.0068 -0.0059 -0.0060 0.0032 -0.0024 -0.0026
40 30 0.2 0.1 -0.0037 -0.0034 -0.0033 0.0070 0.0032 -0.0026
40 30 0.5 0.3 -0.0160 -0.0151 -0.0147 -0.0202 -0.0046 -0.0056
40 30 0.7 0.1 -0.0081 -0.0076 -0.0078 0.0032 -0.0014 -0.0010
10 50 0.2 0.1 -0.0034 -0.0010 -0.0025 -0.0267 -0.0077 -0.0051
10 50 0.5 0.3 -0.0144 -0.0089 -0.0101 -0.1200 -0.0052 -0.0219
10 50 0.7 0.1 -0.0063 -0.0040 -0.0061 -0.0286 -0.0005 -0.0069
20 50 0.2 0.1 -0.0032 -0.0028 -0.0026 -0.0195 -0.0008 0.0011
20 50 0.5 0.3 -0.0172 -0.0144 -0.0143 -0.0499 0.0001 -0.0035
20 50 0.7 0.1 -0.0079 -0.0060 -0.0068 -0.0219 -0.0005 -0.0027
30 50 0.2 0.1 -0.0039 -0.0034 -0.0035 -0.0522 0.0007 -0.0006
30 50 0.5 0.3 -0.0174 -0.0158 -0.0155 -0.0006 -0.0014 -0.0035
30 50 0.7 0.1 -0.0074 -0.0066 -0.0066 0.0060 -0.0037 -0.0023
40 50 0.2 0.1 -0.0036 -0.0034 -0.0033 -0.0448 0.0037 0.0043
40 50 0.5 0.3 -0.0173 -0.0161 -0.0158 -0.0518 -0.0018 -0.0037
40 50 0.7 0.1 -0.0075 -0.0068 -0.0072 -0.0200 -0.0027 -0.0034
10 70 0.2 0.1 -0.0041 -0.0024 -0.0031 -0.0287 -0.0043 -0.0032
10 70 0.5 0.3 -0.0159 -0.0104 -0.0111 -0.0550 -0.0075 -0.0154
10 70 0.7 0.1 -0.0064 -0.0038 -0.0056 0.0101 0.0027 -0.0039
20 70 0.2 0.1 -0.0044 -0.0038 -0.0038 -0.0230 -0.0033 -0.0029
20 70 0.5 0.3 -0.0176 -0.0134 -0.0144 -0.0443 -0.0006 -0.0037
20 70 0.7 0.1 -0.0077 -0.0058 -0.0068 -0.0081 -0.0017 -0.0034
30 70 0.2 0.1 -0.0045 -0.0040 -0.0041 -0.0114 0.0011 -0.0010
30 70 0.5 0.3 -0.0165 -0.0145 -0.0144 -0.0140 -0.0008 -0.0025
30 70 0.7 0.1 -0.0074 -0.0063 -0.0067 0.0131 0.0004 0.0003
40 70 0.2 0.1 -0.0043 -0.0040 -0.0039 -0.0302 -0.0019 -0.0026
40 70 0.5 0.3 -0.0171 -0.0163 -0.0158 -0.0557 -0.0003 -0.0022
40 70 0.7 0.1 -0.0078 -0.0072 -0.0073 -0.0091 0.0002 -0.0004
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Endogenous variable : Bias
T N � � SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0.2 0.1 -0.4125 -0.4065 -0.4050 -0.4107 -0.1361 -0.1614
10 20 0.5 0.3 -0.3994 -0.3958 -0.3932 -0.4003 -0.1305 -0.1308
10 20 0.7 0.1 -0.3942 -0.3931 -0.3905 -0.4014 -0.1193 -0.0894
20 20 0.2 0.1 -0.3987 -0.3950 -0.3941 -0.4117 -0.0589 -0.0822
20 20 0.5 0.3 -0.3845 -0.3826 -0.3808 -0.3863 -0.0617 -0.0695
20 20 0.7 0.1 -0.3817 -0.3793 -0.3776 -0.3870 -0.0404 -0.0389
30 20 0.2 0.1 -0.3932 -0.3905 -0.3898 -0.4266 -0.0366 -0.0472
30 20 0.5 0.3 -0.3786 -0.3766 -0.3758 -0.3838 -0.0384 -0.0388
30 20 0.7 0.1 -0.3779 -0.3761 -0.3741 -0.3989 -0.0451 -0.0341
40 20 0.2 0.1 -0.3907 -0.3885 -0.3882 -0.3906 -0.0334 -0.0455
40 20 0.5 0.3 -0.3790 -0.3775 -0.3766 -0.4267 -0.0213 -0.0332
40 20 0.7 0.1 -0.3733 -0.3714 -0.3701 -0.3862 -0.0208 -0.0252
10 30 0.2 0.1 -0.4192 -0.4138 -0.4131 -0.4192 -0.0764 -0.1107
10 30 0.5 0.3 -0.3975 -0.3943 -0.3924 -0.4378 -0.0808 -0.0781
10 30 0.7 0.1 -0.3947 -0.3902 -0.3909 -0.3982 -0.0877 -0.0805
20 30 0.2 0.1 -0.3980 -0.3941 -0.3936 -0.3970 -0.0341 -0.0552
20 30 0.5 0.3 -0.3861 -0.3837 -0.3820 -0.3838 -0.0448 -0.0475
20 30 0.7 0.1 -0.3806 -0.3787 -0.3771 -0.3946 -0.0390 -0.0323
30 30 0.2 0.1 -0.3925 -0.3901 -0.3893 -0.4420 -0.0180 -0.0327
30 30 0.5 0.3 -0.3802 -0.3785 -0.3776 -0.3999 -0.0270 -0.0256
30 30 0.7 0.1 -0.3780 -0.3764 -0.3749 -0.3952 -0.0248 -0.0189
40 30 0.2 0.1 -0.3918 -0.3896 -0.3892 -0.3983 -0.0221 -0.0325
40 30 0.5 0.3 -0.3771 -0.3757 -0.3748 -0.3924 -0.0193 -0.0272
40 30 0.7 0.1 -0.3759 -0.3748 -0.3730 -0.3859 -0.0143 -0.0168
10 50 0.2 0.1 -0.4095 -0.4031 -0.4026 -0.4076 -0.0540 -0.0762
10 50 0.5 0.3 -0.3980 -0.3939 -0.3927 -0.3930 -0.0598 -0.0483
10 50 0.7 0.1 -0.3945 -0.3906 -0.3898 -0.3978 -0.0490 -0.0444
20 50 0.2 0.1 -0.3990 -0.3951 -0.3945 -0.3999 -0.0247 -0.0440
20 50 0.5 0.3 -0.3856 -0.3828 -0.3816 -0.3838 -0.0277 -0.0333
20 50 0.7 0.1 -0.3811 -0.3784 -0.3773 -0.3814 -0.0210 -0.0119
30 50 0.2 0.1 -0.3946 -0.3918 -0.3914 -0.4024 -0.0133 -0.0228
30 50 0.5 0.3 -0.3805 -0.3789 -0.3777 -0.3984 -0.0148 -0.0142
30 50 0.7 0.1 -0.3762 -0.3744 -0.3729 -0.3833 -0.0127 -0.0123
40 50 0.2 0.1 -0.3918 -0.3895 -0.3891 -0.3964 -0.0155 -0.0257
40 50 0.5 0.3 -0.3778 -0.3764 -0.3757 -0.3773 -0.0137 -0.0134
40 50 0.7 0.1 -0.3753 -0.3741 -0.3726 -0.3992 -0.0093 -0.0056
10 70 0.2 0.1 -0.4105 -0.4037 -0.4032 -0.4130 -0.0448 -0.0558
10 70 0.5 0.3 -0.4009 -0.3955 -0.3952 -0.3969 -0.0471 -0.0408
10 70 0.7 0.1 -0.3918 -0.3877 -0.3871 -0.4046 -0.0400 -0.0271
20 70 0.2 0.1 -0.3982 -0.3941 -0.3937 -0.3975 -0.0174 -0.0300
20 70 0.5 0.3 -0.3862 -0.3829 -0.3823 -0.3886 -0.0224 -0.0155
20 70 0.7 0.1 -0.3809 -0.3773 -0.3769 -0.3850 -0.0223 -0.0184
30 70 0.2 0.1 -0.3940 -0.3911 -0.3907 -0.3985 -0.0152 -0.0228
30 70 0.5 0.3 -0.3804 -0.3784 -0.3775 -0.3998 -0.0122 -0.0141
30 70 0.7 0.1 -0.3773 -0.3752 -0.3744 -0.3844 -0.0056 -0.0049
40 70 0.2 0.1 -0.3903 -0.3882 -0.3878 -0.3960 -0.0023 -0.0110
40 70 0.5 0.3 -0.3768 -0.3754 -0.3747 -0.3751 -0.0067 -0.0083
40 70 0.7 0.1 -0.3745 -0.3734 -0.3722 -0.3766 -0.0086 -0.0062
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Exogenous variable �: Bias
T N � � SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0.2 0.1 -0.0487 -0.0387 -0.0358 -0.0365 0.0098 -0.0062
10 20 0.5 0.3 -0.0329 -0.0258 -0.0219 -0.0103 0.0088 -0.0013
10 20 0.7 0.1 -0.0234 -0.0189 -0.0129 -0.0118 0.0318 0.0517
20 20 0.2 0.1 -0.0581 -0.0512 -0.0499 -0.0218 -0.0029 -0.0145
20 20 0.5 0.3 -0.0390 -0.0344 -0.0307 -0.0308 0.0017 -0.0053
20 20 0.7 0.1 -0.0316 -0.0260 -0.0222 -0.0073 0.0096 0.0163
30 20 0.2 0.1 -0.0572 -0.0522 -0.0514 0.0466 0.0001 -0.0098
30 20 0.5 0.3 -0.0403 -0.0362 -0.0340 -0.0434 0.0007 -0.0068
30 20 0.7 0.1 -0.0342 -0.0298 -0.0278 0.0025 0.0008 0.0091
40 20 0.2 0.1 -0.0553 -0.0513 -0.0507 -0.0527 -0.0017 -0.0032
40 20 0.5 0.3 -0.0381 -0.0355 -0.0338 0.0631 0.0017 -0.0017
40 20 0.7 0.1 -0.0330 -0.0298 -0.0278 0.0089 -0.0028 0.0052
10 30 0.2 0.1 -0.0572 -0.0457 -0.0437 -0.0560 -0.0046 -0.0185
10 30 0.5 0.3 -0.0311 -0.0225 -0.0200 0.0162 0.0072 0.0097
10 30 0.7 0.1 -0.0263 -0.0164 -0.0149 -0.0252 0.0142 0.0132
20 30 0.2 0.1 -0.0553 -0.0489 -0.0477 -0.0546 -0.0022 -0.0069
20 30 0.5 0.3 -0.0344 -0.0298 -0.0264 -0.0326 0.0014 0.0053
20 30 0.7 0.1 -0.0326 -0.0275 -0.0231 -0.0040 0.0062 0.0129
30 30 0.2 0.1 -0.0554 -0.0504 -0.0496 0.0309 -0.0006 -0.0074
30 30 0.5 0.3 -0.0373 -0.0338 -0.0319 -0.0284 0.0009 0.0034
30 30 0.7 0.1 -0.0340 -0.0297 -0.0274 0.0084 0.0010 0.0090
40 30 0.2 0.1 -0.0574 -0.0536 -0.0529 -0.0463 -0.0036 -0.0077
40 30 0.5 0.3 -0.0393 -0.0364 -0.0347 -0.0177 -0.0009 -0.0030
40 30 0.7 0.1 -0.0349 -0.0320 -0.0291 -0.0118 0.0002 0.0044
10 50 0.2 0.1 -0.0512 -0.0389 -0.0382 -0.0500 0.0017 -0.0049
10 50 0.5 0.3 -0.0353 -0.0255 -0.0238 -0.0043 0.0050 0.0131
10 50 0.7 0.1 -0.0262 -0.0174 -0.0156 -0.0204 0.0040 0.0148
20 50 0.2 0.1 -0.0557 -0.0486 -0.0476 -0.0523 -0.0018 -0.0075
20 50 0.5 0.3 -0.0384 -0.0330 -0.0303 -0.0381 -0.0004 -0.0027
20 50 0.7 0.1 -0.0323 -0.0256 -0.0232 -0.0309 0.0034 0.0130
30 50 0.2 0.1 -0.0556 -0.0507 -0.0498 -0.0287 -0.0003 -0.0038
30 50 0.5 0.3 -0.0390 -0.0355 -0.0332 -0.0293 -0.0004 0.0029
30 50 0.7 0.1 -0.0331 -0.0293 -0.0265 -0.0173 -0.0009 0.0082
40 50 0.2 0.1 -0.0558 -0.0520 -0.0513 -0.0372 0.0002 -0.0029
40 50 0.5 0.3 -0.0395 -0.0368 -0.0350 -0.0366 -0.0018 0.0019
40 50 0.7 0.1 -0.0334 -0.0307 -0.0280 0.0445 -0.0012 0.0069
10 70 0.2 0.1 -0.0512 -0.0391 -0.0386 -0.0457 0.0018 -0.0024
10 70 0.5 0.3 -0.0328 -0.0228 -0.0210 -0.0303 0.0027 0.0059
10 70 0.7 0.1 -0.0240 -0.0148 -0.0123 -0.0119 0.0056 0.0172
20 70 0.2 0.1 -0.0552 -0.0478 -0.0472 -0.0544 0.0001 -0.0059
20 70 0.5 0.3 -0.0374 -0.0301 -0.0294 -0.0335 -0.0015 0.0049
20 70 0.7 0.1 -0.0330 -0.0251 -0.0241 -0.0259 0.0022 0.0100
30 70 0.2 0.1 -0.0561 -0.0514 -0.0507 -0.0467 -0.0007 -0.0018
30 70 0.5 0.3 -0.0381 -0.0341 -0.0325 -0.0164 0.0006 0.0008
30 70 0.7 0.1 -0.0332 -0.0284 -0.0266 -0.0198 -0.0002 0.0065
40 70 0.2 0.1 -0.0567 -0.0528 -0.0522 -0.0400 -0.0013 -0.0048
40 70 0.5 0.3 -0.0395 -0.0368 -0.0349 -0.0363 -0.0025 0.0001
40 70 0.7 0.1 -0.0334 -0.0305 -0.0281 -0.0293 0.0003 0.0055
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6.D Monte Carlo Results: RMSE

Time lag variable �: RMSE
T N � � SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0.2 0.1 0.0135 0.0092 0.0085 0.0108 0.0235 0.0177
10 20 0.5 0.3 0.0074 0.0051 0.0038 0.0050 0.0207 0.0125
10 20 0.7 0.1 0.0062 0.0040 0.0026 0.0033 0.1781 0.0173
20 20 0.2 0.1 0.0089 0.0070 0.0067 0.0025 0.0048 0.0063
20 20 0.5 0.3 0.0039 0.0031 0.0026 0.0043 0.0059 0.0063
20 20 0.7 0.1 0.0026 0.0020 0.0016 0.0009 0.0085 0.0051
30 20 0.2 0.1 0.0078 0.0065 0.0063 0.0040 0.0026 0.0039
30 20 0.5 0.3 0.0031 0.0026 0.0023 0.0040 0.0027 0.0036
30 20 0.7 0.1 0.0018 0.0015 0.0013 0.0004 0.0032 0.0033
40 20 0.2 0.1 0.0071 0.0062 0.0061 0.0068 0.0020 0.0030
40 20 0.5 0.3 0.0027 0.0023 0.0022 0.0046 0.0020 0.0030
40 20 0.7 0.1 0.0015 0.0013 0.0012 0.0002 0.0016 0.0022
10 30 0.2 0.1 0.0126 0.0082 0.0077 0.0122 0.0094 0.0096
10 30 0.5 0.3 0.0069 0.0039 0.0033 0.0009 0.0183 0.0126
10 30 0.7 0.1 0.0057 0.0026 0.0021 0.0049 0.0282 0.0087
20 30 0.2 0.1 0.0088 0.0069 0.0066 0.0088 0.0033 0.0047
20 30 0.5 0.3 0.0037 0.0029 0.0024 0.0051 0.0032 0.0042
20 30 0.7 0.1 0.0024 0.0018 0.0014 0.0003 0.0056 0.0043
30 30 0.2 0.1 0.0075 0.0063 0.0061 0.0030 0.0017 0.0024
30 30 0.5 0.3 0.0030 0.0025 0.0022 0.0014 0.0018 0.0027
30 30 0.7 0.1 0.0017 0.0014 0.0012 0.0003 0.0018 0.0023
40 30 0.2 0.1 0.0070 0.0062 0.0060 0.0046 0.0012 0.0018
40 30 0.5 0.3 0.0025 0.0022 0.0020 0.0008 0.0011 0.0017
40 30 0.7 0.1 0.0015 0.0012 0.0012 0.0002 0.0014 0.0019
10 50 0.2 0.1 0.0121 0.0074 0.0071 0.0120 0.0046 0.0054
10 50 0.5 0.3 0.0066 0.0032 0.0031 0.0041 0.0119 0.0074
10 50 0.7 0.1 0.0053 0.0023 0.0019 0.0039 0.0119 0.0058
20 50 0.2 0.1 0.0083 0.0064 0.0062 0.0075 0.0018 0.0025
20 50 0.5 0.3 0.0035 0.0026 0.0023 0.0050 0.0020 0.0025
20 50 0.7 0.1 0.0023 0.0015 0.0013 0.0022 0.0028 0.0027
30 50 0.2 0.1 0.0074 0.0062 0.0060 0.0026 0.0011 0.0017
30 50 0.5 0.3 0.0029 0.0024 0.0021 0.0014 0.0011 0.0016
30 50 0.7 0.1 0.0017 0.0014 0.0011 0.0005 0.0011 0.0014
40 50 0.2 0.1 0.0069 0.0060 0.0059 0.0036 0.0007 0.0012
40 50 0.5 0.3 0.0026 0.0022 0.0020 0.0036 0.0007 0.0010
40 50 0.7 0.1 0.0014 0.0012 0.0011 0.0020 0.0007 0.0011
10 70 0.2 0.1 0.0116 0.0068 0.0067 0.0100 0.0031 0.0038
10 70 0.5 0.3 0.0064 0.0031 0.0029 0.0084 0.0060 0.0052
10 70 0.7 0.1 0.0051 0.0021 0.0017 0.0017 0.0094 0.0057
20 70 0.2 0.1 0.0084 0.0064 0.0062 0.0084 0.0011 0.0018
20 70 0.5 0.3 0.0035 0.0023 0.0023 0.0041 0.0014 0.0020
20 70 0.7 0.1 0.0023 0.0013 0.0012 0.0014 0.0019 0.0024
30 70 0.2 0.1 0.0073 0.0061 0.0059 0.0052 0.0006 0.0009
30 70 0.5 0.3 0.0027 0.0022 0.0020 0.0007 0.0007 0.0011
30 70 0.7 0.1 0.0016 0.0012 0.0011 0.0005 0.0007 0.0010
40 70 0.2 0.1 0.0069 0.0060 0.0059 0.0038 0.0005 0.0009
40 70 0.5 0.3 0.0025 0.0022 0.0020 0.0037 0.0005 0.0008
40 70 0.7 0.1 0.0014 0.0012 0.0010 0.0011 0.0005 0.0008
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Spatial lag variable �: RMSEs
T N � � SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0.2 0.1 0.0018 0.0018 0.0018 0.0078 0.0979 0.0324
10 20 0.5 0.3 0.0015 0.0014 0.0015 0.0093 0.0333 0.0153
10 20 0.7 0.1 0.0015 0.0015 0.0016 0.0078 0.2125 0.0129
20 20 0.2 0.1 0.0011 0.0011 0.0011 0.0041 0.0320 0.0219
20 20 0.5 0.3 0.0008 0.0007 0.0007 0.0031 0.0100 0.0058
20 20 0.7 0.1 0.0006 0.0006 0.0006 0.0052 0.0331 0.0043
30 20 0.2 0.1 0.0005 0.0005 0.0005 0.0231 0.0111 0.0105
30 20 0.5 0.3 0.0005 0.0005 0.0005 0.0008 0.0046 0.0039
30 20 0.7 0.1 0.0003 0.0003 0.0003 0.0061 0.0054 0.0038
40 20 0.2 0.1 0.0005 0.0005 0.0005 0.0012 0.0075 0.0080
40 20 0.5 0.3 0.0005 0.0004 0.0005 0.0010 0.0020 0.0020
40 20 0.7 0.1 0.0002 0.0002 0.0002 0.0004 0.0022 0.0014
10 30 0.2 0.1 0.0015 0.0015 0.0015 0.0026 0.0393 0.0304
10 30 0.5 0.3 0.0011 0.0010 0.0010 0.0045 0.0252 0.0099
10 30 0.7 0.1 0.0010 0.0010 0.0011 0.0012 0.0307 0.0090
20 30 0.2 0.1 0.0006 0.0006 0.0006 0.0016 0.0122 0.0101
20 30 0.5 0.3 0.0006 0.0005 0.0005 0.0030 0.0082 0.0046
20 30 0.7 0.1 0.0003 0.0003 0.0003 0.0007 0.0108 0.0027
30 30 0.2 0.1 0.0004 0.0004 0.0004 0.0103 0.0061 0.0050
30 30 0.5 0.3 0.0006 0.0005 0.0005 0.0004 0.0029 0.0018
30 30 0.7 0.1 0.0002 0.0002 0.0002 0.0004 0.0027 0.0016
40 30 0.2 0.1 0.0003 0.0003 0.0003 0.0005 0.0059 0.0049
40 30 0.5 0.3 0.0004 0.0004 0.0004 0.0006 0.0016 0.0012
40 30 0.7 0.1 0.0002 0.0002 0.0002 0.0002 0.0033 0.0016
10 50 0.2 0.1 0.0009 0.0007 0.0009 0.0021 0.0140 0.0101
10 50 0.5 0.3 0.0007 0.0005 0.0006 0.0143 0.0771 0.0083
10 50 0.7 0.1 0.0006 0.0005 0.0006 0.0014 0.0174 0.0046
20 50 0.2 0.1 0.0004 0.0003 0.0003 0.0008 0.0094 0.0057
20 50 0.5 0.3 0.0005 0.0004 0.0004 0.0025 0.0032 0.0025
20 50 0.7 0.1 0.0002 0.0002 0.0002 0.0007 0.0058 0.0016
30 50 0.2 0.1 0.0003 0.0003 0.0003 0.0035 0.0042 0.0044
30 50 0.5 0.3 0.0004 0.0003 0.0003 0.0002 0.0019 0.0016
30 50 0.7 0.1 0.0001 0.0001 0.0001 0.0002 0.0016 0.0011
40 50 0.2 0.1 0.0002 0.0002 0.0002 0.0024 0.0030 0.0029
40 50 0.5 0.3 0.0004 0.0004 0.0004 0.0029 0.0012 0.0010
40 50 0.7 0.1 0.0002 0.0001 0.0002 0.0006 0.0012 0.0006
10 70 0.2 0.1 0.0005 0.0004 0.0004 0.0016 0.0143 0.0142
10 70 0.5 0.3 0.0006 0.0004 0.0005 0.0032 0.0199 0.0048
10 70 0.7 0.1 0.0004 0.0003 0.0004 0.0008 0.0121 0.0025
20 70 0.2 0.1 0.0002 0.0002 0.0002 0.0008 0.0050 0.0050
20 70 0.5 0.3 0.0005 0.0003 0.0004 0.0024 0.0024 0.0015
20 70 0.7 0.1 0.0002 0.0002 0.0002 0.0002 0.0032 0.0018
30 70 0.2 0.1 0.0002 0.0002 0.0002 0.0004 0.0026 0.0026
30 70 0.5 0.3 0.0004 0.0003 0.0003 0.0004 0.0012 0.0010
30 70 0.7 0.1 0.0001 0.0001 0.0001 0.0003 0.0009 0.0006
40 70 0.2 0.1 0.0001 0.0001 0.0001 0.0010 0.0020 0.0020
40 70 0.5 0.3 0.0004 0.0003 0.0003 0.0033 0.0007 0.0005
40 70 0.7 0.1 0.0001 0.0001 0.0001 0.0002 0.0007 0.0005
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Endogenous variable : RMSE
T N � � SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0.2 0.1 0.1733 0.1686 0.1676 0.1723 0.1073 0.1195
10 20 0.5 0.3 0.1634 0.1611 0.1593 0.1649 0.0892 0.0810
10 20 0.7 0.1 0.1603 0.1581 0.1572 0.1650 0.1134 0.0668
20 20 0.2 0.1 0.1615 0.1584 0.1579 0.1735 0.0424 0.0476
20 20 0.5 0.3 0.1499 0.1481 0.1470 0.1512 0.0329 0.0364
20 20 0.7 0.1 0.1477 0.1457 0.1448 0.1518 0.0288 0.0292
30 20 0.2 0.1 0.1549 0.1527 0.1524 0.1843 0.0248 0.0305
30 20 0.5 0.3 0.1446 0.1432 0.1425 0.1484 0.0227 0.0244
30 20 0.7 0.1 0.1431 0.1403 0.1408 0.1603 0.0173 0.0188
40 20 0.2 0.1 0.1529 0.1512 0.1509 0.1528 0.0184 0.0231
40 20 0.5 0.3 0.1441 0.1430 0.1425 0.1825 0.0142 0.0177
40 20 0.7 0.1 0.1408 0.1383 0.1387 0.1508 0.0122 0.0139
10 30 0.2 0.1 0.1754 0.1702 0.1696 0.1748 0.0634 0.0655
10 30 0.5 0.3 0.1608 0.1561 0.1569 0.1947 0.0521 0.0497
10 30 0.7 0.1 0.1596 0.1496 0.1564 0.1618 0.0468 0.0420
20 30 0.2 0.1 0.1603 0.1572 0.1567 0.1593 0.0292 0.0345
20 30 0.5 0.3 0.1500 0.1483 0.1471 0.1487 0.0188 0.0219
20 30 0.7 0.1 0.1469 0.1451 0.1439 0.1577 0.0201 0.0211
30 30 0.2 0.1 0.1549 0.1528 0.1524 0.1962 0.0152 0.0192
30 30 0.5 0.3 0.1455 0.1440 0.1434 0.1611 0.0110 0.0137
30 30 0.7 0.1 0.1433 0.1420 0.1408 0.1569 0.0115 0.0123
40 30 0.2 0.1 0.1540 0.1524 0.1521 0.1592 0.0125 0.0149
40 30 0.5 0.3 0.1433 0.1423 0.1417 0.1551 0.0094 0.0115
40 30 0.7 0.1 0.1418 0.1404 0.1396 0.1488 0.0080 0.0089
10 50 0.2 0.1 0.1691 0.1633 0.1632 0.1678 0.0354 0.0372
10 50 0.5 0.3 0.1597 0.1499 0.1555 0.1568 0.0365 0.0358
10 50 0.7 0.1 0.1560 0.1525 0.1528 0.1587 0.0254 0.0239
20 50 0.2 0.1 0.1601 0.1569 0.1565 0.1610 0.0146 0.0183
20 50 0.5 0.3 0.1491 0.1469 0.1462 0.1478 0.0129 0.0146
20 50 0.7 0.1 0.1456 0.1387 0.1426 0.1457 0.0098 0.0105
30 50 0.2 0.1 0.1552 0.1530 0.1527 0.1616 0.0097 0.0130
30 50 0.5 0.3 0.1449 0.1437 0.1428 0.1592 0.0075 0.0090
30 50 0.7 0.1 0.1420 0.1408 0.1396 0.1475 0.0065 0.0069
40 50 0.2 0.1 0.1531 0.1514 0.1511 0.1572 0.0066 0.0087
40 50 0.5 0.3 0.1434 0.1424 0.1418 0.1429 0.0057 0.0067
40 50 0.7 0.1 0.1409 0.1399 0.1387 0.1597 0.0047 0.0052
10 70 0.2 0.1 0.1691 0.1623 0.1633 0.1708 0.0252 0.0281
10 70 0.5 0.3 0.1605 0.1548 0.1563 0.1576 0.0224 0.0227
10 70 0.7 0.1 0.1539 0.1510 0.1503 0.1650 0.0186 0.0190
20 70 0.2 0.1 0.1594 0.1562 0.1558 0.1589 0.0107 0.0140
20 70 0.5 0.3 0.1494 0.1420 0.1464 0.1512 0.0081 0.0098
20 70 0.7 0.1 0.1457 0.1378 0.1426 0.1489 0.0076 0.0086
30 70 0.2 0.1 0.1557 0.1535 0.1532 0.1592 0.0061 0.0076
30 70 0.5 0.3 0.1451 0.1437 0.1430 0.1601 0.0053 0.0067
30 70 0.7 0.1 0.1426 0.1400 0.1403 0.1484 0.0044 0.0047
40 70 0.2 0.1 0.1527 0.1510 0.1508 0.1570 0.0048 0.0063
40 70 0.5 0.3 0.1425 0.1415 0.1408 0.1410 0.0037 0.0045
40 70 0.7 0.1 0.1407 0.1397 0.1389 0.1421 0.0032 0.0035
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Exogenous variable �: RMSE
T N � � SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0.2 0.1 0.0061 0.0053 0.0051 0.0055 0.0131 0.0386
10 20 0.5 0.3 0.0051 0.0047 0.0044 0.0049 0.0119 0.0169
10 20 0.7 0.1 0.0046 0.0044 0.0042 0.0047 0.0355 0.0335
20 20 0.2 0.1 0.0049 0.0041 0.0040 0.0028 0.0050 0.0120
20 20 0.5 0.3 0.0031 0.0027 0.0025 0.0028 0.0050 0.0101
20 20 0.7 0.1 0.0024 0.0021 0.0019 0.0018 0.0053 0.0095
30 20 0.2 0.1 0.0044 0.0038 0.0037 0.0042 0.0034 0.0072
30 20 0.5 0.3 0.0026 0.0023 0.0022 0.0030 0.0032 0.0066
30 20 0.7 0.1 0.0021 0.0018 0.0017 0.0014 0.0027 0.0075
40 20 0.2 0.1 0.0039 0.0034 0.0034 0.0036 0.0024 0.0055
40 20 0.5 0.3 0.0023 0.0021 0.0020 0.0058 0.0024 0.0059
40 20 0.7 0.1 0.0018 0.0016 0.0015 0.0010 0.0024 0.0054
10 30 0.2 0.1 0.0056 0.0045 0.0043 0.0055 0.0080 0.0142
10 30 0.5 0.3 0.0037 0.0031 0.0031 0.0050 0.0082 0.0177
10 30 0.7 0.1 0.0029 0.0024 0.0025 0.0029 0.0088 0.0128
20 30 0.2 0.1 0.0042 0.0035 0.0034 0.0041 0.0033 0.0080
20 30 0.5 0.3 0.0022 0.0019 0.0017 0.0021 0.0034 0.0071
20 30 0.7 0.1 0.0022 0.0019 0.0017 0.0016 0.0033 0.0076
30 30 0.2 0.1 0.0039 0.0034 0.0033 0.0023 0.0021 0.0044
30 30 0.5 0.3 0.0021 0.0019 0.0017 0.0017 0.0019 0.0059
30 30 0.7 0.1 0.0018 0.0016 0.0014 0.0010 0.0020 0.0048
40 30 0.2 0.1 0.0038 0.0034 0.0033 0.0028 0.0016 0.0027
40 30 0.5 0.3 0.0020 0.0018 0.0016 0.0010 0.0015 0.0031
40 30 0.7 0.1 0.0017 0.0015 0.0014 0.0008 0.0014 0.0044
10 50 0.2 0.1 0.0043 0.0032 0.0032 0.0043 0.0042 0.0070
10 50 0.5 0.3 0.0027 0.0020 0.0020 0.0019 0.0043 0.0097
10 50 0.7 0.1 0.0021 0.0017 0.0017 0.0021 0.0047 0.0088
20 50 0.2 0.1 0.0037 0.0030 0.0029 0.0033 0.0020 0.0051
20 50 0.5 0.3 0.0020 0.0016 0.0015 0.0020 0.0018 0.0045
20 50 0.7 0.1 0.0017 0.0013 0.0012 0.0016 0.0019 0.0050
30 50 0.2 0.1 0.0036 0.0030 0.0030 0.0014 0.0012 0.0029
30 50 0.5 0.3 0.0019 0.0016 0.0015 0.0014 0.0012 0.0032
30 50 0.7 0.1 0.0015 0.0013 0.0011 0.0008 0.0011 0.0030
40 50 0.2 0.1 0.0035 0.0030 0.0030 0.0018 0.0009 0.0023
40 50 0.5 0.3 0.0019 0.0017 0.0016 0.0017 0.0008 0.0020
40 50 0.7 0.1 0.0014 0.0012 0.0011 0.0025 0.0008 0.0027
10 70 0.2 0.1 0.0037 0.0026 0.0025 0.0032 0.0030 0.0050
10 70 0.5 0.3 0.0021 0.0016 0.0015 0.0020 0.0029 0.0071
10 70 0.7 0.1 0.0016 0.0013 0.0012 0.0014 0.0036 0.0075
20 70 0.2 0.1 0.0036 0.0029 0.0028 0.0036 0.0014 0.0035
20 70 0.5 0.3 0.0019 0.0013 0.0013 0.0016 0.0012 0.0037
20 70 0.7 0.1 0.0014 0.0010 0.0010 0.0011 0.0012 0.0041
30 70 0.2 0.1 0.0034 0.0029 0.0028 0.0025 0.0009 0.0018
30 70 0.5 0.3 0.0018 0.0015 0.0013 0.0007 0.0009 0.0022
30 70 0.7 0.1 0.0014 0.0011 0.0010 0.0007 0.0008 0.0021
40 70 0.2 0.1 0.0035 0.0030 0.0030 0.0019 0.0006 0.0017
40 70 0.5 0.3 0.0017 0.0015 0.0014 0.0015 0.0006 0.0015
40 70 0.7 0.1 0.0013 0.0012 0.0010 0.0011 0.0006 0.0020
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